Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =
|
|
- Berit Hedlund
- för 1 år sedan
- Visningar:
Transkript
1 Repetition A Del I a) = b) = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a) fem tiondelar = b) Skriv summorna som kronor. 00 = c) tre hundradelar = a) 7 kr 30 öre b) 0 öre c) 3 kr öre kr kr kr 6 Vilket av talen nedan är en a) differens b) täljare c) kvot 7 + = 2 = = 2 = 0 7 a) 0,6 + 0,6 = b) 2 0,2 = c) 0,0 + 0,07 = 82 Kopiering tillåten Matematikboken Författarna och Liber AB
2 Repetition A Del II 8 a) Vilket tal saknas? b) Förklara hur du tänker. 2 7? 6 9 a) b) 2 0 c) Simone har läst 36 sidor i en bok som har 33 sidor. Hur många sidor har hon kvar att läsa? De tvåhundra eleverna vid Nybyskolan gav 2 kronor var till en skola i Indien. Hur mycket pengar skickade de sammanlagt till Indien? 2 a) 77 3 b) 2 63 c) 27 3 I ett staket är det tio stolpar. Varje stolpe är dm bred och avståndet mellan två stolpar är m. Hur långt är hela staketet? Fem kamrater vann sammanlagt 9 67 kr på tips. Vinsten delades lika mellan kamraterna. För sin del köpte Jacob kläder för 79 kr. Hur mycket hade han sen kvar av vinsten? Agnes samlar på tiokronor. En tiokrona väger 7 g. Agnes tiokronor väger 609 g. Hur mycket är de värda sammanlagt? 6 David har 336 km till sitt sommarhus. När han har åkt en fjärdedel av sträckan tar han en paus. Hur långt har han sen kvar att åka? Kopiering tillåten Matematikboken Författarna och Liber AB 83
3 Repetition B Del I Vilka tal pekar pilarna på? a b c d a) b) c) d) 2 Jonas äter tre fjärdedelar av en pizza. Hur stor andel av pizzan är kvar? Skriv svaret i bråkform och i decimalform. = 3 Vilket tal är a) en tiondel större än 0,7 b) en tiondel mindre än 0,7 Skriv talen i bråkform. a) 0,2 = b) 0,2 = c) 0,02 = Ingrid har 2, km till skolan. Efter 0 minuter har hon gått en femtedel av sträckan. Med vilket av uttrycken nedan kan du räkna ut hur lång sträcka har Ingrid gått? A: 2, B: 2, 0 6 Vad heter svaret i C: 2, D: 2, E: 0 2, a) addition b) subtraktion c) multiplikation d) division 7 a) = b) 0 0 = c) 0,0 = 8 Kopiering tillåten Matematikboken Författarna och Liber AB
4 Repetition B Del II 8 a) b) 73 c) Lukas står i matkön. Han står som nummer 7 framifrån och som nummer bakifrån. a) Hur många står i kön? b) Förklara hur du tänker. 0 Vilket av talen är minst? 2,2,2 a) Vilken av de tre pilarna pekar på talet? b) Beräkna summan av de tal som pilarna x och y pekar på. x y z Ett m långt rep delas i två delar så att den ena delen blir fyra gånger så lång som den andra. Hur långa blir de båda delarna? 3 Damon köpte tre dvd-filmer. Han betalade med sex hundralappar och fick 63 kr tillbaka. Vad kostade filmerna per styck om alla tre kostade lika mycket? Axel kliver in i en hiss på våning. Först åker han ner tre våningar. Sen åker han upp sju våningar. Då är han på näst översta våningen. Hur många våningar har huset? Sofia har räknat ut att hon läser en sida i sin bok på s. En kväll läste hon 0 sidor. Hur många minuter läste hon den kvällen? 6 Av siffrorna 2, 3, och 9 ska du bilda det största udda talet och det minsta jämna talet som går. Beräkna sen differensen av de två talen. Kopiering tillåten Matematikboken Författarna och Liber AB 8
5 Repetition 2A Del I Vad visar klockorna? Skriv två klockslag till varje bild. a) 2 b) 2 c) Avrunda till tiotal a) 83 b) 78 c) Diagrammet visar hur temperaturen förändrades under en dag i Lysekil. Lös uppgifterna 3 med hjälp av diagrammet. 3 Vid två tillfällen var temperaturen C. När då? C temperatur klockslag a) Vid vilket klockslag var det varmast? b) Vilken temperatur var det då? Marcus kastade fem tärningar. De visade 3,,, 6 och prickar. a) Beräkna medelvärdet. b) Vilken är medianen? c) Vilket är typvärdet? 6 Vilket av talen nedan är a) en kvot b) ett närmevärde c) en produkt 9 60 = , 2,8 = 0,7 7 Hur många minuter är 6, 2 = 3,2 a) en kvart = b) 3 h = c) 3 h = 86 Kopiering tillåten Matematikboken Författarna och Liber AB
6 Repetition 2A Del II 8 Ett flygplan lyfter från Arlanda.2. En timme och tjugo minuter senare landar planet i Kiruna. Hur mycket är klockan då? 9 Du ska gå från A till B. A a) Hur många olika vägar kan du välja? b) Förklara hur du tänker. 0 a) 38 6 b) 8 32,3 c) 6,2 9 B a),7 + 37, b) 2,9 + 36,8 c) 6,72 3,8 2 Irmelin hoppade 2,87 m i längdhopp. Malvin hoppade 0,2 m längre. Hur långt hoppade han? 3 Hur många varv hinner sekundvisaren på en klocka under ett dygn? En familj har fyra barn som alla är yngre än 0 år. Om man multiplicerar barnens ålder blir produkten 270 år. Hur gamla är de fyra barnen? Medelvärdet av antalet elever är 2. Hur många elever går i A? Klass Antal elever A 23 B 9 A B 2 6A 2 6B 27 6 En dag i höstas plockade Linn och hennes pappa kantareller. Linn plockade fyra gånger så mycket som pappa. Sammanlagt plockade de 9, liter. Hur många liter plockade var och en? Kopiering tillåten Matematikboken Författarna och Liber AB 87
7 Repetition 2B Del I a) Hur mycket är klockan? b) Vad är klockan om tjugo minuter? c) Hur mycket var klockan för en kvart sen? Eftermiddag 2 På korten ser du fem olika tal. Vilket är det minsta tal du kan bilda genom att lägga de fem korten bredvid varandra? Diagrammet visar djupet på några av våra största sjöar. 3 Hur mycket djupare är Torneträsk än Mälaren? Sveriges djupaste sjö är Hornavan. Den är 00 m djupare än Vättern. Hur djup är Hornavan? m Siljan Torneträsk Vänern Vättern Mälaren a) 0, + 0, = b) 0, = c) 0, 0, = 6 I morse visade min febertermometer 38,6 C. Nu har temperaturen stigit med 0,7 C. Vad visar termometern nu? 7 Avrunda talet till a) tiotal b) hundratal c) tusental 88 Kopiering tillåten Matematikboken Författarna och Liber AB
8 Repetition 2B Del II 8 Matilda skjuter tolv skott med luftgevär mot en tavla. Medelvärdet blev 7 poäng. Hur många poäng fick Matilda sammanlagt på sina tolv skott? 9 En kartong med sex kokosbollar kostade 22,80 kr. Hur mycket kostade kokosbollarna per styck? 0 Irma är år och hennes mamma är tre gånger så gammal. Hur många år var det sen mamma var fyra gånger så gammal som Irma? a) 9,6 b) 87,,93 c) 6,3 2 En blåval kan väga kg. En elefant kan väga kg. Hur många elefanter väger lika mycket som en blåval? 3 a) Vilket tal saknas i talföljden? b) Förklara hur du tänker. 0, 0,3 0,7,? 6,3 Kamal fick en hundvalp som vägde,7 kg. Efter ett år vägde den fyra gånger så mycket. Hur mycket hade valpen ökat i vikt? Under en vecka föll det sammanlagt 33 mm regn i Storlien. Veckan därpå var det ännu regnigare. I genomsnitt kom det då mm mer per dygn än under veckan innan. Hur många millimeter regn föll det sammanlagt den andra veckan? 6 Johanna köper ett äpple för,0 kr och 7 hg lösgodis. Det kostar sammanlagt 0 kr. Maria köper hg lösgodis i samma affär. I kassan lämnar hon fram en femtiolapp. Hur mycket får hon tillbaka om hon inte köper något annat? Kopiering tillåten Matematikboken Författarna och Liber AB 89
9 Repetition 3A Del I Skriv volymerna i liter. a) liter 0 cl = b) 2 liter dl = c) 8 dl = 2 Skriv vikterna i gram. hg 70 g 6 hg, kg a) b) c) 3 Skriv längderna i kilometer. a), mil = b) 000 m = c) 70 m = Vilket tal kan beskrivas så här? - Talet är tresiffrigt. - Hundratalssiffran är dubbelt så stor som entalssiffran. - Siffersumman är 3. - Det är ett udda tal. Vad kallas figurerna? a) b) c) 6 Rita en triangel med a) en rät vinkel b) en trubbig vinkel c) tre spetsiga vinklar 7 Vad betyder orden? a) kilo b) centi c) hekto 90 Kopiering tillåten Matematikboken Författarna och Liber AB
10 Repetition 3A Alfa Del II 8 Ett av de här talen passar inte ihop med de övriga. a) Vilket tal är det? b) Förklara hur du tänker Rita en rektangel med basen, cm och höjden 3 cm. a) Beräkna omkretsen. b) Beräkna arean. 0 I tillbringaren finns saft. Noah dricker upp 2 cl. Hur mycket saft finns det sen kvar i tillbringaren? En av Sveriges största enbuskar är 8, m hög. Hur många centimeter måste den växa för att bli 20 m? 2 Mät sidorna i hela och halva centimeter. a) Beräkna omkretsen. b) Vad kallas figuren? 3 En grusplan är 0 m lång och 8 m bred. Hur stor area skulle grusplanen ha om den hade samma omkrets, men formen av en kvadrat? Märta och hennes farfar var ute och fiskade. Märta fick en abborre som vägde 7 g och en gös som vägde 7 g. Hur mycket vägde farfars gädda om de tre fiskarna sammanlagt vägde 2, kg? Svara i kilogram och gram. En bit oxfilé väger hg och kostar 36 kr. En annan bit väger ett halvt kilogram. Mia köper den och betalar med två hundralappar. Hur mycket får hon tillbaka? 6 Titta på bilden av flaggan. a) Hur stor omkrets har flaggan? b) Hur stor är flaggans area? 8 dm dm 8 dm 0 dm dm 8 dm Kopiering tillåten Matematikboken Författarna och Liber AB 9
11 Repetition 3B Del I Skriv längderna i centimeter. a) 0,7 dm = b), m = c) mm = 2 En kvadrats omkrets är 8, cm. Hur lång är kvadratens sida? 3 Skriv volymerna i centiliter. 2 liter 3 dl 30 ml a) b) c) Ringa in det som är mest. a) 2 liter eller 7 dl b) 6 cl eller 0,6 liter c), hg eller 0,2 kg Mät i hela centimeter. Räkna sen ut hur långa föremålen är i verkligheten. a) a) b) Skala :6 Skala :0 b) (cm) 6 Beräkna triangelns area. 2, 7 Dra streck mellan begreppen och deras betydelse. kilo milli deci centi hekto tusendel tiondel tusen hundra hundradel 92 Kopiering tillåten Matematikboken Författarna och Liber AB
12 Repetition 3B Del II 8 Skriv vikterna i kilogram och räkna ut den sammanlagda vikten. 30 g 2 hg 00 g 9 I Trollbacksskolan går 0 elever. Till lunch dricker eleverna i genomsnitt 3 dl mjölk. Hur många liter dricker de sammanlagt? 0 Åsa har 26 km till sitt arbete. Hon kör fram och tillbaka varje dag. Hur många mil blir det under en vecka med fem arbetsdagar? Två sidor i en triangel är 7,2 cm vardera. Triangelns omkrets är 22,7 cm. Hur lång är den tredje sidan? 2 Om Harald köper en glass har han 7 kr över. För att köpa två glassar fattas det 8 kr. a) Hur mycket kostar en glass? b) Hur kom du fram till ditt svar? 3 Ett trädgårdsland har formen av en kvadrat med sidan m. Det gödslas med, kg gödningsmedel. Hur mycket gödning skulle ha behövts om landets sidor hade varit 8 m? Lisa har plockat kg lingon och ska koka sylt enligt receptet. a) Hur mycket vatten ska hon ta? Svara i liter. b) Hur mycket socker ska hon ta? Svara i kilogram. c) Vad kommer den färdiga sylten att väga? Lingonsylt ( ½ kg) kg lingon 2 ½ dl vatten 00 g strösocker 90 m Runt planen är det 260 m. Hur stor är arean? 6 I en flaska finns 7 dl koncentrerad saft. Saften ska spädas med 30 cl vatten. Till hur många glas räcker saften om varje glas rymmer 20 cl? Kopiering tillåten Matematikboken Författarna och Liber AB 93
Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =
Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
x kr y kr a) 7 dm b) 325 mm c) 1,2 km d) cm 2 Hur mycket är a) b) ( ) / 4 c) 10 / (14 4)
REPETITION 2 A Del I 1 Skriv i meter. a) 7 dm b) 32 mm c) 1,2 km d) 1 20 cm 2 Hur mycket är a) + 1 b) ( + 1) / c) / (1 ) 3 Hur lång tid är det mellan klockslagen? a) 13.3 1. b).2 11.37 c) 1. 21.32 Teckna
Facit Läxor. Tal. Tian Siffrans värde blir tio gånger mindre. 40 till 04 11 67, 69 och 71 12 a) 10, 22 och 15, 14 b) 15, 27 och 10, 9
Tal Läxa 1 1 a) 307 b) 55 c) 00 003 a) 131 > 113 b) 1 > 1 c) 99 < 9 99 3 a) 1 170 b) 5 75 c) 91 a) 3 hundra b) 3 ental c) 3 tusen 5 a) 370 b) 0 a) 31 b) 1 3 c) 1 3 7 a) 99 b) 13 a) 37 b) 19 00 9 5 15 50
1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2
epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1
BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term
MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med
MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.
Volym liter och deciliter
Volym liter och deciliter Måla så volymen stämmer. Skriv så volymen stämmer. : l och dl l dl l och 8 dl 0 l 9 dl dl l dl Hur många dl ska du hälla i för att få l? 7 9 dl dl dl dl dl Hur mycket? Skriv.
PRIMA MATEMATIK EXTRABOK 3 FACIT
PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,
Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <
Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri
Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom
Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet
AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin
Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21
1 Tal Arbetsblad 1:1 1 0,1 0,5 0,8 1, 0,3 0,8 1,1 1,5 3 1,1 1,6,1,4 4 0,01 0,05 0,11 0,14 5 0,1 0,5 0,31 0,34 6 0,5 0,56 0,61 0,65 7 0,94 0,98 1,01 1,05 8 1,91 1,95 1,99,0 Arbetsblad 1: 1 0,3 0,6 0,9 1,1
Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10
Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
Facit Arbetsblad. 7 a) 32 b) 35 c) 27 8 a) 5 b) 18 c) 4 9 a) 18 b) 30 10 a) 17 b) 19 11 a) 6 b) 0 12 a) 24 b) 35. 1 Tal
1 Tal Arbetsblad 1:1 1 a) 18 9 06 b) 85 10 00 c) 0 1 080 9 060 d) 5 105 6 780 e) 78 8 970 9 05 f) 990 75 102 5 2 a) 0 = 2 2 2 5 b) 75 = 5 5 c) 6 = 2 2 a) 8 = 2 2 2 2 b) 28 = 2 2 7 c) 90 = 2 5 a) = 2 2
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
KW ht-17. Övningsuppgifter
Övningsuppgifter Ht-2017 1 Innehållsförteckning: Taluppfattning, positionssystem s. 3 4 Räkning, prioriteringsregler s. 4 6 Tvåbassystemet s. 6-7 Avrundning och noggrannhet s. 8-11 Bråk s. 12-17 Decimaltal
a) b) 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg
REPETITION 3 Del I 1 Mät vinklarna. Gradtalen ska sluta på 0 eller 5. 2 Hur mycket är a) 1 4 av 200 kr b) 10 % av 750 kr c) 2 3 av 60 kg 3 Mät sidorna i hela och halva centimeter. eräkna sedan omkrets
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Innehåll. 1 Allmän information 5. 4 Formativ bedömning 74. 5 Diagnoser och tester 90. 6 Prov och repetition 107. 2 Kommentarer till kapitlen 18
Innehåll 1 Allmän information Seriens uppbyggnad Lärobokens struktur 6 Kapitelinledning 7 Avsnitten 7 Pratbubbleuppgifter Aktivitet Taluppfattning och huvudräkning 9 Resonera och utveckla 9 Räkna och häpna
Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik
Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.
"Läsårs-LPP med kunskapskraven för matematik"
"Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor
Facit Träningshäfte 9:2
Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12
Lokal kursplan i matematik för Stehags rektorsområde
Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande
parallellogram pentagon hexagon parallelltrapets
geometriska former och figurer Vad heter figurerna? Välj bland orden nedan. hexagon parallellogram parallelltrapets pentagon figur namn parallellogram pentagon hexagon parallelltrapets Hur många hörn och
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Procent 1, 50 % är hälften
Innehåll (Facit) Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3-
Storvretaskolans Kursplan för Matematik F-klass- år 5
2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den
Svikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det?
Svikten enheter Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? 2 11 12 17 18 23 24 29 30 31 7, 9, 11, 15, 17, 21, 23, 27, 29 11, 17, 23, 29, 32 På sidorna 11, 17, 23,
8 Facit till Bashäfte X
Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din
Matematik klass 1 Problemlösning nummer 1
Matematik klass 1 Problemlösning nummer 1 ditt eget matteproblem Skriv ditt namn här Anneli Weiland, HepPed A och O Matematik åk 1 Problemlösning 1 Kalle hade fem gamla böcker i sin låda. Nu fick han tre
Matematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500
Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal
LÄXA 3. 7 a) 3 120 b) 231 och 3 120 c) 235 och 3 120
acit till läorna LÄXA LÄXA a),75 0 b), 0 a) 7, b) 0, a) 0 b) 7 c) 00 00 km/s a), b) a) 900 b) 5, cm a) 50 cm b) 0 cm c) 0,5 cm a),5 b) 0,0 5,05,7,9,5, a) 00 b) 0 c) 79 7 a) b) 55 9,5 TIAN centi = hundradel,
Arbetsblad 5:1. Tal och tallinjer. 1 Skriv rätt tal på tallinjen. 2 Ordna talen i storleksordning med det minsta först. 3 Vilka tal kommer sen?
Arbetsblad 5:1 sid 143 Tal och tallinjer 1 Skriv rätt tal på tallinjen. a) 0 0,5 1 b) 0 0,5 1 c) 0 1 2 2 Ordna talen i storleksordning med det minsta först. 0,4 0,404 0,44 0,04 0,45 3 Vilka tal kommer
Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1
Matematikboken Gamma Facit till Bashäfte Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras Tal och räkning a) 9 9 c) 9 a) 00 00 c) 00 a) c) 0 a) 9 99 c) 09 a) 90 c) 00 a), c),0
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
Procent 1, 50 % är hälften
Innehåll Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3- Geometriska
PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning
2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är
Positionssystemet och enheter
strävorna 5A 5C Positionssystemet och enheter uttrycksformer tal geometri Avsikt och matematikinnehåll Aktiviteten utgår från en gammal och väl beprövad mall för att skapa struktur och ge förståelse för
b) kg c) 900 g 1071 a) g b) kg c) 800 g 1072 a) 500 g b) kg 1073 a) 5 kg b) 4,5 kg c) 1,1 kg
BASHÄFTE X Kapitel a) b) c) a) 9 b) 9 c) 9 a) b) c) d) a), b),8 c), d) 9, a) b) 9 a) 9 b) a), b), 8 a), b), 9 Störst: 8 Minst: 88 Störst: 8, Minst:,8 a) 89 a) b) 8 kr kr a) 8 9 kr a) b) 8 kr 9 9 kr kr
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Kunskapsmål och betygskriterier för matematik
1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under
Namn: 3 dm = m 5 dm = m 6 dm = m. 9 dm = m 11 dm = m 23 dm = m. 3 cm = m 5 cm = m 6 cm = m. 12 cm= m 25 cm = m 80 cm = m
Arbetsblad : Deci, centi, milli Skriv som meter. Du kan ha hjälp av att titta på linjalen. 0, 0, 0, dm = m dm = m dm = m 0,,, dm = m dm = m dm = m 0,0 0,0 0,0 cm = m cm = m cm = m 0, 0, 0, cm= m cm = m
Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.
Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.
FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205
Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall
Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål
Sammanfattningar Matematikboken Z
Sammanfattningar Matematikboken Z KAPitel procent och statistik Procent Ordet procent betyder hundradel och anger hur stor del av det hela som något är. Procentform och 45 % = 0,45 6,5 % = 0,065 decimalform
Matematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
Decimaltal. Matteord hela tal decimaltal tiondel hundradel. tusendel decimal decimaltecken
Decimaltal Mål När du har arbetat med det här kapitlet ska du kunna > förstå vad som menas med ett decimaltal > storleksordna decimaltal > multiplicera och dividera med 10, 100 och 1 000 > räkna med överslagsräkning
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
rektangel cirkel triangel 4 sidor 3 sidor 4 sidor
geometriska former och figurer Vad heter figurerna? figur namn rektangel cirkel triangel Hur många sidor har varje figur? 4 sidor 3 sidor 4 sidor Para ihop varje föremål med en eller flera geometriska
Matematik. Namn: Datum:
Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270
Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4
LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200
Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.
Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym
och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod
Längd, Kapitlets innehåll Kapitlet börjar med att eleverna får träna på längd i decimalform. De olika längdenheterna tränas och eleverna får själva mäta längd. Nästa avsnitt handlar om olika trianglar
Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.
Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och
1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar:
8. MATEMATIK ÅK 5 8.1. Elevhäfte 8.1.1. Problemlösning 1 1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 2. Storleken av bildrutan
Broskolans röda tråd i Matematik
Broskolans röda tråd i Matematik Regering och riksdag har faställt vilka mål som svenska skolor ska arbeta mot. Dessa mål uttrycks i Läroplanen Lpo 94 och i kursplaner och betygskriterier från Skolverket.
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal
TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer
7 Använd siffrorna 0, 2, 4, 6, 7 och 9, och bilda ett sexsiffrigt tal som ligger så nära 700 000 som möjligt.
Steg 9 10 Numerisk räkning Godkänd 1 Beräkna. 15 + 5 3 Beräkna. ( 7) ( 13) 3 En januarimorgon var temperaturen. Under dagen steg temperaturen med fyra grader och till kvällen sjönk temperaturen med sex
Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar
Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder
Blandade uppgifter om tal
Blandade uppgifter om tal Uppgift nr A/ Beräkna värdet av (-3) 2 B/ Beräkna värdet av - 3 2 Uppgift nr 2 Skriv (3x) 2 utan parentes Uppgift nr 3 Multiplicera de de två talen 2 0 4 och 4 0 med varandra.
en femma eller en sexa?
REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.
PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.
Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.
Högskoleverket NOG 2007-10-27
Högskoleverket NOG 2007-10-27 Uppgifter 1. En kock försöker att skala en potatis i så långa remsor som möjligt. Hur lång är den längsta remsa som kocken lyckas åstadkomma? (1) Medianlängden av de tre längsta
Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.
Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal:
4-4 Parallellogrammer Namn:..
4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning
Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
delbart med fler tal än sig själv och 1. b) Ett primtal är endast delbart med sig själv och 1. REPETITIONSUPPGIFTER 2 1 a) B b) D och E c) A och C
epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver
Algebra - uttryck och ekvationer
Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK
RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. år 7, Bonnier Utbildning och författarna
Arbetsblad : Hela tal på tallinjen Skriv rätt tal på linjen. 55 0 50 00 0 0 0 0 00 00 00 00 00 5 000 000 50 000 0 000 7 00 000 00 000 Arbetsblad : Positionssystemet Skriv talen med siffror. Placera in
18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )
epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver
Repstegen Diagnoser Enheter & tid
Repstegen Diagnoser Enheter & tid Diagnos Längd A a m b cm c mm Diagnos Längd B a m b mm c cm Fjärilen: mm Fröställningen: mm Skruven: mm Spindeln: cm eller 0 mm a 00 cm b 00 cm c 0 cm a 0 mm b 00 mm c
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
Matematik Formula, kap 2 Längd och räknesätt
Matematik Formula, kap 2 Längd och räknesätt Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du
Tid Muntliga uppgifter
Tid Muntliga uppgifter Till uppgift 1 5 behövs en ställbar klocka. Tid Begrepp 1. Ställ elevnära frågor där du får svar på frågor om idag, igår och i morgon till exempel: Vilken dag är det idag? Vad gjorde