Matematik klass 2 Problemlösning nummer 2

Storlek: px
Starta visningen från sidan:

Download "Matematik klass 2 Problemlösning nummer 2"

Transkript

1 Matematik klass 2 Problemlösning nummer 2 Anneli Weiland Matematik åk 2 Problemlösning 1

2 Tor hade sjutton gamla bilar i sitt rum. Nu fick han tre nya. Hur många har han då? 17+3=20 Tor har 20 bilar nu. Tors storasyster gillar gosedjur bättre. Hon har tio fler än Tor som bara har fem. Hur många har hon? Anneli Weiland Problemlösning åk 2 2

3 Under två veckor var Tuva sjuk 11 dagar i halsfluss. En vecka har ju 7 dagar. Hur många dagar var hon frisk under de veckorna? Tuva läser en bok som har 100 sidor och 17 kapitel. Hon har läst fyra kapitel. Hur många kapitel har hon kvar? Anneli Weiland Problemlösning åk 2 3

4 Tor tycker om att spela landbandy. En dag gjorde han sex mål, nästa dag gjorde han sju! Hur många mål gjorde han under de två dagarna? I somras badade Tuva när det var 18 grader i vattnet. Tor vill inte bada förrän det var 3 grader varmare. Hur varmt vill Tor ha? Anneli Weiland Problemlösning åk 2 4

5 På en parkeringsplats stod det 50 bilar parkerade. Tio hade fått P-böter, de hade glömt P-skivan! Hur många slapp böter? Tors familj cyklar mycket hela året. De har fem cyklar sammanlagt. Nu var det punktering på två däck. Hur många däck är hela? Anneli Weiland Problemlösning åk 2 5

6 Katten Myrra äter en skopa torrfoder varje dag. Hunden Siska äter dubbelt så mycket torrfoder. Hur mycket torrfoder går det åt varje dag? En förpackning torrfoder kostar 20 kronor. Det går åt tre förpackningar i veckan. Hur mycket kostar det? Anneli Weiland Problemlösning åk 2 6

7 I somras fick Tor 17 abborrar. Tuva fick bara 5 abborrar. Hur många fler fick Tor? Pappa fick rensa både Tuvas och Tors abborrar. Hur många fick han rensa då? Anneli Weiland Problemlösning åk 2 7

8 Det blev fisk till middag. Pappa lovade att barnen skulle få två kronor för varje ben de hittade i fisken. Tor hittade fyra ben och Tuva dubbelt så många ben. Hur mycket fick pappa betala? Av varje fisk får man två filéer. Hur många filéer får man då av fem fiskar? Anneli Weiland Problemlösning åk 2 8

9 Längd Då man mäter hur långt något är använder man linjal, måttband eller tumstock. Med ett mäthjul kan man mäta långa sträckor. Det finns olika enheter för att tala om hur långt något är. Kilometer - km Meter - m Decimeter - dm Centimeter - cm Låna en linjal och mät. Skriv i tabellen hur långt det är. Ditt mattehäftes längd Ditt mattehäftes bredd Din stols höjd Din fot Låna ett måttband och mät. Skriv i tabellen hur långt det är. Runt en papperskorg Tavlans längd Runt ditt huvud Dörrens bredd Anneli Weiland Problemlösning åk 2 9

10 Tor är 1 m och 30 cm lång. Det är samma som 130 cm lång. Tuva är 1 m och 45 cm lång. Hur mycket längre är Tuva? Till taket i deras klassrum är det 230 cm. Hur högt är det till taket i ditt klassrum? Hur stor skillnad är det? Anneli Weiland Problemlösning åk 2 10

11 Hur långt är ditt klassrum och hur brett är det? Hur stor skillnad är det på längd och bredd? Gör om enheterna 1 km = meter 2 km = meter 1 dm = centimeter 1 m = centimeter 3 dm = centimeter 1m 55 cm = centimeter 5000 m = km 80cm = dm 2500 m = km m 525 cm = m dm cm Anneli Weiland Problemlösning åk 2 11

12 En snabb snäcka kröp 1m på en timme. En mördarsnigel kröp 15 cm längre. Hur långt kröp den? Tor och Tuva tävlade att springa. De sprang 60 meter. Då Tuva var i mål, hade Tor 5 meter kvar. Hur långt hann han? Anneli Weiland Problemlösning åk 2 12

13 Tors morfar gillar att snickra. Han behövde en bräda som var 175 cm lång. Han hade en som var 2 meter. Hur mycket måste han såga av? Tuvas penna är 13 cm lång. När hon vässat den är den bara 9 cm. Hur mycket har hon vässat bort? Anneli Weiland Problemlösning åk 2 13

14 Pappa var ute och joggade två varv runt el-ljusspåret. Ett varv är 2 km och 500 meter, alltså två och en halv km. Hur långt sprang han? Tuvas linjal är 30 cm lång. Tors har tyvärr gått av. Den är bara 12 cm lång, men den var 30 cm från början. Hur lång bit har gått av? Anneli Weiland Problemlösning åk 2 14

15 Massa Massa är hur tungt något är. Det finns olika enheter för att mäta massa. För att mäta massa behöver man en våg. Kilogram kilo kg Hektogram hekto hg Gram g Låna en våg och vikter och väg, skriv i tabellen hur mycket det väger. Ett glas En sten, lagom stor En frukt En penna Gör om enheterna 1 kg = hg 5 kg = hg 1 hg = g 2 hg = g 1kg 2 hg = g 2 kg 3 hg = hg 2000 g = kg 3450 g = kg g Anneli Weiland Problemlösning åk 2 15

16 Tor och Tuva har köpt 2 hg godis. Deras morfar är en riktig godis gris, han har köpt 4 hg. Hur mycket har de tillsammans? Hur många gram har de tillsammans? Mormor tycker att frukt är bättre, men ändå äter hon när de bjuder. Hon äter ett halvt hekto. Hur många gram är det? Anneli Weiland Problemlösning åk 2 16

17 Tors hund väger 28 kg. Tor väger 35 kg. Hur mycket mer väger Tor? Tuvas katt väger 1 kg. En dag fick hon strömming, det bästa hon visste. Hon åt 150 gram. Hur mycket borde hon väga efter den måltiden? a i gram! Anneli Weiland Problemlösning åk 2 17

18 Tuva väger 38 kg och hennes mamma väger 60 kg. Hur mycket mer väger hennes mamma? Tors kulpåse väger ett kilo. Hur många gram väger den då? Anneli Weiland Problemlösning åk 2 18

19 Tors kompis har också kulor. Hans påse vägde 6 hg på morgonen. Efter första rasten spelade han kula och sen vägde påsen 500 gram. Hade han vunnit eller förlorat, och med hur mycket? När Tuva föddes vägde hon 3580 gram. Hur mycket är det i kg, hg och gram? Anneli Weiland Problemlösning åk 2 19

20 Pappa har handlat mat. 2 liter mjölk, 500 g köttfärs, 4 hg bananer och en limpa som vägde 2 hg. Hur tung blev kassen? Pappa har försökt gå ner i vikt. Han väger 82 kg. Han vill gå ner 4 kg. Om han lyckas, vad väger han då? Anneli Weiland Problemlösning åk 2 20

21 Lös sudoku En talserie Anneli Weiland Problemlösning åk 2 21

22 Volym Volym är hur mycket det får plats inuti. Hur mycket vatten eller mjöl t.ex. det finns i en skål eller burk. För att mäta volym behöver du olika mått, litermått, decilitermått, msk, tsk och krm. Liter l Deciliter dl Matsked msk Tesked tsk Kryddmått krm = milliliter - ml Använd olika mått och mät med vatten, skriv i tabellen hur mycket kärlet (burken, flaskan) rymmer. En liten petflaska läsk (tom!) En tom mjölk-förpackning En tom grädd-förpackning En liten burk En kaffekopp Gör om enheterna 1 liter = dl 1 och en halv liter = dl 1 msk = tsk I tsk = krm Anneli Weiland Problemlösning åk 2 22

23 Tuva var jätte-törstig efter gympan. Hon drack tre glas vatten. Glaset rymde 2 dl. Hur mycket drack Tuva? Mamma bjöd på saft en dag. Hon gjorde iordning 1 liter saft. Fyra barn fick 2 dl var. Räckte saften? Hur mycket blev över, eller hur mycket fattades? Anneli Weiland Problemlösning åk 2 23

24 Recept på bullar: 150 g smör, 5 dl mjölk, 50 g jäst, 1,5 dl socker, 1 tsk salt, 16 dl vetemjöl. Skriv hur det blir med dubbel sats! När man kokar ris behöver man dubbelt så mycket vatten som ris. Om jag vill koka 3 dl ris, hur mycket vatten behöver jag? Anneli Weiland Problemlösning åk 2 24

25 Ett recept på pannkakor innehåller hälften så mycket mjöl som mjölk. Dessutom hälften så många ägg som deciliter mjöl. Alltså 1 ägg, 2 dl mjöl och 4 dl mjölk. Det blir lagom för två personer. Hur blir receptet för 6 personer? ägg Mjöl Mjölk När man ska blanda saft tar man koncentrerad saft och späder med vatten. Det går åt 4 gånger mer vatten än saft. Om du tar 1 dl koncentrerad saft, hur mycket vatten måste du ta då för att det ska bli lagom? Hur mycket saft blir det? Anneli Weiland Problemlösning åk 2 25

26 Ett akvarium rymmer 115 liter. Vattnet dunstar bort och måste fyllas på då och då. En gång behövde man fylla på 17 liter. Hur mycket var kvar i akvariet innan man fyllde det igen? Tor har en liten burk med grodyngel. Burken rymmer 12 dl. För att ynglen ska må bra måste han byta en tredjedel av vattnet varje dag. Hur många dl måste han byta? Anneli Weiland Problemlösning åk 2 26

27 Ett badkar rymmer ungefär 200 liter. För att spara vatten brukar jag fylla en fjärdedel av badkaret. Hur mycket vatten sparar jag? Tors termos rymmer 8 dl. På en utflykt drack Tor upp tre fjärdedelar av chokladen som var i den. Hur mycket var kvar i termosen? Anneli Weiland Problemlösning åk 2 27

28 En ny sudoku En talserie Anneli Weiland Problemlösning åk 2 28

29 Tid För att mäta tid behöver du en klocka. Det finns analoga klockor med visare och urtavlor. De klockor som bara visar siffror är digitala, t ex klockradios. Vi börjar med analoga klockor och hel, halv och kvartar. 1 timme = 1 tim eller 1 h. H står för hour som betyder timme på engelska. 1 timme = 60 minuter = 60 min En halvtimme = 30 minuter =30 min En kvart = 15 minuter = 15 min Sätt först ut alla siffror på klockorna och en prick i mitten. Måla sedan En kvart = min två kvartar = min tre kvartar = min fyra kvartar = min Anneli Weiland Problemlösning åk 2 29

30 Hur mycket är klockan? bara minutvisare! Klockan kvart över Klockan är halv Klockan är kvart i Klockan är precis Hur mycket är klockan? Sätt ut både timvisare och minutvisare! Klockan är kvart i tolv Klockan är precis tre Anneli Weiland Problemlösning åk 2 30

31 Klockan är kvart över sex Klockan är halv åtta Klockan är kvart i fem Klockan är kvart över två Kombinera rätt klockslag 14:00 17:00 19:00 21:00 13:00 15:00 18:00 20:00 16:00 02:00 01:00 07:00 03:00 06:00 09:00 04:00 02:00 05:00 08:00 13:00 14:30 17:15 19:45 21:30 13:45 15:15 18:45 20:30 16:15 02:30 Anneli Weiland Problemlösning åk 2 31

32 Skriv vad klockan är 07:00 Klockan är 7 på morgonen 10:15 11:30 12:45 14:15 15:30 18:45 19:30 20:15 Skriv fyra egna tider, både digitalt och med rätt urtavla. Dra streck mellan de som hör ihop! : : : : Anneli Weiland Problemlösning åk 2 32

33 Tor ser på Bolibompa. Det börjar 18:00 och håller på en halvtimme. Han missade första kvarten. När började han se då? 18: min = Tuva går upp klockan sju. Klockan kvart över åtta börjar skolan. Hur lång tid har hon på sig? 07:00+ = 08:15 08:15-07:00= Anneli Weiland Problemlösning åk 2 33

34 Tors skolväg tar 45 minuter att gå. Om han åker bil tar det en kvart. Hur mycket tjänar han på att få skjuts? Tuva ska leka med Maja-Stina en dag. De går tillsammans från skolan 14:15 och leker i två och en halv timma, då blir Tuva hämtad. Vad är klockan då? Anneli Weiland Problemlösning åk 2 34

35 En film är 1 timme och 30 minuter lång. När slutar / börjar / den? Börjar kl. Slutar kl. 18:00 19:30 20:00 18:30 20:30 14:00 15:00 15:15 Bra att kunna En timme = Ett dygn = En vecka = Ett år = Ett år = 60 minuter 24 timmar 7 dagar 365 dagar 12 månader Kan du nu? En halv timme = En kvart = Tre kvart = Tre dygn = Tre veckor = Åtta år = (ta miniräknare) Två år = minuter minuter minuter timmar dagar dagar månader Anneli Weiland Problemlösning åk 2 35

36 Fyll i de tal som saknas Soduko Anneli Weiland Problemlösning åk 2 36

37 Geometri plana ytor Skriv rätt namn i eller bredvid rätt figur. Du får gärna måla dem fint. Kvadrat Rektangel Cirkel Romb Ellips Triangel Anneli Weiland Problemlösning åk 2 37

38 Geometri kroppar Skriv rätt namn i eller bredvid rätt kropp. Du får gärna måla dem fint. Cylinder Rätblock Kub Anneli Weiland Problemlösning åk 2 38

39 Geometri månghörningar, polygoner Månghörningarna har fått sina namn efter räkneord på latin eller grekiska, tillsammans med orden för hörn eller vinkel, angulus och gonia. 3 tri Angulus Triangel 4 Quattuor? Kvadrat 5 Penta Gonia Pentagon 6 Hexa Gonia Hexagon 7 Hepta Gonia Heptagon 8 Okta Gonia Oktagon 9 Nona Gonia Nonagon 10 deka gonia Dekagon Anneli Weiland Problemlösning åk 2 39

40 Mönster med två polygoner Dra streck med linjal från hörn till hörn och skapa vackra mönster. Anneli Weiland Problemlösning åk 2 40

41 Låt en kamrat förhöra dig på plana figurer. Jag hade rätt av 10 möjliga. Anneli Weiland Problemlösning åk 2 41

42 Låt en kamrat förhöra dig på geometriska kroppar. Jag hade rätt av 3 möjliga. Anneli Weiland Problemlösning åk 2 42

43 Vad är figurerna värda? 50 - = = = - 10 = - = Anneli Weiland Problemlösning åk 2 43

44 Talserie Denna är berömd, kallas Fibonacci efter uppfinnaren. Minns du den? Till sist en soduku Ha ett trevligt sommarlov! Anneli Weiland Problemlösning åk 2 44

Matematik klass 1 Problemlösning nummer 1

Matematik klass 1 Problemlösning nummer 1 Matematik klass 1 Problemlösning nummer 1 ditt eget matteproblem Skriv ditt namn här Anneli Weiland, HepPed A och O Matematik åk 1 Problemlösning 1 Kalle hade fem gamla böcker i sin låda. Nu fick han tre

Läs mer

Matematik klass 3 Problemlösning nummer 3

Matematik klass 3 Problemlösning nummer 3 Matematik klass 3 Problemlösning nummer 3 Anneli Weiland Matematik åk 3 Problemlösning 1 Erik älskar dinosaurier. Han hade redan 26 stycken olika, men han önskade sig 7 till. Om han fick dem också, hur

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor

rektangel cirkel triangel 4 sidor 3 sidor 4 sidor geometriska former och figurer Vad heter figurerna? figur namn rektangel cirkel triangel Hur många sidor har varje figur? 4 sidor 3 sidor 4 sidor Para ihop varje föremål med en eller flera geometriska

Läs mer

Catherine Bergman Maria Österlund

Catherine Bergman Maria Österlund Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv

Läs mer

Svikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det?

Svikten. enheter. Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? Svikten enheter Innehåll Tid och temperatur Längd Vikt Volym Problemlösning Kan du? Hur gick det? 2 11 12 17 18 23 24 29 30 31 7, 9, 11, 15, 17, 21, 23, 27, 29 11, 17, 23, 29, 32 På sidorna 11, 17, 23,

Läs mer

parallellogram pentagon hexagon parallelltrapets

parallellogram pentagon hexagon parallelltrapets geometriska former och figurer Vad heter figurerna? Välj bland orden nedan. hexagon parallellogram parallelltrapets pentagon figur namn parallellogram pentagon hexagon parallelltrapets Hur många hörn och

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

Maria Österlund. I affären. Mattecirkeln Vikt 1

Maria Österlund. I affären. Mattecirkeln Vikt 1 Maria Österlund I affären Mattecirkeln Vikt 1 NAMN: Ringa in de vågar du känner till. I affären vägs en del varor i kassan. Ringa in de varor som brukar vägas i kassan. t.ex mat brev människor människor

Läs mer

Maria Österlund. Vatten. Mattecirkeln Volym 1

Maria Österlund. Vatten. Mattecirkeln Volym 1 Maria Österlund Vatten Mattecirkeln Volym 1 NAMN: Saftkannan rymmer 1 liter. I flaskan finns en liter saft. Vi kan säga att flaskan rymmer en liter. Prova hur många deciliter (dl) det behövs för att fylla

Läs mer

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet

Förtest. Hur kan jag arbeta med förtesten? Hur dokumenterar jag elevens kunskapsutveckling? Uppfattar du det som att eleven kan matematikinnehållet AB Vår LP (8766) Flik 0 Förtest (Lev vc).qxd 00-0-6 :5 Sida Förtest För alla lärare är det viktigt att skaffa sig en god bild av elevens kunskaper för att veta vad eleven behöver för att gå vidare i sin

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270 Förtest Bråk och procent Steg a) b) dl Pizzadeg vatten jäst olja salt vetemjöl personer dl / paket msk / tsk / dl I den högra är störst del skuggad. a) T ex ruta av b) T ex rutor av Steg dl a) b) eller

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål

Läs mer

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =

sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden = Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland Matematik F-3 Nytt annorlunda läromedel för lågstadiet 1 Varför ny matematik? Jag har saknat en tydlig bok som fokuserar på matematik Bort med glättiga bilder, matematik är vackert utan bilder Två grundläggande

Läs mer

Läxa nummer 1 klass 3

Läxa nummer 1 klass 3 Läxa nummer 1 klass 3 Skriv ditt namn i triangeln som ett konstverk! Det här är din läxbok för klass 3. Du kommer att få en läxa i veckan. Där det står X skriver du vilket tal X är under eller över X:et.

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2 epetition Facit epetition a) 9, 7, 2 a),, a),,7 A,2 B,9 C,7 a),,0 c) 0,2 2,0 m 2, m 2,2 m, m 7 a) 0, m 0,0 m c) 0, m a) 9 a) 0 2 a) 7 a) st st 2 a) 7 0 a),0 kr,0 kr,7 m,7 km T.ex. 7 valpar dl 9 0, m 20

Läs mer

PRIMA MATEMATIK EXTRABOK 3 FACIT

PRIMA MATEMATIK EXTRABOK 3 FACIT PRIMA MATEMATIK EXTRABOK FACIT t.ex. Dela upp talet. = + + = + + = + + Dela upp talet i lika stora delar. = +, +++ = ++ = +, ++ = ++++ = + = + + Skriv alla uppdelningar du kan av talet, lika stora delar.,

Läs mer

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell.

Ordlista 1B:1. modell. hel timme. halv timme. timvisare. Dessa ord ska du träna. Öva orden. När du bygger efter en ritning, får du en modell. Ordlista 1B:1 Öva orden Dessa ord ska du träna modell När du bygger efter en ritning, får du en modell. hel timme På en timme går timvisaren ett steg på klockan. halv timme På en halvtimme går minutvisaren

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar:

1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 8. MATEMATIK ÅK 5 8.1. Elevhäfte 8.1.1. Problemlösning 1 1. Tina köper en joggingdress som kostar 186 kr. Hon betalar med två hundralappar. Hur mycket får hon tillbaka? Svar: 2. Storleken av bildrutan

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in et minsta talet i varje ruta. Ringa in et största talet i varje ruta. Vilken siffra visar halva figuren? Skriv talraen. Prima kapitel, talen,,,, och,

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med

MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar =

Repetition 1A. Del I. a) 0,3 eller 0,13 b) 1,19 eller 1,2 c) eller. a) b) c) a) fem tiondelar = b) = c) tre hundradelar = Repetition A Del I a) 976 + 2 = b) 07 233 = c) 6 = 2 Vilket av talen är störst? a) 0,3 eller 0,3 b),9 eller,2 c) 7 0 3 Hur stor andel av figuren är vit? a) b) c) eller 7 00 Skriv talen i decimalform. a)

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

Läxa nummer 1 klass 2

Läxa nummer 1 klass 2 Läxa nummer 1 klass 2 Rita hur det ser ut när du gör matteläxan! Skriv ditt namn också. Det här är din läxbok för klass 2. Du kommer i regel att få en läxa i veckan hela året. Skriv vilket tal som är X

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik

Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.

Läs mer

Repstegen Diagnoser Enheter & tid

Repstegen Diagnoser Enheter & tid Repstegen Diagnoser Enheter & tid Diagnos Längd A a m b cm c mm Diagnos Längd B a m b mm c cm Fjärilen: mm Fröställningen: mm Skruven: mm Spindeln: cm eller 0 mm a 00 cm b 00 cm c 0 cm a 0 mm b 00 mm c

Läs mer

Matematik Formula, kap 3 Tal och enheter

Matematik Formula, kap 3 Tal och enheter Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

"Läsårs-LPP med kunskapskraven för matematik"

Läsårs-LPP med kunskapskraven för matematik "Läsårs-LPP med kunskapskraven för matematik" Grundskola 4 6 1 LPP för hela läsåret med tillhörande kunskapskrav i matrisform Skapad 2016-08-17 av Charlotte Steinwig i Lerbäckskolan 4-6, Lund Grundskolor

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.

Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden. Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym

Läs mer

Mattestegens matematik

Mattestegens matematik höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite

Läs mer

a) 4a + a b) 4a 3a c) 4(a + 1)

a) 4a + a b) 4a 3a c) 4(a + 1) REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin

Läs mer

Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9

Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9 Lokal studieplan för träningsskolan i verklighetsuppfattning åk 1-9 Kunskaps område Människa, djur och natur Centralt innehåll Kunskapskrav åk 9 grundläggande Människans upplevelse av ljud, ljus, temperatur,

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3- Geometriska

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

Läxa nummer 1 klass 1

Läxa nummer 1 klass 1 Läxa nummer 1 klass 1 Rita hur det ser ut där du brukar göra läxan! Skriv namn! Det här är din läxbok för klass 1. Du kommer i regel att få en läxa i veckan hela året. Det är meningen att du ska läsa exemplet

Läs mer

innehåll Vi handlar... 16 Våra saker... 4 Hur lång tid?... 17 I affären... 5 Bloggen... 18 Mäta... 6 Klassens show... 20 Godispåsar...

innehåll Vi handlar... 16 Våra saker... 4 Hur lång tid?... 17 I affären... 5 Bloggen... 18 Mäta... 6 Klassens show... 20 Godispåsar... innehåll Doris och Dante........ Vi handlar............ Våra saker............. Hr lång tid?.......... I affären............... Bloggen.............. Mäta................. Klassens show......... 0 Godispåsar............

Läs mer

Lokal kursplan i matematik för Stehags rektorsområde

Lokal kursplan i matematik för Stehags rektorsområde Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

Lathund, geometri, åk 9

Lathund, geometri, åk 9 Lathund, geometri, åk 9 I årskurs 7 och 8 räknade ni med sträckor och ytor i en dimension (1D) respektive två dimensioner (2D). Nu i årskurs 9 har ni istället börjat räkna volymer av geometriska kroppar

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.

Läs mer

DAGBOK FÖR MATSVINN SAKER ATT TÄNKA PÅ NÄR DU FYLLER I DAGBOKEN

DAGBOK FÖR MATSVINN SAKER ATT TÄNKA PÅ NÄR DU FYLLER I DAGBOKEN DAGBOK FÖR MATSVINN Varje dag slängs stora mängder mat, anledningarna är nästan lika många som tillfällen det slängs. För att få bättre koll på vad som slängs i ditt hem har vi skapat den här lilla dagboken

Läs mer

Matematik klass 2. lärarhandledning

Matematik klass 2. lärarhandledning Matematik klass 2 lärarhandledning Aritmetik höstterminen åk 2 sidan 2-14 Aritmetik vårterminen åk 2 sidan 15-30 Problemlösning nummer 2 sidan 31-37 Laborativt materiel sidan 38 Litteratur sidan 39 Anneli

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula 1 Facit åk 6 Prima Formula Kapitel 2 - Volym och skala Sidan 51 1 a C, F och G b D och H 2 A: sexsidigt prisma B: rätblock C: kon D: tetraeder (tresidig pyramid), E: tresidigt prisma F: klot G: cylinder

Läs mer

Föreläsning 5: Geometri

Föreläsning 5: Geometri Föreläsning 5: Geometri Geometri i skolan Grundläggande begrepp Former i omvärlden Plangeometriska figurer Symmetri och tessellering Tredimensionell geometri och geometriska kroppar Omkrets, area, volym

Läs mer

8 Facit till Bashäfte X

8 Facit till Bashäfte X Facit till Bashäfte X KAPITEL a) b) c) a) b) c) a) b) a) b) kr kr a) b) kr a) b) kr kr kr a) C b) C a) C b) C c) C Visa din lärare Visa din lärare = + = = a) b) a) b) a) b) Visa din lärare a) b) Visa din

Läs mer

Minska och öka ARBETSBLAD

Minska och öka ARBETSBLAD Minska och öka : 0 2 3 5 6 Minska med. Öka med. Minska med 2. Öka med 2. Addera 0. Subtrahera 0. Använd lämplig strategi. Räkna. + 5 2 + 2 + 2 + 0 2 5 0 0 2 6 5 + 6 0 + + 0 2 6 0 6 5 + 6 2 5 + 0 3 0 3

Läs mer

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning

PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning 2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1

Matematikboken Gamma. Facit till Bashäfte. Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras 1 Matematikboken Gamma Facit till Bashäfte Facit Matematikboken Gamma Bashäfte Författarna och Liber AB Får kopieras Tal och räkning a) 9 9 c) 9 a) 00 00 c) 00 a) c) 0 a) 9 99 c) 09 a) 90 c) 00 a), c),0

Läs mer

Veckomatte åk 5 med 10 moment

Veckomatte åk 5 med 10 moment Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte

Läs mer

Bedömningsexempel. Matematik årskurs 6

Bedömningsexempel. Matematik årskurs 6 Bedömningsexempel Matematik årskurs 6 Innehåll Ämnesprovet i matematik i årskurs 6 läsåret 2011/2012 Exempel på provuppgifter... 3 Inledning... 3 Muntligt delprov... 3 Skriftliga delprov... 3 Övrigt webbmaterial...

Läs mer

o m m at och m otion? www.primarvardenskane.se

o m m at och m otion? www.primarvardenskane.se Vill du veta mer o m m at och m otion? www.primarvardenskane.se Hälsan tiger still? När vi mår bra har vi sällan anledning att klaga. Först när vi börjar känna oss lite risiga funderar vi över vad som

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b) 2-2- 3 4 LÄXA 12 1 Beräkna med huvudräkning a) En kvadrat har arean 81 cm 2. Hur stor är omkretsen? b) Hur mycket kostar 600 g fläskfile, om priset per kilogram är 120 kr? c) En burk energidryck innehåller 200

Läs mer

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B

EKORREN gillar maskiner och teknik. Olstorpe Skoogh Johansson Lundberg. Bilder av Tomas Karlsson STEG 1. Grundbok 1B MATTE MOSAIK EKORREN gillar maskiner och teknik. GRÄVLINGEN funderar noga på allting. Olstorpe Skoogh Johansson Lundberg Bilder av Tomas Karlsson BÄVERN är duktig på att tillverka saker. STEG 1 Grundbok

Läs mer

PRIMA MATEMATIK UTMANING 1 FACIT

PRIMA MATEMATIK UTMANING 1 FACIT Kapitel om talen,,,, och 0 ela upp talen, och använa likhetstecknet. Va betyer siffran på bilen? Skriv eller berätta för en kompis. september Öva på att använa matematiska symboler. Va betyer siffran på

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Delprov C. Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008.

Delprov C. Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Delprov C Innehållet i detta häfte är sekretessbelagt t o m den 30 juni 2008. Efter varje uppgift anges maximala antalet poäng som du kan få för din lösning. T ex betyder (2/1) att uppgiften kan ge 2 g-poäng

Läs mer

För barn över ett år gäller i stort sett samma kostråd som för vuxna.

För barn över ett år gäller i stort sett samma kostråd som för vuxna. Barn och mat Föräldrar har två viktiga uppgifter när det gäller sina barns mat. Den första är att se till att barnen får bra och näringsriktig mat, så att de kan växa och utvecklas optimalt. Den andra

Läs mer

Facit Spra kva gen B tester

Facit Spra kva gen B tester Facit Spra kva gen B tester En stressig dag B 1 Pappan (mannen) låser dörren. 2 Han handlar mat efter jobbet. 3 Barnen gråter i affären. 4 Han diskar och tvättar efter maten. 5 Han somnar i soffan. C 1

Läs mer

Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ. Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ. Lekplats መጻ ወ ቲ ቦ ታ. Bokhylla ከ ብሒ (መቐ መጢ. Kontor ቤ ት ጽ ሕፈ ት.

Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ. Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ. Lekplats መጻ ወ ቲ ቦ ታ. Bokhylla ከ ብሒ (መቐ መጢ. Kontor ቤ ት ጽ ሕፈ ት. Min skola - ቤ ት ቤ ት ት ም ህ ር ተ ይ Klassrum ክ ፍ ሊ Matsal መብል ዒ መግ ቢ Lekplats መጻ ወ ቲ ቦ ታ Kontor ቤ ት ጽ ሕፈ ት Bok መጽ ሓፍ Bokhylla ከ ብሒ (መቐ መጢ መጻ ሕፍ ቲ ) Lärare መምህ ር Tavla ሰ ሌዳ Laptop - ላ ፕ ቶ ፕ (ኮ ምፑተ ር ) Skrivbok

Läs mer

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod

Lokal planering i Matematik, fskkl Moment Lokalt mål Strävansmål Metod Lokal planering i Matematik, fskkl. 080415 Grundläggande taluppfattning 1-10, talkamrater 1-10. Träna begrepp som före/efter, mer/mindre, hälften/dubbelt. Parbildning. Ordningstal Längd meter. Vikt kg.

Läs mer

Procent 1, 50 % är hälften

Procent 1, 50 % är hälften Innehåll (Facit) Procent -7 Bråkform decimalform procentform 8-9 Sannolikhet 10-1 Kombinatorik 13-1 Medelvärde, median och typvärde 1-16 Negativa tal 17-18 Koordinatsystem 19- Proportionella samband 3-

Läs mer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna. Övningsblad 1.1 A Bråkbegreppet 1 Skugga 1 6 av figuren b) 2 3 av figuren 3 av figuren 4 2 Hur stor andel av figuren är skuggad? b) 3 Ringa in 2 av stjärnorna. 4 Skriv 20 valfria bokstäver och låt 1 av

Läs mer

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90 2 VOLYM OCH SKALA / REP 1 FACIT TILL ELEVBOKEN 125 a dl b ml c cl d l 126 5 st 127 200 cm 3 (2 dl = 0,2 l = 0,2 dm 3 = 200 cm 3 ) Sidan 85 128 A B C D Vas tom 235 g 528 g 0,85 kg 1,250 kg Vas med vatten

Läs mer

Tankenötter. från a till e

Tankenötter. från a till e Tankenötter från a till e H O L M S T R Ö M S M E D H A M R E Matematikserier av Holmström och smedhamre Kära Läsare Det här är den 4:e boken med tankenötter. Vissa nötter är enkla att knäcka, medan andra

Läs mer

mina intressen:... mina favoriträtter:... JAG ÄR EN SOM... (SÄTT ETT KRYSS FÖR JA ELLER NEJ)

mina intressen:... mina favoriträtter:... JAG ÄR EN SOM... (SÄTT ETT KRYSS FÖR JA ELLER NEJ) namn:... klass:... ålder:... familj:... mina intressen:... mina favoriträtter:... dagens datum:... JAG ÄR EN SOM... (SÄTT ETT KRYSS FÖR JA ELLER NEJ) JA NEJ tycker om att vara tillsammans med andra tycker

Läs mer

Vikt och volym. Kapitel 4 Vikt och volym

Vikt och volym. Kapitel 4 Vikt och volym Vikt och volym Kapitel 4 Vikt och volym I kapitlet får eleverna arbeta med vikt och volym. Avsnittet om volym tar upp enheterna liter, deciliter och centiliter. Avsnittet om vikt tar upp enheterna kilogram,

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

Ungefär lika stora tal

Ungefär lika stora tal Bilaga 2:1 Arbeta med jämförelser mellan tal Ungefär lika stora tal Jämför de tre talen här nedan: 234567 234566 234568 Alla siffrorna i talen är lika utom den sista, den högra, där siffrorna är 7,6 och

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

8-1 Formler och uttryck. Namn:.

8-1 Formler och uttryck. Namn:. 8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer