Maximalt 4 bonuspoäng från duggor gjorda under våren 2016 får tillgodoräknas vid denna ordinarie tentamen.

Storlek: px
Starta visningen från sidan:

Download "Maximalt 4 bonuspoäng från duggor gjorda under våren 2016 får tillgodoräknas vid denna ordinarie tentamen."

Transkript

1 Tentamen i termodynamik Provmoment: Ten01 Ladokkod: TT051A Tentamen ges för: Årskurs 1 7,5 högskolepoäng Tentamenskod: Tentamensdatum: Tid: Hjälpmedel: Tabeller och Formler (Liber), Lilla fysikhandboken (Sandtorp Consult eller Studentlitteratur), Valfri gymnasietabellsamling, Formel och tabellhäfte bifogat tentamen, Miniräknare (grafritande men ej symbolhanterande) Språklexikon Totalt antal poäng på tentamen: För att få respektive betyg krävs: 3: 30p 4: 40p 5: 50p 60 poäng Maximalt 4 bonuspoäng från duggor gjorda under våren 2016 får tillgodoräknas vid denna ordinarie tentamen. Allmänna anvisningar: Nästkommande tentamenstillfälle: Augusti 2016 Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Lycka till! Ansvarig lärare: Peter Ahlström Telefonnummer: ,

2 Tentamen i termodynamik TT051A Högskolan i Borås Torsdag , Akademin för textil. teknik och ekonomi Examinator Peter Ahlström ( ) Rättande lärare: Patrik Lennartsson, Tomas Wahnström och Peter Ahlström Tentamen kan maximalt ge 60 poäng fördelade på 8 uppgifter. För att bli godkänd krävs minst totalt 30 poäng. För betyget 4 fordras totalt 40 poäng och för betyget 5 fordras 50 poäng inklusive ev. bonuspoäng från duggor. Hjälpmedel vid tentamen är Tabeller och Formler (Liber) eller Lilla fysikhandboken (Sandtorp Consult), formel- och tabellhäfte bifogat tentamen samt miniräknare (grafritande men ej symbolhanterande). Formel- och tabellhäfte bifogas tentamenstesen. Lösningarna skall vara tydliga och uppställda ekvationer väl motiverade. Då konstanter och formler hämtas från formelsamlingen skall detta anges. Fyll i skrivningsomslaget tydligt med tentamenskod, vilka uppgifter som är lösta etc. och LYCKA TILL!!! 1. [8p] En husvägg består av (utifrån räknat) 32 cm betong (λ=1,1 W/(m K)), 16 cm mineralull (λ=0,038 W/(m K)) och 3,0 cm (furu)trä. Värmeövergångstalet på insidan kan sättas till 8,0 W/(m 2 K) och på utsidan till 25 W/(m 2 K) a. Beräkna väggens U-värde! (3p) b. Hur stor är värmeförlusten per dygn och m 2 om yttertemperaturen är -5,0 C och innertemperaturen + 20,0 C (2p) c. Hur stor är kostnaden per dygn för uppvärmning om ett hus har 183 m 2 väggar av denna typ och värms med hjälp av en eldriven luftvärmepump med värmefaktorn 2,4. Antag att elpriset är 0,95 kr/kwh! (3p) 2. [6p] Burj Khalifa خ ل ي فة ب رج) Burǧ Ḫalīfah) är världens högsta byggnad. Den är belägen i Dubai i förenade Arabemiraten och dess höjd brukar anges till 828 m. Byggnaden är gjord i betong upp till 591 m höjd och därovanför av stål. Antag att byggnadens yttertemperatur varierar mellan 20 C och 55 C! a. Hur mycket varierar höjden beroende på temperaturen? (Ange skillnaden i höjd!) (3p) b. Ange skillnaden i densitet för betongen mellan dessa två temperaturer. (3p) 3. [6p] I en process utvidgas en viss mängd kvävgas av av 0,100 MPa och 27 C från 3,0 m 3 till 4,0 m 3 på tre olika sätt. Beräkna a. vilket arbete gasen uträttar om volymsändringsprocessen är isobarisk (2p) b. vilket arbete gasen uträttar om volymsändringsprocessen är isotermisk (2p) c. vad temperaturen blir om volymsändringen i stället sker utan värmeutbyte med omgivningarna (2p) 2

3 4. [7p] Vid kalorimetri kan man mäta temperaturen som funktion av tillförd värmemängd. a. Rita ungefär hur temperaturkurvan ser ut när man värmer aluminium från rumstemperatur (20 C) till 800 C. (2p) b. Vid en temperatur får kurvan en platå (d.v.s. temperaturen förblir konstant medan värme tillförs. Vilken temperatur handlar det om och vad händer vid denna temperatur? (2p) c. Hur mycket värme måste tillföras till ett aluminiumföremål med massan 780g innan temperaturen börjar öka efter platån? (2p) d. Ökar temperaturen snabbare eller långsammare efter platån jämfört med före platån? (om värmeeffekten är oförändrad under hela försöket) varför? (god motivering krävs för poäng!) (1p) 5. [9p] I en ideal Ottocykel är trycket och temperaturen vid kompressionens början 20 C och 1,0 bar. Kompressionsförhållandet är 8,0 och cykelns högsta temperatur är 1200 C. Arbetsmediet är luft. a. Beräkna temperaturen direkt efter kompressionen. (2p) b. Beräkna temperaturen direkt efter expansionen. (2p) c. Beräkna värmetillförseln per kg luft. (2p) d. Beräkna nettoarbetet per kg luft. (2p) e. Beräkna motorns verkningsgrad. (1p) 6. [7p] Strålning är ofta en viktig källa för energiförluster genom fönster. a. Beräkna hur mycket nettoeffekt som strålas ut av ett föremål med arean 1,2 m 2 som håller 25,0 C om omgivningarna håller 1,0 C. Antag att föremålet kan betraktas som en svart kropp (3p) b. Enligt svensk standard kan värmeövergångstalet genom konvektion sättas till 8,0 W/(m 2 K). Beräkna värmeövergången genom konvektion för samma föremål som i a.-uppgiften! (2p) c. Vad blir nettostålningseffekten om omgivningarna i stället håller 2,73 K (den kosmiska bakgrundstemperaturen), d.v.s. om föremålet strålar ut mot en klar himmel utan reflektererande moln e.dyl. (2p) 7. [8p] I en duschblandare blandas kallvatten som håller 12 C med varmvatten som håller 61 C. Önskad temperatur på vattnet är 38 C och önskat totalt vattenflöde 5,0 dm 3 /minut. Vattnets densitet kan sättas till 1,0 kg/dm 3. a. Beräkna kallvattenflöde respektive varmvattenflöde! (3p) b. Beräkna hur stor elektrisk effekt som behövs för att värma vattnet! (2p) c. Beräkna entropiproduktionen i blandaren för vardera vattenströmmen och totalt om man bortser från blandningsentropin (3p) 8. [9p] En frysanläggning arbetar mellan temperaturerna -20 C och +58 C. a. Beräkna Carnot-köldfaktorn. (2p) Frysanläggningen använder R134a som köldmedium och köldmedieflödet är 200 kg/h. Köldmediet är torrt och mättat före kompressorn. Det sker ingen underkylning av köldmediet i kondensorn. Kretsprocessen kan betraktas som ideal (förlustfri), därför kan också entropin beräknas som konstant vid kompressionen. b. Rita processen i något av de bifogade diagrammen (1p) c. Bestäm köldfaktorn (ε eller COP R ) (2p) d. Bestäm kyleffekten hos anläggningen. (2p) e. Antag att kompressionen inte sker vid konstant entropi utan att den specifika entropin ökar med 0,10 kj/(kg K) under kompressionen. Vad blir då köldfaktorn?(2p) 3

4 Formler och tabeller i termodynamik 2013 Peter Ahlström, Ingenjörshögskolan vid Högskolan i Borås 3 januari upplaga 2.5 Denna formelsamling är gjord för termodynamikkursen i årskurs 1 vid Ingenjörshögskolan i Borås och de övriga lärarna (Edvin Erdtman, Kamran Rousta och Jim Arlebrink) har alla bidragit till formelsamlingen. Vi tar tacksamt emot kommentarer och förbättringsförslag. I denna upplaga har ombrytningsfel rättats. 1 Några konventioner Oftast skrivs extensiva storheter (de som beror på systemets storlek) med stora bokstäver (versaler), t.ex. (systemets totala) värmekapacitet C (enhet J/K) och volym V medan intensiva storheter (som inte beror på systemets storlek) skrivs med små bokstäver (gemener), t.ex. specifik värmekapacitet c (enhet J/(K kg). Undantag är bl.a. temperatur (T ) och ofta tryck (P eller p) som skrivs med stora bokstäver fast de är intensiva storheter. Molära storheter kan skrivas med ett index m, t.ex. C m (molära värmekapaciteten, enhet J/(K mol)) men skrivs oftast inte med liten bokstav fast de är intensiva storheter. Tidsderivator och storheter per tidsenhet skrivs med en prick, exempel: Ẇ är arbetet per tidsenhet, d.v.s. arbetseffekten. 2 Konstanter Av pedagogiska skäl är definitionerna delvis omvända mot de vanligen använda (vanligen brukar t.ex. k b anses som mer grundläggande än R). Namn Beteckning = Värde Enhet Definition Allmänna gaskonstanten R = 8, J/(mol K) Avogadros tal N A = 6, mol 1 Boltzmanns konstant k b = 1, J/K k b = R/N A Konstanten i Stefan-Boltzmanns lag σ = 5, W/(m 2 K 4 ) Tyngdaccelerationen g = 9, m/s 2 (Paris) Tyngdaccelerationen g 9, 82 m/s 2 (Borås) Den absoluta temperaturen T mäts i kelvin och har mätetalet ϑ + 273, 15 där ϑ är mätetalet i C, d.v.s. den absoluta temperaturen vid 0 C är 273,15 K och vid 100 C är T = 373, 15K 1 bar = 10 5 Pa 1

5 Arbete definierat som positivt om det utförs på systemet 2 3 Beckningar och definitioner Storhet Beteckning Alternativ Enhet Beskrivning/ beteckning definition Degenerationen Ω - Antal sätt ett visst tillstånd kan förverkligas på Entalpi H J U + pv Entropi S J/K k ln Ω Inre energi U J Köldfaktor ɛ COP R - Q K W tillförd = Q L W tillförd Längdutvidgningskoefficient α L K 1 Massa m kg Molmassa M kg/mol, g/mol Slutet system System utan materieutbyte med omgivningen Stationärt system System där den mekaniska energin för tyngdpunkten inte ändras Substansmängd ν n mol ν = m M, antalet mol Tryck p P Pa = N/m 2 Tryckvolymarbete W W b J pdv Volym V m 3 Volymsutvidgningskoefficient α v K 1 Värme Q J allmän beteckning Värme Q v Q H, Q 1 J överfört vid den högre temperaturen Värme Q k Q L, Q 2 J överfört vid den lägre temperaturen OBS! Q v, Q k osv. definieras som positiva tal i ekvationerna Q Värmefaktor ɛ v COP HP - V W = Q H W tillförd tillförd Värmeflöde Q Φ W Värmekapacitet C p J/K Jfr avsnitt 5.2 nedan vid konstant tryck - Hela systemets värmekapacitet Värmekapacitet C v J/K Jfr avsnitt 5.2 nedan vid konstant volym - Hela systemets värmekapacitet C Värmekapacitetskvot γ κ, k - p C v = cp c v = Cp,m C v,m Värmekonduktivitet λ k W/(m K) Värmeledningsförmåga Värmeövergångs- α h W/(m 2 K) koefficient Öppet system 4 Molära och specifika storheter En molär storhet X m (enhet t.ex. J/mol) är relaterad till motsvarande specifika storhet x (enhet t.ex. J/kg) genom X m = x M (1) där M (enhet i detta exempel kg/mol) är ämnets molmassa. System med materieutbyte med omgivningen

6 Arbete definierat som positivt om det utförs på systemet 3 5 Formler och ekvationer 5.1 Arbete Beräkning av tryckvolymsarbete ( boundary work ) W = pdv (2) Isobar process (p = konstant) W = V2 V 1 pdv = p(v 1 V 2 ) (3) Isokor process V = V 1 = V 2 konstant, alltså blir båda integrationsgränserna samma (V 1 ) och integralen =0 W = V1 V 1 pdv = p(v 1 V 1 ) = 0 (4) Adiabatisk sluten process (Q = 0 U = W ) W = C v T = mc v T = νc v,m T (5) Adiabatisk öppen process ( Q = 0 Ḣ = Ẇ ) Ẇ = Ḣ = ṁ h = ṁc p T = νc p,m T (6) eller om flera strömmar är inblandade Ẇ = i ṁ i h i = i ṁ i c pi T i = i ν i C p,mi T (7) 5.2 Värme Tillfört värme vid konstant tryck (med totala värmekapaciteten vid konstant tryck C p = νc p,m = mc p ) dq = C p dt = νc p,m dt = mc p dt (8) eller integrerat (med C p etc. som medelvärmekapaciteter) Q = C p T = νc p,m T = mc p T (9) Tillfört värme vid konstant volym (med totala värmekapaciteten vid konstant volym C v = νc v,m = mc v ) dq = C v dt = νc v,m dt = mc v dt (10) eller integrerat (med C v etc. som medelvärmekapaciteter) Vidare gäller alltid Q = C v T = νc v,m T = mc v T (11) du = C v dt = mc v dt = νc v,m dt (12) dh = C p dt = mc p dt = νc p,m dt (13)

7 Arbete definierat som positivt om det utförs på systemet 4 eller om värmekapaciteten inte ändras i temperaturintervallet U = C v T (14) H = C p T (15) Specialfall: Kalorimetri i fast fas eller vätskefas Q = mc T + ml i (16) fasövergångar där c är ämnets specifika värmekapacitet, l i är specifika fasövergångsentalpin (specifika fasövergångsvärmet) för fasövergång i. OBS! Tecknet på l i beror på om värme upptas eller frigörs vid övergången. Vidare ändras c vid varje fasövergång varför man måste dela upp den första termen i flera. 5.3 Termodynamikens första huvudsats (energiprincipen) För slutna system Q + W = E = U + E kin + E pot (17) För stationära slutna system Q + W = U (18) För öppna system gäller kontinuitetsekvationen IN + PROD = UT + ACK (19) som för energi (utan ACK-term) blir ṁ i (h i + e kin,i + e pot,i ) + Q + Ẇ = ut in ṁ j (h j + e kin,j + e pot,j ) (20) där e kin,i = V2 i 2 och e pot,i = gy i med V i = strömningshastigheten, g tyngdaccelerationen, y flödets höjd över refernsnivån. 5.4 Entropi Definition där Ω är antalet sätt tillståndet kan förverkligas på. gäller S = k b ln Ω (21) Vid tillförsel av värme ds = dq rev + ds gen (22) T där Q rev är värmet som tillförs vid en reversibel process som ger samma tillståndsändring, ds gen är den entropi som produceras genom irreversibla processer i systemet. Om volymen ändras se avsnitt 5.6 om vad som gäller för ideala gaser.

8 Arbete definierat som positivt om det utförs på systemet Kondenserade faser I kondenserade faser (vätska, fast fas) är volymsändringarna oftast små och alltså C v C p C varför H U = C T (23) och S = mc av ln ( T2 T 1 ) (24) 5.6 Ideala gaser För ideala gaser gäller dessutom Gasernas allmänna tillståndslag ( allmänna gaslagen ) En variant kan skrivas pv = νrt nrt (25) pv = mr i T (26) där R i = R/M i är den ämnesspecifika gaskonstanten för ämne i som har molmassan M i. Inre energi för en ideal gas fås från ekvipartitionsprincipen vilken ger U = f 2 NkT = f νrt (27) 2 där N = antalet molekyler, f = antalet frihetsgrader i varje molekyl, f = 3 för enatomig gas, f = 5 för tvåatomig gas, f 3N atom för N atom atomig gas och därmed är C v,m = 3 2 R för en enatomig gas och C v,m = 5 2R för en tvåatomig gas. Vidare gäller för ideala gaser C p,m = C v,m + R Isoterm process V2 ( ) V1 W = pdv = nrt ln (28) Adiabatisk process för ideal gas V 1 V 2 p 1 V γ 1 = p 2 V γ 2 (29) T 1 V γ 1 1 = T 2 V γ 1 2 (30) ( ) T 1 p1 ( γ 1 γ ) = (31) T 2 p 2 W = p 2V 2 p 1 V 1 γ 1 (32) (33) Entropiändring för ideal gas ( ) T2 S = νc v,m ln + νr ln T 1 ( V2 V 1 ) = mc v ln ( T2 T 1 ) + mr i ln ( V2 V 1 ) (34)

9 Arbete definierat som positivt om det utförs på systemet Verkningsgrader Allmän definition η = nyttigt tillfört Motorer och andra värmemaskiner Kylmaskiner: köldfaktor (35) η = W nyttigt Q tillfört = Q 1 Q 2 Q 1 (36) ɛ = Värmepumpar: värmefaktor ɛ v = 5.8 Carnotprocesser Q k W tillfört = Q k Q v Q k (37) Q v W tillfört = Q v Q v Q k = ɛ + 1 (38) η Carnot = W nyttigt Q tillfört = Q 1 Q 2 Q 1 = T 1 T 2 T 1 (39) ɛ Carnot = ɛ v Carnot = 5.9 Ottomotorn där kompressionsförhållandet r = Vmax V min 5.10 Värmeöverföring Q k W tillfört = Q k = T k (40) Q v Q k T v T k Q v W tillfört = Q v = T v (41) Q v Q k T v T k η = 1 1 r γ 1 (42) och γ = C p /C v Strålning - Stefan-Boltzmanns lag Stålning från kropp med temperaturen T ges av Q = ɛaσt 4 (43) där ɛ är emissiviteten (0 < ɛ < 1), A arean, σ 5, W/(m 2 K 4 ). Om kroppen befinner sig i en omgivning med temperaturen T 0 fås nettostrålningen ur Q = ɛaσ(t 4 T 4 0 ) (44)

10 Arbete definierat som positivt om det utförs på systemet Värmegenomgång Q = AU T (45) där värmegenomgångskoefficienten U (skilj detta U från den inre energin!) ges av 1 U = L i (46) α 1 α 2 λ i lager där värmeledningsförmågan för lager i är λ i och dess tjocklek är L i. α 1 och α 2 är värmeövergångstalen mellan väggen och den omgivande luften, d.v.s. värmeöverföringen genom konvektion. (Om det bara är fråga om en form av värmeöverföring stryks de andra termerna) 5.11 Längdutvidgning, volymsutvidgning Längden L av en kropp med ursprungslängden L 0 till följd av en temperaturändring T ges av L = L 0 (1 + α L T ) (47) där α L är längdutvidgningskoefficienten. På samma sätt gäller för volymen V av en kropp med ursprungsvolymen V 0 V = V 0 (1 + α v T ) (48) där volymsutvidgningskoefficienten α v 3α L Referenser O. Beckman, G. Grimvall, B. Kjöllerström & T. Sundström, Energilära, Grundläggande termodynamik, Stockholm: Liber, Y.A. Çengel, Introduction to thermodynamics and heat transfer, 2nd ed., New York: McGraw-Hill, Desol, sys/ upload/data/201003/29/ pdf (hämtad ) C. Nordling, Jonny Österman, Physics Handbook for science and engineering, Lund: Studentlitteratur, A. Ölme m.fl., Tabeller och Formler, Stockholm: Liber, 2003.

11 Arbete definierat som positivt om det utförs på systemet 8 Ämne Formel Molmassa R i, specifik c v c p γ T k p k gaskonstant g/mol J/(kg K) kj/(kg K) K MPa Etan C 2 H 6 30,07 276,5 1,4897 1,7662 1, ,5 4,48 Helium He 4, ,9 3,1156 5,1926 1,667 5,3 0,23 Koldioxid CO 2 44,01 188,9 0,657 0,846 1, ,2 7,39 Luft 28,97 287,0 0,718 1,005 1, ,5 3,77 Kväve N 2 28, ,8 0,743 1,039 1, ,2 3,39 Metan CH 4 16, ,2 1,735 2,254 1, ,1 4,64 Propan C 3 H 8 44, ,5 1,4909 1,6794 1, ,26 Syre O 2 31, ,8 0,658 0,918 1, ,8 5,08 Vattenånga H 2 O 18, ,5 1,4108 1,8723 1, ,1 22,06 Väte H 2 2, ,183 14,307 1,405 33,3 1,3 Table 1: Egenskaper för utvalda gaser (Çengel, 2008), T k = kritiska temperaturen, p k = kritiska trycket Ämne Formel M T f l f T v l v c p λ α L el. α v kj W g/mol K kj/kg K kj/kg kg K m K 10 5 K 1 Aluminium Al 26, , ,4 L Betong 0,92 0,4-1,7 1,2 L Etanol C 2 H 5 OH 46,4 159, ,4 838,3 2,46 0, v Järn Fe 55, , ,2 L R134a C 2 F 4 H 2 173,5 147,0 247,0 1,43 Stål , ,15 L Trä(furu) 0,4 0,14 0,5-3 L Vatten H 2 O 18,02 273, , ,19 0,60 18 v Is (-4 C) H 2 O 18,02 273, , ,2 2,1 5,0 L Table 2: Egenskaper för utvalda vätskor och fasta ämnen. Om inget annat anges avses egenskaperna vid 20 C och 1 atm. T f =smältpunkt, l f = smältentalpi, T v =kokpunkt, l v = ångbildningsentalpi L=α L anges, v=α v anges; värmeledningsförmågan och värmekapaciteten avser fast fas eller vätskefas. (efter Ölme (2003), Çengel (2008), NIST samt Nordling och Österman (2004)) Fig 1 (nästa sida) p(h)-diagram för R134a från Desol (2013)

12 s = s = 1.95 s = 1.90 s = 1.85 s = 1.75 s = s = s = s = s = 2.15 s = 2.20 s = R134a Ref :D.P.Wilson & R.S.Basu, ASHRAE Transactions 1988, Vol. 94 part 2. x = s = Enthalpy [kj/kg] Pressure [Bar] DTU, Department of Energy Engineering s in [kj/(kg K)]. v in [m^3/kg]. T in [ 튏 ] M.J. Skovrup & H.J.H Knudsen v= v= v= v= v= v= v= v= v= v= v= v= v= 0.10 v= 0.15 v= 0.20

13

Maximalt 4 bonuspoäng från duggor gjorda under våren 2018 får tillgodoräknas vid denna ordinarie tentamen.

Maximalt 4 bonuspoäng från duggor gjorda under våren 2018 får tillgodoräknas vid denna ordinarie tentamen. Tentamen i termodynamik Provmoment: Ten01 Ladokkod: TT051A Tentamen ges för: Årskurs 1 7,5 högskolepoäng Tentamenskod: Tentamensdatum: 2018-03-12 Tid: 09.00-13.00 Hjälpmedel: Tabeller och Formler Liber),

Läs mer

60 poäng. Maximalt 4 bonuspoäng från duggor gjorda under våren 2017 får tillgodoräknas vid denna ordinarie tentamen.

60 poäng. Maximalt 4 bonuspoäng från duggor gjorda under våren 2017 får tillgodoräknas vid denna ordinarie tentamen. Tentamen i termodynamik Provmoment: Ten01 Ladokkod: TT051A Tentamen ges för: Årskurs 1 7,5 högskolepoäng Tentamenskod: Tentamensdatum: 2017-03-17 Tid: 09.00-13.00 Hjälpmedel: Tabeller och Formler (Liber),

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

------------------------------------------------------------------------------------------------------- Personnummer:

------------------------------------------------------------------------------------------------------- Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndag 24 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod:

7,5 högskolepoäng ENERGITEKNIK II. Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B. TentamensKod: ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Måndagen 23 oktober 2017 Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Övningstentamen i KFK080 för B

Övningstentamen i KFK080 för B Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Personnummer:

Personnummer: ENERGITEKNIK II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 Namn: -------------------------------------------------------------------------------------------------------

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM Termodynamik FL4 VÄRMEKAPACITET IDEALA GASER 1:a HS ENERGIBALANS ENERGIBALANS FÖR SLUTNA SYSTEM Energibalans när teckenkonventionen används: d.v.s. värme in och arbete ut är positiva; värme ut och arbete

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur)

Hjälpmedel: Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller(s O Elovsson och H Alvarez, Studentlitteratur) ENERGITEKNIK II Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N05B En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: Tisdag 27 oktober Tid: 9.00-13.00 Hjälpmedel: Valfri miräknare, Formelsamlg:

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

Energitekniska formler med kommentarer

Energitekniska formler med kommentarer Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en

Läs mer

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Entropi. Det är omöjligt att överföra värme från ett kallare till ett varmare system utan att samtidigt utföra arbete. Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Energitransport i biologiska system

Energitransport i biologiska system Energitransport i biologiska system Termodynamikens första lag Energi kan inte skapas eller förstöras, endast omvandlas. Energiekvationen de sys dt dq dt dw dt För kontrollvolym: d dt CV Ändring i kontrollvolym

Läs mer

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet. Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng

Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) kl CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-08-21 kl.

Läs mer

7,5 högskolepoäng. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3. TentamensKod:

7,5 högskolepoäng. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3. TentamensKod: Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: 41N11C En3 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-10-24 Tid: 9 13 Hjälpmedel: Alvarez. Formler och Tabeller Räknare och

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 204-08-30. a Vid dissociationen av I 2 åtgår energi för att bryta en bindning, dvs. reaktionen är endoterm H > 0. Samtidigt bildas två atomer ur en molekyl,

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

Tentamen KFKA05 och nya KFK080,

Tentamen KFKA05 och nya KFK080, Tentamen KFKA05 och nya KFK080, 2013-10-24 Även för de B-studenter som läste KFK080 hösten 2010 Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Teknisk termodynamik repetition Repetitionsgenomgång Slutna och öppna system Isentrop verkningsgrad Värmemotor och värmepump; Carnot Kretsprocesser med ånga (Rankine och kylcykel) Ångtabeller Kretsprocesser

Läs mer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Kemi Bas 1 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 40S01A KBAST och KBASX 7,5 högskolepoäng Tentamensdatum: 2016-10-27 Tid: 09:00-13:00 Hjälpmedel: papper, penna, radergummi, kalkylator

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller:

Rättningstiden är i normalfall tre veckor, annars är det detta datum som gäller: Introduktion till energiteknik Provmoment: Tentamen Ladokkod: TK2211 Tentamen ges för: Energiingenjör 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2013-04-04

Läs mer

Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h. Tentamens Kod: Tentamensdatum: Tid: 14-18

Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h. Tentamens Kod: Tentamensdatum: Tid: 14-18 Naturvetenskap Provmoment: Ladok-kod: A133TG Tentamen ges för: TGIEA16h, TGIEL16h, TGIEO16h 7,5 högskolepoäng Tentamens Kod: Tentamensdatum: 2017-01-12 Tid: 14-18 Hjälpmedel: Grafritande miniräknare (ej

Läs mer

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel

Läs mer

Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller (S O Elovsson och H Alvarez, Studentlitteratur)

Valfri miniräknare, Formelsamling: Energiteknik-Formler och tabeller (S O Elovsson och H Alvarez, Studentlitteratur) Förbränningsteknik Provmoment: Ladokkod: Tentamen ges för: Tentamen A117TG En2 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2017-05-30 Tid: 9:00-13:00 Hjälpmedel: Valfri miniräknare, Formelsamling:

Läs mer

Grundläggande kylprocess, teori och praktik

Grundläggande kylprocess, teori och praktik Kyl & Värmepumptekniker Höstterminen 201 8 Grundläggande kylprocess, teori och praktik HÄFTE 2 Köldmediediagrammet Lärare: Lars Hjort Lars Hjort 2018-08-10 Övning på köldmediediagrammet Läs sidan 55-57

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer

Planering Fysik för V, ht-10, lp 2

Planering Fysik för V, ht-10, lp 2 Planering Fysik för V, ht-10, lp 2 Kurslitteratur: Häfte Experimentell metodik och föreläsningsanteckningar, Kurslaboratoriet 2010 samt Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2009. markerar

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer

Läs mer

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem.

Då du skall lösa kemiska problem av den typ som kommer nedan är det praktiskt att ha en lösningsmetod som man kan använda till alla problem. Kapitel 2 Här hittar du svar och lösningar till de övningsuppgifter som hänvisas till i inledningen. I vissa fall har lärobokens avsnitt Svar och anvisningar bedömts vara tillräckligt fylliga varför enbart

Läs mer

PHYS-A5120 Termodynamik period II ho sten Vecka 45

PHYS-A5120 Termodynamik period II ho sten Vecka 45 PHYS-A5120 Termodynamik period II ho sten 2016 Vecka 45 1. Bera kna vid vilken ho jd i atmosfa ren som det hydrostatiska trycket a r 2/3 av trycket vid jordytan p0. Temperaturen i atmosfa ren anses vara

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h. Tentamensdatum: Tid: 09:00 13:00

Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h. Tentamensdatum: Tid: 09:00 13:00 Grundläggande kemiteknik Provmoment: Tentamen Ladokkod: A116TG Tentamen ges för: TGKEB16h 7,5 högskolepoäng Tentamensdatum: 2018-05-29 Tid: 09:00 13:00 Hjälpmedel: Tillåtna hjälpmedel är miniräknare, Alvarez

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Fysikum FK4005 - Fristående kursprogram Laborationsinstruktion (1 april 2008) LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v Mål Denna laboration är uppdelad i två delar. I den första bestäms C p /C

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Onsdagen den /, kl 4.-8. i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt.

Det material Du lämnar in för rättning ska vara väl läsligt och förståeligt. Industriell energihushållning Provmoment: Ladokkod: Tentamen ges för: Tentamen 41N11C TGENE13h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 2016-03-16 Tid: 9:00-13:00 Hjälpmedel: Alvarez. Formler och

Läs mer

Tentamen i Termodynamik CBGB3A, CKGB3A

Tentamen i Termodynamik CBGB3A, CKGB3A Tid: 2010-10-19, kl. 08:15 13:15 Tentamen i Termodynamik CBGB3A, CKGB3A Tillåtna hjälpmedel: Physics handbook, miniräknare, en handskrien A4 (en sida) eller Formelsamling i Industriell Energiteknik (Curt

Läs mer

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL

TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL UMEÅ UNIVERSITET Tillämpad Fysik och Elektronik Robert Eklund Umeå den 20/1 2005 TENTAMEN I KRAFTVÄRMESYSTEM, 5 p RÄKNEDEL Tid: TORSDAGEN DEN 20/1-2005 kl 9-15 Hjälpmedel: 1. Kurslitteratur Pärm: Thermal

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 2012-05-23 1. a Molekylerna i en ideal gas påverkar ej varandra, medan vi har ungefär samma växelverkningar mellan de olika molekylerna i en ideal blandning.

Läs mer

Tentamen - Termodynamik 4p

Tentamen - Termodynamik 4p Tentamen - Termodynamik 4p Tid: 9.00-15.00, Torsdag 5 juni 003. Hjälpmedel: Physics Handbook, räknare 1. Betrakta en ideal gas. a) Använd kinetisk gasteori för att härleda ett samband mellan tryck, volym

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer