Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:

Storlek: px
Starta visningen från sidan:

Download "Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:"

Transkript

1 Matematik Namn: Datum:

2 Mattepapper Blandad räkning = = = = 40 2 = 30 2 = 800 = = Visa hur du löser uppgifterna!

3 Visa hur du löser uppgifterna! Rita en kvadrat, en rektangel och en triangel. Triangeln ska ha störst area (yta) och rektangeln ska ha minst area. Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

4 Blandad räkning Addition 40 = = = = Visa hur du löser uppgifterna!

5 Visa hur du löser uppgifterna! Lisa samlar på stenar. Innan hon åker på semester har hon 47 stenar. När hon kommer hem från sin semester har hon 64 stenar. Hur många stenar hittade hon under sin semester? Svar: Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

6 Mattepapper Blandad räkning = = = = = = 900 = = Skriv talen i storleksordning! Börja med det minsta talet! Börja med det största talet!

7 Carlo har 12 kulor, Wilma har 29 kulor och Oskar har 37 kulor. Hur många kulor har de tillsammans? Svar: På tisdagen såg Eric 28 skator. På fredagen såg han 75 skator. Hur många fler skator såg han på fredagen? Svar: Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

8 Mattepapper Blandad räkning = = = = = = 600 = = Vilket tal ska stå där kryssen är?

9 Lisa äter 46 godisbitar. Simon äter 29 godisbitar. Hur många fler äter Lisa? Svar: Carlo har 12 kulor, Wilma har 29 kulor och Oskar har 37 kulor. Hur många kulor har de tillsammans? Svar: På tisdagen såg Eric 28 skator. På fredagen såg han 75 skator. Hur många fler skator såg han på fredagen? Svar: Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

10 Mattepapper Blandad räkning = = = = 30 2 = 20 2 = 600 = = Visa hur du löser uppgifterna!

11 Visa hur du löser uppgifterna! Rita en kvadrat, en rektangel och en triangel. Kvadraten ska ha störst area (yta) och rektangeln ska ha minst area. Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

12 Blandad räkning Visa hur du löser uppgifterna!

13 Bråk Färglägg ½ figuren blå och ¼ av figuren svart. Färglägg 1/3 av figuren blå och 2/6 av figuren svart. Måla 1/4 av bollarna blåa och måla 2/8 av bollarna röda. Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

14 Blandad räkning Visa hur du löser uppgifterna! = = =

15 Bråk Måla ⅓ av varje figur. Måla på två olika sätt! Måla ¼ av varje figur. Måla 1/3 av bollarna gröna. Måla ¼ av bollarna röda. Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

16 Talraden Addition 50 = = = = Visa hur du löser uppgifterna!

17 Visa hur du löser uppgifterna! I Lillehammer går det 21 elever. I matsalen finns det 80 platser. Hur många platser är lediga om bara eleverna i Lillehammer äter i matsalen? Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

18 Addition Skriv färdigt additionerna = 60 = = = 90 = = = 600 = = = = 6000 = = = = = = = = = 2345 = =

19 Problemlösning Liam har 75 kronor och Carlo har 105 kr. Hur mycket mer har Carlo? Svar: Simona har 85 kronor och Jesper har dubbelt så mycket. Hur mycket har de tillsammans? Svar: Öva tills du kan multiplikationsuppgifterna utantill! 4 2 = 4 4 = 6 3 = 4 5 = 3 3 = 7 2 = 5 5 = 9 2 = 5 3 = Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

20 Talraden Skriv färdigt talraden Skriv det högsta talet du kan göra med siffrorna

21 Skriv det lägsta talet du kan göra med siffrorna Skriv talet. 1 mer än mer än mer än mer än mer än mer än 563 MÅL Hälften och dubbelt Vad är hälften av 14? Vad är hälften av 46? Vad är dubbelt av 14? Vad är dubbelt av 41? Vad är dubbelt av 243? Vad är hälften av 24? Vad är hälften av 82? Vad är dubbelt av 23? Vad är dubbelt av 32? Vad är dubbelt av 341? Hur säker kände du dig när du gjorde uppgifterna? = Mycket osäker 5 = Mycket säker

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

Extra-bok nummer 2B i matematik

Extra-bok nummer 2B i matematik Extra-bok nummer 2B i matematik Anneli Weiland 1 Öka 10 hela tiden -20-10 50 90 150 270 280 Skriv +, -, * eller / så att likheten stämmer 18 3 = 3 7 5 17 = 30 8 8 12 = 0 4 15 15 = 17 0 10 2 = 20 4 12 15

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270 Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller

Läs mer

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11

Gymnasiets Cadet. a: 2 b: 4 c: 5 d: 6 e: 11 Gymnasiets Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c:

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 1 Omkrets och area Sidan 7 1 A och C 2 D och E 3 a G, H och J b I och J c J Sidan 8 4 a 1 b 1 c 1 d 4 5 A = 0 B = 2 C = 4 D = 2 6 a 8 0 8 b 1 0 1 c 3 8 3 d 1 3 8 F7 A B

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda?

Cadet. 1. I en klass finns 13 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? Cadet Avdelning 1. Trepoängsproblem 1. I en klass finns 1 flickor och 9 pojkar. Hälften av eleverna i klassen är förkylda. Vilket är det minsta antalet flickor som är förkylda? a: 2 b: 4 c: 5 d: 6 e: 11

Läs mer

Problem Svar

Problem Svar Känguru Benjamin, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE MÄSTERKATTEN B FACIT GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE Problemlösning Arbeta två och två. Gubben hade bakat plåtar med bullar. Några bullar på varje plåt blev brända.. Hur många bullar tror ni gubben

Läs mer

Svar och arbeta vidare med Cadet 2008

Svar och arbeta vidare med Cadet 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Att välja räknesätt när du löser matematiska problem. Skriv din lösning! Eric har 165 kr. Towa har dubbelt så mycket. Didrik har 20 kr färre än Towa. Hur mycket har de tillsammans?

Läs mer

MÄSTERKATTEN 1A FACIT. Jag

MÄSTERKATTEN 1A FACIT. Jag MÄSTERKATTEN A FACIT VANTEN Problemlösning Arbeta två och två. Musen, i bild, har gömt några ostbitar i den gröna burken.. Hur många tror ni att han har gömt?. Hur många har han då sammanlagt? Vi har jämfört

Läs mer

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans

Läs mer

Djupgående frågor rörande vissa matematiska begrepp

Djupgående frågor rörande vissa matematiska begrepp Bilaga 1 Förintervju/efterintervju Allmänna frågor rörande attityder 1. Vad är matematik? 2. Vad kan man använda matematik till? 3. Vad tycker du om matematik? 4. Är det bra/dåligt med matematik? Djupgående

Läs mer

MÄSTERKATTEN Repetition och Utmaning

MÄSTERKATTEN Repetition och Utmaning ntal siffra, mönster. ntal siffra, mönster. MÄSTEKTTEN EPETITON OCH UTMNIN FCIT eflektion VÄlKoMMEN Till MÄSTEKTTEN epetition och Utmaning Måla de sidor du gjort. Välj färg efter hur lätt eller svår du

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna. Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Namn: 3 dm = m 5 dm = m 6 dm = m. 9 dm = m 11 dm = m 23 dm = m. 3 cm = m 5 cm = m 6 cm = m. 12 cm= m 25 cm = m 80 cm = m

Namn: 3 dm = m 5 dm = m 6 dm = m. 9 dm = m 11 dm = m 23 dm = m. 3 cm = m 5 cm = m 6 cm = m. 12 cm= m 25 cm = m 80 cm = m Arbetsblad : Deci, centi, milli Skriv som meter. Du kan ha hjälp av att titta på linjalen. 0, 0, 0, dm = m dm = m dm = m 0,,, dm = m dm = m dm = m 0,0 0,0 0,0 cm = m cm = m cm = m 0, 0, 0, cm= m cm = m

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Min matematikordlista

Min matematikordlista 1 Min matematikordlista Namn 2 ADJEKTIV STORLEK Skriv en mening om varje ord. Stor Större Störst 3 Liten Mindre Minst Rita något litet! Rita något som är ännu mindre! Rita något som är minst! 4 ANTAL Skriv

Läs mer

Matematik klass 1 Problemlösning nummer 1

Matematik klass 1 Problemlösning nummer 1 Matematik klass 1 Problemlösning nummer 1 ditt eget matteproblem Skriv ditt namn här Anneli Weiland, HepPed A och O Matematik åk 1 Problemlösning 1 Kalle hade fem gamla böcker i sin låda. Nu fick han tre

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Uppgifter till Första-hjälpen-lådan

Uppgifter till Första-hjälpen-lådan Uppgifter till Första-hjälpen-lådan Många Stockholmslärare har fått en första-hjälpen-låda i matematik då de deltagit i de kurser som letts av Karin Kairavuo, matematiklärare från Mattelandet i Helsingfors.

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Ämnesprov i matematik Skolår 9 Vårterminen 2004 Del B1 Innehållet i detta häfte är sekretessbelagt t o m den 11 juni 2004. Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Trepoängsproblem. Kängurutävlingen 2011 Junior

Trepoängsproblem. Kängurutävlingen 2011 Junior Trepoängsproblem 1 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen börjar och slutar med ett vitt streck. På Storgatan har ett övergångsställe totalt åtta vita

Läs mer

Matteklubben Vårterminen 2015, lektion 6

Matteklubben Vårterminen 2015, lektion 6 Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt

Läs mer

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block

Mattelandet/KK 1. Första hjälpen lådan. Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Mattelandet/KK 1 Första hjälpen lådan Innehåll: Tiobasmaterial Bråkkakor Geobräde Talstavar och skena(1m) Geometriska former Tangram Logiska block Som namnet antyder är materialet avsett för lärare som

Läs mer

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor geometriska former och figurer Vad heter figurerna? figur namn rektangel cirkel triangel Hur många sidor har varje figur? 4 sidor 3 sidor 4 sidor Para ihop varje föremål med en eller flera geometriska

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

Läxa 1 efter sidan 11

Läxa 1 efter sidan 11 Läxa 1 efter sidan 11 1 Skriv det tal som har a) 5 tiotusental 3 tusental 8 hundratal 7 tiotal 4 ental b) 9 hundratusental 2 tiotusental 5 tusental 4 hundratal 3 ental c) 2 hundratusental 4 tusental 9

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Geometri. Mål. 50 Geometri

Geometri. Mål. 50 Geometri Geometri Mål När eleverna har arbetat med det här kapitlet ska de kunna mäta och räkna ut omkretsen på olika geometriska figurer räkna ut arean av rektanglar, kvadrater och trianglar använda de vanligaste

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B MATTE MOSAIK EKORREN gillar maskiner och teknik. GRÄVLINGEN funderar noga på allting. Olstorpe Skoogh Johansson Lundberg Bilder av Tomas Karlsson BÄVERN är duktig på att tillverka saker. STEG 1 Grundbok

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Kortfattade lösningar med svar till Cadet 2006

Kortfattade lösningar med svar till Cadet 2006 3 poäng Kängurun Matematikens hopp Cadet 2006 Kortfattade lösningar med svar till Cadet 2006 1 B 2 0 0 6 + 2006 = 0 + 2006 2 A De tal som ger rest 2 är 8 och 38, summan är 46. 3 D Första siffran längst

Läs mer

Minska och öka ARBETSBLAD

Minska och öka ARBETSBLAD Minska och öka : 0 2 3 5 6 Minska med. Öka med. Minska med 2. Öka med 2. Addera 0. Subtrahera 0. Använd lämplig strategi. Räkna. + 5 2 + 2 + 2 + 0 2 5 0 0 2 6 5 + 6 0 + + 0 2 6 0 6 5 + 6 2 5 + 0 3 0 3

Läs mer

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast?

hund katt fiskar orm Hund Nej Mira frågade klasskompisarna vilket djur de gillade mest. Vilket djur var populärast? sannolikhet statistk Mira frågade klasskompisarna vilket djur de gillade mest. hund katt fiskar orm Hund Vilket djur var populärast? Visar diagrammet rätt antal päron? Skriv ja eller nej. Nej 0 namn kopiering

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m

A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m Trepoängsproblem. Hur långt är sträckan från Maria till Bianca? 00 m Maria 8 4 2 Bianca A: 300 m B: 400 m C: 800 m D: 000 m E: 700 m 2. Den liksidiga triangeln har arean 9 cm 2. Linjerna inne i triangeln

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1 Matematik klass 2 Vårterminen Anneli Weiland Matematik åk 2 VT 1 Minns du från höstens bok? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar:

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 8. MATEMATIK ÅK 5 8.1. Elevhäfte 8.1.1. Problemlösning 1 1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 2. Storleken av bildrutan

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Aktiviteter och uppgiftsförslag. Matematiska förmågor

Aktiviteter och uppgiftsförslag. Matematiska förmågor Aktiviteter och uppgiftsförslag Med utgångspunkt i ett antal bilder från föreställningen finns nedan några olika förslag på vad du som lärare kan arbeta vidare med vad gäller elevernas kunskaper i matematik.

Läs mer

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 ) epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Svårighetsnivåer: 1 6

Svårighetsnivåer: 1 6 Svårighetsnivåer: 1 6 Uppgiften är att först bygga en cirkel med hjälp av koner och en lina (cirkelns radie), och sedan göra olika uppgifter som går ut på att dela in cirkeln i delar med hjälp av linor.

Läs mer

Matematikplanering 3 geometri HT-12 VT-13 7 a KON

Matematikplanering 3 geometri HT-12 VT-13 7 a KON Matematikplanering 3 geometri HT-12 VT-13 7 a KON MÅL Grundkurs Mäta (med gradskiva) och beräkna vinklar Känna till triangelns vinkelsumma och använda den för att räkna ut vinklar Kunna namnen på några

Läs mer

HAREN OCH SKÖLDPADDAN

HAREN OCH SKÖLDPADDAN MÄSTERKATTEN A FACIT HAREN OCH SKÖLDPADDAN Trägen vinner. m Problemlösning På bild gungar igelkottarna och mössen gungbräda.. En igelkott ramlar av. Hur många möss måste hoppa av för att det ska väga jämnt?.

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

Maria Österlund. På vikingarnas tid. Mattecirkeln Geometri 1

Maria Österlund. På vikingarnas tid. Mattecirkeln Geometri 1 Maria Österlund På vikingarnas tid Mattecirkeln Geometri 1 namn: I Vinland bodde Rigmor, Harald Blåtand, Orm och Ylva i vikingabyn. Orm och Harald Blåtand kom hem efter ett lyckat rövartåg. Här ser du

Läs mer

Högskoleverket NOG 2006-10-21

Högskoleverket NOG 2006-10-21 Högskoleverket NOG 2006-10-21 1. Rekommenderat dagligt intag (RDI) av kalcium är 0,8 g per person. 1 dl mellanmjölk väger 100 g. Hur mycket mellanmjölk ska man dricka för att få i sig rekommenderat dagligt

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1 Matematik klass 2 Höstterminen Anneli Weiland Matematik åk 2 HT 1 Minns du från klass 1? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2.

Jämföra bråk 1. grön. grön blå. > > Måla. > > Måla de böcker där bråket är lika med 1 2. arbetsblad 7: Jämföra bråk > > Måla av figuren. Skriv med ett annat bråk hur stor del du målat. 0 > > Måla de böcker där bråket är lika med. _ 0 > > Måla så stor del av figuren som bråket visar. Måla grönt

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson

Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Linnéuniversitetet Institutionen för datavetenskap, fysik och matematik Per-Anders Svensson Tentamen i Matematikens utveckling, 1MA163, 7,5hp fredagen den 28 maj 2010, klockan 8.00 11.00 Tentamen består

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Känguru 2016 Cadet (åk 8 och 9)

Känguru 2016 Cadet (åk 8 och 9) sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex.

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: MÅL Att välja räknesätt vid problemlösning. Milton är 0 år. Hans pappa är 45 år. Hur mycket äldre är hans pappa? Svar: Lena köper en bok som kostar 85 kronor och en penna för 24

Läs mer