Regression med Genetiska Algoritmer

Storlek: px
Starta visningen från sidan:

Download "Regression med Genetiska Algoritmer"

Transkript

1 Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer

2 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet ett antal olika variabler är något som många vill kunna, men som ofta innebär mer eller mindre chansningar. En svårighet är att verkligheten ofta innebär många olika variabler, och att de interagerar med varandra på oförutsedda sätt. I denna rapport utvärderas ett eget program i försök att hitta de modeller som bäst passar givna data med två eller flera linjära och- eller ickelinjära variabler. Programmet hämtar idéer från analytisk regression och genetiska algoritmer. Regression Inom statistik används regressionsanalys för att finna den modell som har det minsta felet givet de data som används. Modellerna kan sedan användas för att förutsäga resultat givet de variabler som används. Ett exempel är att observerade data kan finnas för hur väl någon presterar på något prov givet variabeln timmars träning. Modellen kan enklast beskrivas som en matematisk funktion med ett antal oberoende (förklarande) variabler som ger ett resultat på en beroende variabel. Formeln uttrycks principiellt som: Ŷ = α + βx En vanlig distinktion är att göra mellan modeller som är linjärar och icke-linjära. Skillnaden mellan dessa två är enkelt uttryckt hur modellen kan ritas ut är modellen linjär är det en rak linje som ritas ut i ett koordinatsystem, och är modellen icke-linjär har den en annan form. Linjär regression Den enklaste typen av regression kallas enkel linjär regression. Modellen använder sig endast av en oberoende variabel. Nedan ses exempel på detta. Ŷ = α + βx Ŷ = 5 + 2x

3 Ofta är enkel linjär regression alltför enkel för att förklara en beroende variabel bra genom endast en oberoende. En mer komplex modell använder två eller fler variabel eller så kallad multipel regression. Liksom enkel regression ger modellen en linjär funktion. Multipel regression uttrycks som: Ŷ = α + β 1 x 1 + β 2 x 2 + β n x n Ŷ = 1 + 2x 1 + 3x 2. Icke-linjär regression Långt från alla observerade data passar bra med linjära funktioner. Det är möjligt att en variabel har störst verkan vid ett viss värde. Nedan visas exempel på en icke-linjär modell såväl matematiskt uttryckt som grafiskt. Ŷ = α + f(x) Ŷ = 5-2x 2 Icke-linjära modeller kan vara mycket komplexa då det finns otaliga möjliga former en kurva kan ta, och därför svåra att skapa. Error, ε Det är mycket ovanligt med modeller utan någon typ av fel. Alltså modeller där alla oberoende variabler ger den beroende variabelns observerade värde. Detta fel i modellen gör att vi kan uttrycka formeln som:

4 Ŷ = α + βx + ε Felet mellan en modell och observerade data illusteras i bilden nedan där punkterna är observerade data och modellen är linjen. Felet ger möjlighet att värdera hur bra modellen är mot de observerade datan som använts. Att påpeka är att denna metod inte tar hänsyn till variationer i de observerade datan. Det vill säga att outliers och liknande problem måste tas hänsyn till innan en analys genomförs. Skillnaden i hur bra olika modeller passar på observerade data illustreras nedan. Där visas observerade data som punkter och modellerna som linjer. Målet är, som tidigare nämnts, att hitta en modell med minsta möjliga fel som kan beskriva de observerade datan. Genom att välja den modell som har minst fel kan vi vara mer säkra på att estimerade värden stämmer. Ett vanligt sätt att beräkna fel är att använda sig av minsta kvadratfel-principen. Principen innebär att summera kvadraten av felet som ett y-värde faktiskt har subtraherat med det y- värde som modellen ger. Formelns fel = Σ (Y n - modellens Y) 2. Ett exempel följer nedan.

5 Observerade Data Ŷ = 5 + 4x y x Ŷ ε ε * 1 = = -2 (-2) 2 = Fel = = 90 Genetiska algoritmer Genetiska algoritmer bygger på evolutionsteorin där goda anlag (DNA) i en omgivning förs vidare till nya generationer. De bästa individerna paras och får avkommor med delar av föräldrarnas DNA. Detta tillsammans med mutation av föräldrarnas dna används för att försöka finna den bästa lösningen till ett problem. Cross-over innebär att ta delar av föräldrarnas DNA och sätta ihop dessa till nya individer som testas i en ny generation. Det finns olika sätt att bestämma var DNA-sekvensen ska brytas och sammanföras med annan DNA-sekvens. En vanlig lösning är att ta halva DNAsekvensen från var och en av föräldrarna. Detta visas i exemplet nedan (tabell 1). Mutation innebär att ta en eller flera delar av föräldern och förändra på något sätt. Detta ger en ökad variation i generationens population. En enkel mutation av föräldrarna X och Y visas i tabell 1. Förälder X Förälder Y Cross-over Barn XY Cross-over Barn YX Mutation X Mutation Y Tabell 1: Cross-over & Mutation Eftersom det endast är de bästa anlagen för omgivningen som är intressanta att föra vidare krävs någon typ av värdering av DNA-sekvenserna. En viktig poäng med genetiska algoritmer är att de inte garanterar en optimal lösning, men att de kan användas för att få fram relativt goda lösningar snabbt. Metod Ett program skrevs genom idéer från regression och genetiska algoritmer. Syftet med programmet var att utvärdera genetiska algoritmer för att göra regressionsanalys. Programvara

6 Python 2.7 användes för att skriva koden för att få fram den modell som bäst passar givna data. Data hämtas in som en given csv fil som innehåller y-värdet i första kolumnen och sedan de givna oberoende variablerna i följande kolumner. (Se appendix.) Indata Programmet tar in fyra argument. Det första är namnet på datafilen. De följande tre är frivilliga. Det första av dessa argument är antalet generationer som programmet genomför, och har ett standardvärde på Det andra är att förutom addition och subtraktion även tillåta multiplikation och division där standardvärdet är False. Det sista argumentet anger om programmet ska kunna använda sig av decimaltal eller inte, och standard är endast heltal. Regression( filnamn.csv, antal generationer, alla operatorer, decimaltal) Regression( testfil.csv, 1000, True, False) Implementerade funktioner Functions Klassen Functions skapades för att hålla information om varje oberoende variabel. Klassen har attribut såsom betavärde, operator och funktion. Dessa tre attribut kan ändras, vilket möjliggör mutationer. Exempelvis kan en mutation innebära byte av operator. Beroende på argument vid start så används vissa operatorer samt möjliggör eller begränsar decimaltalsberäkningar. Ett begränsat antal funktioner lades in för att kunna utvärdera resultatet av programmet. Bland dessa var: βx βx 2 β/x) βe x Regression En annan klass programmet använder sig av är Regression. Den tar en fil som indata och ger en modell som utdata. Klassen hanterar instanser av Functions och beräknar modellen enligt principen: Ŷ = α + f 1 (x 1 ) + f 2 (x 2 ) + f n (x n ) Klassen väljer ut de två bästa individerna i varje generation enligt minsta kvadratfel-principen och muterar dessa en gång vardera i operator, betavärde eller funktionstyp. En crossover genomförs även av de två bästa individerna genom att klyva modellens DNA-sekvens på

7 mitten och sätta ihop dessa till nya individer. Klassen skriver även ut den hittills bästa funna modellen. Implementerade begränsningar Ett antal begränsningar lades in i programmet. Dessa var att endast använda operatorerna addition och subtraktion. Ytterligare begränsning är att programmet endast använder heltal. Båda begränsningarna kan tas bort genom argument när programmet körs. Att använda begränsningarna kan ge sämre modeller men ge approximativ information. En ytterligare begränsning är att den csv-fil som används måste vara formaterad korrekt. Det vill säga att den har den beroende variabeln i första kolumnen, och resterade oberoende variabler följer. Inga. Ytterligare krävs att decimaltal använder punkt, vilket annars ger upphov till felmeddelande, Alfa- och beta-värden är för närvarande begränsade till att vara mellan -2 och 2. De kan ökas genom multiplikation då mutation genomförs och minskas med division. Om detta är ett bra sätt att arbeta är mycket säkert. En utvärdering av hur detta bör se ut bör göras. CSV-filer Fyra olika CSV-filer skapades för att testa programmet. Två av dem hade kända modeller och två hade obestämda. Alla testades med programmet. Resultat Test 1 Indata: Testfil 1 Utdata: Current Best Model: x+1.0x**2 Mean Squared Error: 0.0 R Square = 1.0 Test 3 Indata: Testfil 3 Utdata: Current Best Model: x Mean Squared Error: R Square = Test 2 Indata; Testfil 2 Utdata: Current Best Model: x-1.0x**2+1.0e**x Mean Squared Error: e-18 R Square = 1.0 Test 4 Indata: Testfil 4 Utdata: Current Best Model: x+1.0x-3.0x+2.0x Mean Squared Error: 3.9 R Square = Test 1 och 2 hittade de förutbestämda modellerna. Test 3 använde data inspirerade av funktionen Y = 1.0x. En manuell beräkning av data från test 3 visade att den bästa modellen

8 som kan fås är x, vilket kan jämföras med programmets x. Test 4 grundade sig på helt slumpartade data med fyra oberoende variabler. Diskussion De fyra körningarna gav gott resultat och visar på att genetiska algoritmer kan lösa regressionsanalys. Problem och möjliga förbättringar Under flera testkörningar visade det sig att e x misstogs för x 2. Ett alternativ vore att endast en exponentiell funktion finns att tillgå. Färre funktionstyper kan ge snabbare resultat men ge ett större fel. Detta är en avvägning som får utvärderas. Ytterligare typer av funktioner bör implementeras för att hitta andra typer av kurvor. Exempelvis naturlig logaritm. Att ha i åtanke är att ju fler funktioner som finns att tillgå desto fler generationer kan krävas. En möjlig förbättring är att dela upp programmet i två delar: ett för att först hitta de funktioner som bäst passar in på datan, och sedan använda dem för att bestämma funktionernas alpha- och beta-värden. Möjligen ger detta bättre resultat. Ett problem som upptäcktes i programmet var att när csv-filen lästes in och innehöll decimaltal så gavs felmeddelanden. Det är därför viktigt att filen delar av decimaler från heltal med punkt. Dessutom är.csv-filer idag inte ett vanligt format. Att ge möjligheten att arbeta med andra filtyper såsom.xls och/eller.spss vore underlättande. Ytterligare en möjlig förbättring av programmet är att det inte endast tar hänsyn till en fil utan ger användaren möjlighet att välja fler filer och oberoende variabler. Att ge möjligheten att hämta och namnge variabler från olika filer. Detta för att ge mer flexibilitet och säkerhet åt användaren. Under programmets utveckling märktes att en funktion i python gav felaktiga resultat. Funktionen är eval(), vilken tar en sträng som argument och beräknar den. Att använda sig av denna funktion bör undersökas vid komplexa beräkningar så inga fel dyker upp. Särskilt kan detta tänkas hända vid operationer som involverar division och multiplikation. Ett problem som förblivit olöst är de fall där x = 0 och ett tal försöker divideras med x. Detta ger i normalfall ett resultat av inf, och hanteras inte av programmet. Ytterligare en funktion som skulle kunna finnas vore en som visar den differens som finns mellan Ŷ och Y. Denna funktion skulle visa en okänd variabel och hur felen varierar med en modell.

9 APPENDIX Datafil 1: Y = 2*X1 + (X2) Datafil 2: Y = x-1.0x e x Datafil 3: Y = 1.0x + error

10 Datafil 4: Y = okänd

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Övningsuppgifter till föreläsning 2 Variabler och uttryck

Övningsuppgifter till föreläsning 2 Variabler och uttryck Sid 1 (5) Övningsuppgifter till föreläsning 2 Variabler och uttryck Syfte Syftet med övningsuppgifterna är att träna på: Aritmetik, variabler, tilldelning, scanf och printf Generellt Diskutera gärna uppgifterna

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Kovarians och kriging

Kovarians och kriging Kovarians och kriging Bengt Ringnér November 2, 2007 Inledning Detta är föreläsningsmanus på lantmätarprogrammet vid LTH. 2 Kovarianser Sedan tidigare har vi, för oberoende X och Y, att VX + Y ) = VX)

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet November 4, 2013 Wänström (Linköpings universitet) F1 November 4, 2013 1 / 25 Statistik B, 8 hp

Läs mer

Genetisk programmering i Othello

Genetisk programmering i Othello LINKÖPINGS UNIVERSITET Första versionen Fördjupningsuppgift i kursen 729G11 2009-10-09 Genetisk programmering i Othello Kerstin Johansson kerjo104@student.liu.se Innehållsförteckning 1. Inledning... 1

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Enkel och multipel linjär regression

Enkel och multipel linjär regression TNG006 F3 25-05-206 Enkel och multipel linjär regression 3.. Enkel linjär regression I det här avsnittet kommer vi att anpassa en rät linje till mätdata. Betrakta följande värden från ett försök x 4.0

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Regressions- och Tidsserieanalys - F1

Regressions- och Tidsserieanalys - F1 Regressions- och Tidsserieanalys - F1 Kap 3: Enkel linjär regression Linda Wänström Linköpings universitet May 4, 2015 Wänström (Linköpings universitet) F1 May 4, 2015 1 / 25 Regressions- och tidsserieanalys,

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 4. b) = 3 1 = 2 Kapitel.1 101, 102 Exempel som löses i boken 10 a) x= 1 11+ x= 11+ 1 = 2 c) x= 11 7 x= 7 11 = 77 b) x= 5 x 29 = 5 29 = 6 d) x= 2 26 x= 26 2= 1 10 a) x= 6 5+ 9 x= 5+ 9 6= 5+ 5= 59 b) a = 8a 6= 8 6= 2 6=

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Alla datorprogram har en sak gemensam; alla processerar indata för att producera något slags resultat, utdata.

Alla datorprogram har en sak gemensam; alla processerar indata för att producera något slags resultat, utdata. Att förstå variabler Alla datorprogram har en sak gemensam; alla processerar indata för att producera något slags resultat, utdata. Vad är en variabel? En variabel är en plats att lagra information. Precis

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4

Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Föreläsning 10, del 1: Icke-linjära samband och outliers

Föreläsning 10, del 1: Icke-linjära samband och outliers Föreläsning 10, del 1: och outliers Pär Nyman par.nyman@statsvet.uu.se 19 september 2014-1 - Sammanfattning av tidigare kursvärderingar: - 2 - Sammanfattning av tidigare kursvärderingar: Kursen är för

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner

Introduktion till programmering D0009E. Föreläsning 5: Fruktbara funktioner Introduktion till programmering D0009E Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner

Läs mer

Multipel tilldelning. Introduktion till programmering D0009E. Föreläsning 6: Iteration. while-satsen. Kom ihåg. Snurror kontra rekursion

Multipel tilldelning. Introduktion till programmering D0009E. Föreläsning 6: Iteration. while-satsen. Kom ihåg. Snurror kontra rekursion Introduktion till programmering D0009E Föreläsning 6: Iteration Multipel tilldelning Helt ok att tilldela en variabel flera gånger: bruce = bruce, bruce = 7 bruce Output: 7 Som tillståndsdiagram: bruce

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2008-03-12.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program som läser igenom en textfil som heter FIL.TXT och skriver ut alla rader där det står ett decimaltal först på raden. Decimaltal

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl.

Justeringar och tillägg till Svar till numeriska uppgifter i Andersson, Jorner, Ågren: Regressions- och tidsserieanalys, 3:uppl. LINKÖPINGS UNIVERSITET 73G71 Statistik B, 8 hp Institutionen för datavetenskap Civilekonomprogrammet, t 3 Avdelningen för Statistik/ANd HT 009 Justeringar och tillägg till Svar till numeriska uppgifter

Läs mer

Fria matteboken: Matematik 2b och 2c

Fria matteboken: Matematik 2b och 2c Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons

Läs mer

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik

Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2010-04-06.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Skriv den funktion, draw_figure, som ritar ut en liksidig figur enligt exemplen nedan med så många hörn som anges som parameter till funktionen (den ritar

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (7 uppgifter) Tentamensdatum 2011-01-14 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Laboration 1. Utgåva 1 Gäller från

Laboration 1. Utgåva 1 Gäller från Programering SPO2 Repetition från grundläggande programmering I denna laboration ska vi titta närmare på aritmetiska operatorer, typkonvertering, in- och utmatning av text samt if- och switch-satser. Tänk

Läs mer

Tentamen i. för D1 m fl, även distanskursen. lördag 28 maj 2011

Tentamen i. för D1 m fl, även distanskursen. lördag 28 maj 2011 1 of 7 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen

Läs mer

Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner

Introduktion till programmering SMD180. Föreläsning 5: Fruktbara funktioner Introduktion till programmering Föreläsning 5: Fruktbara funktioner 1 Retur-värden Funktioner kan både orsaka en effekt och returnera ett resultat. Hittills har vi ej definierat några egna funktioner med

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6

Objektorienterad programmering i Java I. Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Laboration 2 Objektorienterad programmering i Java I Uppgifter: 2 Beräknad tid: 5-8 timmar (OBS! Endast ett labbtillfälle) Att läsa: kapitel 5 6 Syfte: Att kunna använda sig av olika villkors- och kontrollflödeskonstruktioner

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Complex numbers. William Sandqvist

Complex numbers. William Sandqvist Complex numbers Hur många lösningar har en andragradsekvation? y = x 2 1 = 0 Två lösningar! Kommer Du ihåg konjugatregeln? Svaret kan ju lika gärna skrivas: x 1 = 1 x2 = + 1 Hur många lösningar har den

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Design av interaktiv multimedia. Läs i förväg om det som övningarna kommer att beröra. Träna hemma både före och efter övningarna.

Design av interaktiv multimedia. Läs i förväg om det som övningarna kommer att beröra. Träna hemma både före och efter övningarna. Använd olika lager. Döp lagren! Organisera era bibliotek! Design av interaktiv multimedia Ge era symboler instansnamn för att hitta dem med AS. Nytt för denna kurs: Ingen ActionScript-kod i.fla-filen!

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

FK2005 Datorövning 3

FK2005 Datorövning 3 FK2005 Datorövning 3 Den här övningen vänder sig endast till lärarstudenter (FK2005). Målet är att lära sig hur man gör en minsta kvadrat anpassning med hjälp av OpenOffice Calc. Laboration 2 kräver att

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Problemlösning och funktioner Grundkurs i programmering med Python

Problemlösning och funktioner Grundkurs i programmering med Python Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till

Läs mer

Programmering C: Tentamen of 5 Prioritet och associativitet hos operatorerna i C De viktigaste operatorerna: Prioritet Kategori Operator

Programmering C: Tentamen of 5 Prioritet och associativitet hos operatorerna i C De viktigaste operatorerna: Prioritet Kategori Operator Programmering C: Tentamen 2008-05-31 1 of 5 Örebro universitet Institutionen för teknik Thomas Padron-McCarthy (Thomas.Padron-McCarthy@tech.oru.se) Tentamen i Programmering grundkurs och Programmering

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Regressions- och Tidsserieanalys - F4

Regressions- och Tidsserieanalys - F4 Regressions- och Tidsserieanalys - F4 Modellbygge och residualanalys. Kap 5.1-5.4 (t.o.m. halva s 257), ej C-statistic s 23. Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F4 1

Läs mer

Resursfördelningsmodellen

Resursfördelningsmodellen PCA/MIH Johan Löfgren Rapport 25-6-26 (6) Resursfördelningsmodellen Växjös skolor våren 25 Inledning Underlag för analyserna utgörs av ett register som innehåller elever som gått ut årskurs nio 2 24. Registret

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Hypotesprövning Innehåll Hypotesprövning 1 Hypotesprövning Inledande exempel Hypotesprövning Exempel. Vi är intresserade av en variabel X om vilken vi kan anta att den är (approximativt) normalfördelad

Läs mer

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

OBS! All teori i detta och följande dokument kompletteras med genomgångar på lektionerna. Så det är viktigt att närvara och göra egna anteckningar.

OBS! All teori i detta och följande dokument kompletteras med genomgångar på lektionerna. Så det är viktigt att närvara och göra egna anteckningar. Värmdö Gymnasium Programmering A 110123 Lektion C1 Grunder Att programmera handlar mycket om att lära sig att analysera det problem eller den funktion man vill att programmet ska ha, och översätta det

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Uppgift 1. Deskripitiv statistik. Lön

Uppgift 1. Deskripitiv statistik. Lön Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot

Läs mer

Att förstå bråk och decimaltal

Att förstå bråk och decimaltal Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår

Läs mer

Genetiska Algoritmer. 10 mars 2014

Genetiska Algoritmer. 10 mars 2014 Genetiska Algoritmer Johan Sandberg Jsg11008@student.mdh.se 10 mars 2014 Niklas Strömberg Nsg11001@student.mdh.se 1 SAMMANFATTNING Genetiska algoritmer är en sorts sökalgoritm som är till för att söka

Läs mer

Vad behövs för att skapa en tillståndsrymd?

Vad behövs för att skapa en tillståndsrymd? OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval

TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval TAMS65 - Föreläsning 11 Regressionsanalys fortsättning Modellval Martin Singull Matematisk statistik Matematiska institutionen Innehåll Repetition (t-test för H 0 : β i = 0) Residualanalys Modellval Framåtvalsprincipen

Läs mer

JavaScript del 3 If, Operatorer och Confirm

JavaScript del 3 If, Operatorer och Confirm JavaScript del 3 If, Operatorer och Confirm Under förra uppgiften så kollade vi på hur användaren kan ge oss information via promt(), vi använde den informationen både för att skriva ut den och för att

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Räkna med C# Inledande programmering med C# (1DV402)

Räkna med C# Inledande programmering med C# (1DV402) Räkna med C# Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt innehåll i verket

Läs mer

9-2 Grafer och kurvor Namn:.

9-2 Grafer och kurvor Namn:. 9-2 Grafer och kurvor Namn:. Inledning I föregående kapitel lärde du dig vad som menas med koordinatsystem och hur man kan visa hur matematiska funktioner kan visas i ett koordinatsystem. Det är i och

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen

Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Optimering av depåpositioner för den minimala bensinförbrukningen i öknen Frågeställning: En jeep kan sammanlagt ha 200 liter bensin i tanken samt i lösa dunkar. Jeepen kommer 2,5 km på 1 liter bensin.

Läs mer

Polynomanpassningsprogram

Polynomanpassningsprogram Polynomanpassningsprogram Den här uppgiften skall göra en polynomanpassning av en tvåkolumners tabell enligt minstakvadrat kriteriet och presentera resultatet grafiskt. Uppgiftens tygndpunkt ligger på

Läs mer

Programkonstruktion och Datastrukturer

Programkonstruktion och Datastrukturer Programkonstruktion och Datastrukturer VT 2012 Tidskomplexitet Elias Castegren elias.castegren.7381@student.uu.se Problem och algoritmer Ett problem är en uppgift som ska lösas. Beräkna n! givet n>0 Räkna

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer