Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Storlek: px
Starta visningen från sidan:

Download "Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00"

Transkript

1 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum och vid konstant V Entalpi H = U + PV (definition)

2 Repetition F8 forts. Värmekapacitet C = q / T Konstant volym U = q V C V = q V / T = U / T Konstant tryck H = q P C P = q P / T = H / T

3 Repetition F8 forts. Standardtillstånd rent ämne vid 1 bar Entalpiändringar fasomvandling: H vap, H fus, H freeze, H sub reaktioner: standardförbränningsentalpi, H c, Hess lag standardbildningsentalpi, H f H för en process är summan H för delprocesserna ΔH = nδh f (produkter) nδh f (reaktanter)

4 F9 Entropi Tillståndsfunktion som beskriver systemets variationsrikedom Visar åt vilket håll en process går spontant

5 Processer Reversibel Irreversibel

6 Reversibel process Jämvikt En oändligt liten ändring (i någon av tillståndsvariablerna eller yttre faktorer) krävs för att processen ska gå åt ena eller andra hållet Exempel: Gasexpansion där det externa trycket i varje steg matchar systemets tryck

7 Irreversibel process En liten ändring byter inte riktning på processen Systemet kan inte gå tillbaka till ursprungsläget samma väg En spontan process är irreversibel Exempel: Gasexpansion mot konstant yttre tryck lägre än systemets (extremfall vakuum), eftersom ett högre yttre tryck krävs för att driva processen baklänges

8 Klassisk respektive statistisk termodynamik Tillståndsvariabler som P, V, T och n definierar systemets tillstånd som helhet, men beskriver inte detaljer som enskilda molekylers läge och hastighet Klassisk termodynamik bryr sig bara om helheten Statistisk termodynamik beskriver hur detaljerna leder fram till helhetsresultat, ofta i form av medelvärden

9 Hur kan vi avgöra om en process spontant har en viss riktning? Tankeexperiment: ideal gas expanderar isotermt (T konstant) mot vakuum från V 1 till V 2 där V 1 är en del av V 2 V 1 vakuum V 2

10 Hur är det med energiändringen? U= H=0 vid isoterm expansion av en ideal gas ingen hjälp V 1 vakuum V 2

11 Varför expanderar gasen, då? Att gasmolekylerna sprider sig beror på att det inte finns något som hindrar dem att göra det Det är möjligt att molekylerna samlar sig i V 1 igen, men osannolikt, när de har tillgång till hela V 2 och skulle de råka samlas V 1 har de snart spridit sig i V 2 igen Rent statistiskt har tillståndet alla i V 2 vunnit därför att det finns många fler möjligheter att realisera det än alla enbart i V 1, även om det senare är en delmängd av det förra

12 Variationsrikedomen har betydelse Vad vi söker är ett mått på variationsrikedomen i de två tillstånden Måttet bör vara extensivt, dvs. en fördubbling av systemet ska ge en fördubbling av måttet Varje unik uppsättning av lägen och hastigheter för molekylerna kallar vi ett mikrotillstånd Alla mikrotillstånd som är förenliga med systemets termodynamiska tillstånd bildar en ensemble

13 Entropi, S statistisk termodynamisk definition Antalet mikrotillstånd i en ensemble betecknas W Har vi två system A och B, blir totala antalet tillstånd W tot = W A W B. Om vi logaritmerar får vi lnw tot = ln(w A W B ) = lnw A + lnw B Vi kan därför definiera det extensiva måttet (Boltzmanns formel) S = k lnw där k = R/N A = 1, J/K är Boltzmanns konstant

14 Entropi, S statistisk termodynamisk definition S kan identifieras som entropin känd från klassisk termodynamik Som definition på entropi förutsätter Boltzmanns formel att alla mikrotillstånd är likvärdiga, dvs. har samma sannolikhet p i =1/W, vilket gäller om de har samma energi (garanterat i ett isolerat system) Slutsats En process kan drivas av det faktum att det finns fler mikrotillstånd i sluttillståndet än i starttillståndet Entropin är ett mått på mängden mikrotillstånd

15 Gibbs formel (överkurs) Om sannolikheterna p i för mikrotillstånden i ensemblen är olika gäller (Gibbs formel) S = k p i ln p i Om p i = 1/W för alla i erhålls Boltzmanns formel S = k p i ln p i = k ln p p i = k ln p 1 = k ln 1 W = k lnw där vi utnyttjat att ln p i är en konstant och att p i =1 Slutsats: Inte bara mängden av mikrotillstånd, utan även deras sannolikhetsfördelning har betydelse

16 Kvantmekanisk beskrivning av monoatomär gas (translation) Rörelsen (translationen) hos en monoatomär gas kan beskrivas som en partikel i en tredimensionell låda Energinivåer E = (n x 2 + n y 2 + n z 2 )h 2 8mL 2 n x,n y,n z =1, 2, 3 Större massa m och större volym (lådlängd L) ger tätare energinivåer (mindre energiskillnad) tillgång till fler tillstånd högre entropi (Elektrontillstånd tillkommer)

17 Kvantmekanisk beskrivning av monoatomär gas (translation) Partikel i en tredimensionell låda E = (n 2 x + n 2 y + n 2 z )h 2 n 8mL 2 x,n y,n z =1, 2, 3 Medelenergi E = 3 2 RT Högre temperatur T ger högre medelenergi tillgång till fler tillstånd högre entropi

18 Multiatomär molekyl ger ökad komplexitet Diatomär, triatomär etc gas har även vibrations- och rotationstillstånd högre entropi per molekyl Exempel: Ökande entropi, Ne < HF < H 2 O < NH 3 Långa molekyler med många bindningar ger möjlighet till rotation kring bindningar högre entropi per molekyl Exempel: Ökande entropi, CH 3 CH 2 CH 3 < CH 3 CH 2 CH 2 CH 3

19 Entropi, S ett mått på ordning Om det finns många mikrotillstånd, blir det svårt att hålla reda på dem. Det brukar betecknas som oordning Hög S: oordning Exempel: gas Finns det ett fåtal brukar de vara uppordnade pga av växelverkan Låg S: ordning Exempel: kristall Huller om buller: högre S Fix struktur: lägre S

20 Spridning/utjämning ökar entropin Spridning av materia Spridning av energi Spridning av partikelfördelning Kräver möjlig reaktion, spontan eller inte beror på alla effekter av reaktionen

21 Entropi, S liten sammanfattning Entropin för en enskild molekyl ökar med Större tillgänglig volym Tyngre atomer Högre temperatur Mer komplex molekylstruktur Entropin för ett system ökar med Jämnare fördelning av energi och materia Större oordning S gas > S vätska > S fast ämne

22 Övning Vad har störst entropi? 1. I 2 (g) eller I 2 (l)? 2. Ne(g) eller Kr(g)? 3. NH 3 (g) eller Ne(g)? 4. KCl(aq) eller KCl(s)? 5. 1,0 mol Ne(g) i 10 liter eller i 20 liter (konstant T)? 6. 1,0 mol Ar(g) vid 1,0 atm eller vid 2,0 atm (konstant T)? 7. CH 2 =CH 2 (g) eller CH 3 CH 3 (g)?

23 Övning Vad har störst entropi? 1. I 2 (g) eller I 2 (l)? 2. Ne(g) eller Kr(g)? 3. NH 3 (g) eller Ne(g)? 4. KCl(aq) eller KCl(s)? 5. 1,0 mol Ne(g) i 10 liter eller i 20 liter (konstant T)? 6. 1,0 mol Ar(g) vid 1,0 atm eller vid 2,0 atm (konstant T)? 7. CH 2 =CH 2 (g) eller CH 3 CH 3 (g)?

24 Entropi, S (klassisk) termodynamisk definition Konstant temperatur ΔS = q rev T q rev : värme i en reversibel process (begränsar vägval) Om T inte är konstant måste man summera små steg, där T är konstant, dvs. beräkna S som en integral ΔS = T f dq rev = T T i T f T i CdT T = Cln T f T i (värmekapacitet C ober. av T) S är en tillståndsfunktion

25 Statistisk (mikroskopisk) tolkning av den klassiska definitionen Konstant temperatur ΔS = q rev T Hög T många mikrotillstånd oordning extra energitillskott (värme) ger liten nettoeffekt S litet Låg T få mikrotillstånd ordning extra energitillskott (värme) ger stor nettoeffekt S stort

26 Andra huvudsatsen Entropin är konstant eller ökar i ett isolerat system ΔS 0 S > 0: spontan process, irreversibel S = 0: jämvikt, reversibel process Ett isolerat system vill maximera sin entropi

27 Andra huvudsatsen generalisering Men universum = system + omgivning är ett isolerat system ΔS tot = ΔS sys + ΔS omg 0 S tot > 0: spontan process, irreversibel S tot = 0: jämvikt, reversibel process För ett slutet eller öppet system måste vi alltså titta på både systemets och omgivningens entropiändring för att avgöra om en process är spontan eller inte

28 Entropiändringen i omgivningen Omgivningen är så stor att den inte märkbart påverkas T omg konstant q omg kan betraktas som reversibel q omg = -q sys ΔS omg = q omg T omg = q sys T omg Exempel: P konstant ΔS omg = q P T omg = ΔH sys T omg

29 Övning 1,0 kj värme förs reversibelt från en stor vattenbehållare med temperaturen 50 C och in i en annan stor vattenbehållare med temperaturen 10 C. Vad blir ändringen i entropi?

30 Svar ΔS = q rev T ΔS = ΔS 1 + ΔS 2 q = 1,0 kj Använd SI-enheter x C = (x + 273,15) K ΔS = ΔS 1 + ΔS 2 = q + q = T 1 T 2 = 1,0 103 J ( ,15) K + 1, J ( ,15) K Svar: Entropiändringen är 0,44 J/K. = 0,44 J/K 50 C S 1 10 C S 2

31 Entropiändringen vid fasomvandling (jämvikt) Jämvikt reversibel process P konstant: q rev = H T = T sys = T omg konstant ΔS tot = ΔS sys + ΔS omg = 0 (jämvikt) ΔS sys = ΔS omg = q sys T = ΔH sys T (jämvikt, konstant P) Generellt för fasomvandling: ΔS sys = ΔH omv T omv

32 S sys vid fasomvandling Smältning vid smältpunkten T m ΔS sys = ΔH fus T m Förångning vid kokpunkten T b ΔS sys = ΔH vap T b H fus > 0 S sys > 0 s l

33 Tredje huvudsatsen S = 0 vid T = 0 för en perfekt kristall T = 0: ingen värmerörelse (alla atomhastigheter = 0), alla elektroner i sina grundtillstånd Perfekt kristall: fullständig ordning, endast en möjlig struktur Endast ett mikrotillstånd: S = k ln 1 = 0

34 Absoluta entropier Tredje huvudsatsen ger nollpunkt för entropi, S(0) = 0 Absolut entropi kan integreras fram med hjälp av experimentaldata, S(T) = S(0) + ΔS 0 T En fas, konstant P C ΔS = P T dt Fasomvandling, konstant P ΔS = ΔH omv T omv

35 Standard molär entropi, S m Om P = 1 bar erhålls standard molära entropier, S m [enhet J/(K mol) = J K -1 mol -1 ] Obs! Inget, eftersom absoluta värden Från tabeller kan standard reaktionsentropi beräknas ΔS = ns m (produkter) ns m (reaktanter) där n är koefficienterna i reaktionsformeln

36 Övning Beräkna S för följande reaktion: C 6 H 6 (l) + 3 H 2 (g) C 6 H 12 (l) S m (C 6 H 6 (l)) = 173,3 J K -1 mol -1, S m (H 2 (g)) = 130,7 J K -1 mol -1 och S m (C 6 H 12 (l)) = 204,4 J K -1 mol -1.

37 Svar C 6 H 6 (l) + 3 H 2 (g) C 6 H 12 (l) ΔS = ns m (produkter) ns m (reaktanter) = = S m (C 6 H 12 (l)) S m (C 6 H 6 (l)) 3S m (H 2 (g)) = = 204,4 173, ,7 J K -1 mol -1 = 361,0 J K -1 mol -1 Svar: Standardentropiändringen för reaktionen är -361,0 J K -1 mol -1.

38 Övning Kunde vi förutse att S för reaktionen C 6 H 6 (l) + 3 H 2 (g) C 6 H 12 (l) är negativ?

39 Svar C 6 H 6 (l) + 3 H 2 (g) C 6 H 12 (l) Svar: Ja, mängden gas minskar, vilket minskar entropin.

40 Tumregel Om mängden gas ökar i en reaktion, är S > 0 för reaktionen

41 Övning Vad har S för tecken för följande reaktioner? a) 2 CaCO 3 (s) CaO(s) + CO 2 (g) b) N 2 (g) + 3 H 2 (g) 2 NH 3 (g)

42 Svar a) 2 CaCO 3 (s) CaO(s) + CO 2 (g) 1 mol gas per mol reaktion bildas: S > 0 b) N 2 (g) + 3 H 2 (g) 2 NH 3 (g) = 2 mol gas per mol reaktion bildas, dvs. totala mängden gas minskar: S < 0

43 Övning För reaktionen C 6 H 6 (l) + 3 H 2 (g) C 6 H 12 (l) är S = -361 J K -1 mol -1 och H = -205 kj mol -1 vid 298 K. Vad är entropiändringen i omgivningen? Sker reaktionen spontant vid standardtillstånd?

44 Svar ΔS omg ΔS tot = ΔH sys T = ΔS sys = ( ) J mol -1 = 688 J K -1 mol K = J K -1 mol -1 = + ΔS omg = 327 J K -1 mol -1 > 0 spontan process Svar: Entropiändringen i omgivningen är 688 J K -1 mol -1. Reaktionen sker spontant, eftersom totala entropiändringen är positiv.

45 Övning Beräkna S tot när vatten a) smälter vid +10,0 C och b) fryser vid 10,0 C. Antag att smältentropin S fus = 22,0 J K -1 mol -1 och smältentalpin H fus = 6,01 kj mol -1 är oberoende av T.

46 Svar ΔS omg = ΔH sys T Använd SI-enheter (absolut temperatur) a) ΔS tot = ΔS sys + ΔS omg x C = (x + 273,15) K ΔS omg,fus = ΔH sys,fus T = 6, J/mol (10, ,15) K = 21,2 J K -1 mol -1 ΔS tot,fus = ΔS sys,fus + ΔS omg,fus = 22,0 21,2 J K -1 mol -1 = = 0,8 J K -1 mol -1 > 0 spontan process Svar: Totala entropiändringen är 0,8 J K -1 mol -1.

47 Svar b) Frysning är den omvända processen mot smältning S freeze = S fus Räkna först som smältning och byt därefter tecken. ΔS omg,fus = ΔH sys,fus T = 6, J/mol ( 10, ,15) K = 22,8 J K-1 mol -1 ΔS tot,fus = ΔS sys,fus + ΔS omg,fus = 22,0 22,8 J K -1 mol -1 = = 0,8 J K -1 mol -1 < 0 inte spontan process ΔS tot,freeze = ΔS tot,fus = 0,8 J K -1 mol -1 > 0 spontan process Svar: Totala entropiändringen är 0,8 J K -1 mol -1.

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F7. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F7 Intermolekylär växelverkan kortväga repulsion elektrostatisk växelverkan (attraktion och repulsion): jon-jon (långväga), jon-dipol, dipol-dipol medelvärdad attraktion (van der Waals): roterande

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw

Föreläsning 2.3. Fysikaliska reaktioner. Kemi och biokemi för K, Kf och Bt S = k lnw Kemi och biokemi för K, Kf och Bt 2012 N molekyler V Repetition Fö2.2 Entropi är ett mått på sannolikhet W i = 1 N S = k lnw Föreläsning 2.3 Fysikaliska reaktioner 2V DS = S f S i = Nkln2 Björn Åkerman

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Kap 6: Termokemi. Energi:

Kap 6: Termokemi. Energi: Kap 6: Termokemi Energi: Definition: Kapacitet att utföra arbete eller producera värme Termodynamikens första huvudsats: Energi är oförstörbar kan omvandlas från en form till en annan men kan ej förstöras.

Läs mer

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F10. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F10 Gibbs fri energi o G = H TS (definition) o En naturlig funktion av P och T Konstant P och T (andra huvudsatsen) o G = H T S 0 G < 0: spontan process, irreversibel G = 0: jämvikt, reversibel

Läs mer

Kemi och energi. Exoterma och endoterma reaktioner

Kemi och energi. Exoterma och endoterma reaktioner Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Termodynamik FL7 ENTROPI. Inequalities

Termodynamik FL7 ENTROPI. Inequalities Termodynamik FL7 ENTROPI Varför är den termiska verkningsgraden hos värmemaskiner begränsad? Varför uppstår den maximala verkningsgraden hos reversibla processer? Varför går en del av energin till spillvärme?

Läs mer

Kapitel 6. Termokemi

Kapitel 6. Termokemi Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 Energi och omvandling 6.2 Entalpi och kalorimetri 6.3 Hess lag 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws

Kapitel 6. Termokemi. Kapaciteten att utföra arbete eller producera värme. Storhet: E = F s (kraft sträcka) = P t (effekt tid) Enhet: J = Nm = Ws Kapitel 6 Termokemi Kapitel 6 Innehåll 6.1 6.2 6.3 6.4 Standardbildningsentalpi 6.5 Energikällor 6.6 Förnyelsebara energikällor Copyright Cengage Learning. All rights reserved 2 Energi Kapaciteten att

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF14) Tid och plats: Tisdag 13/1 9, kl. 8.3-1.3 i V-huset. Examinator: Mats

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Termodynamik. Läran om energi och dess egenskaper

Termodynamik. Läran om energi och dess egenskaper Termodynamik Läran om energi och dess egenskaper Energi är förmågan att utföra ARBETE. Energi förekommer i många olika former Kinetisk energi, rörelseenergi Värmeenergi är en yttring av atomernas och molekylernas

Läs mer

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F4. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F4 VSEPR-modellen elektronarrangemang och geometrisk form Polära (dipoler) och opolära molekyler Valensbindningsteori σ-binding och π-bindning hybridisering Molekylorbitalteori F6 Gaser Materien

Läs mer

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv?

Vad tror du ökning av entropi innebär från ett tekniskt perspektiv? Entropi Entropi är ett mått på oordning En process går alltid mot samma eller ökande entropi. För energi gäller energins bevarande. För entropi gäller entropins ökande. Irreversibla processer innebär att

Läs mer

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning

Motorer och kylskåp. Repetition: De tre tillstånden. Värmeöverföring. Fysiken bakom motorer och kylskåp - Termodynamik. Värmeöverföring genom ledning Motorer och kylskåp Repetition: De tre tillstånden Gas Vätska Solid http://www.aircraftbanking.com/ http://sv.wikipedia.org Föreläsning 3/3, 2010 Plasma det fjärde tillståndet McMurry Chemistry, http://wps.prenhall.com

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Tentamen KFKA05, 2014-10-29

Tentamen KFKA05, 2014-10-29 Denna tentamen gäller om du haft Molecular Driving Forces av Dill & Bromberg som kursbok. Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall

Läs mer

Räkneövning i termodynamik, hösten 2000

Räkneövning i termodynamik, hösten 2000 October 3, 000 Räkneövning i termodynamik, hösten 000 Räkneövning 1: första huvudsatsen (kapitel 1) Jan Lagerwall E-post: jpf@fy.chalmers.se 1. (1.1) Visa att det för en kvasistatisk, adiabatisk process

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Exempel på statistisk fysik Svagt växelverkande partiklar

Exempel på statistisk fysik Svagt växelverkande partiklar Exempel på statistisk fysik Svagt växelverkande partiklar I kapitlet om kinetisk gasteori behandlades en s k ideal gas där man antog att partiklarna inte växelverkade med varandra och dessutom var punktformiga.

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x

Konc. i början 0.1M 0 0. Ändring -x +x +x. Konc. i jämvikt 0,10-x +x +x Lösning till tentamen 2013-02-28 för Grundläggande kemi 10 hp Sid 1(5) 1. CH 3 COO - (aq) + H 2 O (l) CH 3 COOH ( (aq) + OH - (aq) Konc. i början 0.1M 0 0 Ändring -x +x +x Konc. i jämvikt 0,10-x +x +x

Läs mer

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln.

Repetition F11. Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: P P. G m. + RT ln. Repetition F11 Molär Gibbs fri energi, G m, som funktion av P o Vätska/fasta ämne G m G m (oberoende av P) o Ideal gas: G m = G m + RT ln P P Repetition F11 forts. Ångbildning o ΔG vap = ΔG P vap + RT

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng)

Tentamen i Allmän kemi 7,5 hp 5 november 2014 ( poäng) 1 (6) Tentamen i Allmän kemi 7,5 hp 5 november 2014 (50 + 40 poäng) Tentamen består av två delar, räkne- respektive teoridel: Del 1: Teoridel. Max poäng: 50 p För godkänt: 28 p Del 2: Räknedel. Max poäng:

Läs mer

Tentamen KFKA05 och nya KFK080,

Tentamen KFKA05 och nya KFK080, Tentamen KFKA05 och nya KFK080, 2013-10-24 Även för de B-studenter som läste KFK080 hösten 2010 Tillåtna hjälpmedel: Miniräknare med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2012-01-13 kl. 14.00-18.00

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Temperatur T 1K (Kelvin)

Temperatur T 1K (Kelvin) Temperatur T 1K (Kelvin) Makroskopiskt: mäts med termometer (t.ex. volymutvidgning av vätska) Mikroskopiskt: molekylers genomsnittliga kinetiska energi Temperaturskalor Celsius 1 o C: vattens fryspunkt

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Föreläsning. Termodynamik och Förbränning 3/ Förbränningsfysik

Föreläsning. Termodynamik och Förbränning 3/ Förbränningsfysik Föreläsning Termodynamik och Förbränning 3/11 214 P EikB t Per-Erik Bengtsson Förbränningsfysik per-erik.bengtsson@forbrf.lth.se 1 Projektstart Projekt: Förbränningsfysik För alla projekt i Förbränning,

Läs mer

Aggregationstillstånd

Aggregationstillstånd 4. Gaser Aggregationstillstånd 4.1 Förbränning En kemisk reaktion mellan ett ämne och syre. Fullständig förbränning (om syre finns i överskott), t.ex. etanol + syre C2H6OH (l) +3O2 (g) 3H2O (g) + 2CO2

Läs mer

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls

Läs mer

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00

Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den 2 juni 2010 kl. 14.00-19.00 EOREISK FYSIK KH Lösningsanvisningar till tentamen i SI1161 Statistisk fysik, 6 hp, för F3 Onsdagen den juni 1 kl. 14. - 19. Examinator: Olle Edholm, tel. 5537 8168, epost oed(a)kth.se. Komplettering:

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2014-01-14 kl. 08.30-12.30 CHALMERS (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM09/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM09 och KVM090) 204-0-4 kl. 08.30-2.30

Läs mer

Energi, katalys och biosyntes (Alberts kap. 3)

Energi, katalys och biosyntes (Alberts kap. 3) Energi, katalys och biosyntes (Alberts kap. 3) Introduktion En cell eller en organism måste syntetisera beståndsdelar, hålla koll på vilka signaler som kommer utifrån, och reparera skador som uppkommit.

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

Termodynamik Föreläsning 1

Termodynamik Föreläsning 1 Termodynamik Föreläsning 1 Grundläggande Begrepp Jens Fjelstad 2010 08 30 1 / 35 Klassisk Termodynamik omvandling av energi mellan olika former via värme och arbete (mekaniskt, elektriskt,...) behandlar

Läs mer

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck:

Termodynamik FL3. Fasomvandlingsprocesser. FASER hos ENHETLIGA ÄMNEN. FASEGENSKAPER hos ENHETLIGA ÄMNEN. Exempel: Koka vatten under konstant tryck: Termodynamik FL3 FASEGENSKAPER hos ENHETLIGA ÄMNEN FASER hos ENHETLIGA ÄMNEN Enhetligt ämne: ämne med välbestämd och enhetlig kemisk sammansättning. (även luft och vätske-gasblandningar kan betraktas som

Läs mer

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen

Föreläsning 12: Ideal gas i klassiska gränsen med inre frihetsgrader, ekvipartitionsprincipen Föreläsning 12: Ideal gas i klassiska gränsen med frihetsgrader, ekvipartitionsprincipen April 26, 2013, KoK kap. 6 Centrala ekvationer i statistisk mekanik Mikrokanonisk ensemble (U,,N konst):p s = 1/g,

Läs mer

Tentamen i Kemisk termodynamik kl 14-19

Tentamen i Kemisk termodynamik kl 14-19 Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2011-10-18 kl. 08.30-12.30

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Räkneövning 5 hösten 2014

Räkneövning 5 hösten 2014 Termodynamiska Potentialer Räkneövning 5 hösten 214 Assistent: Christoffer Fridlund 1.12.214 1 1. Vad är skillnaden mellan partiklar som följer Bose-Einstein distributionen och Fermi-Dirac distributionen.

Läs mer

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi Version: 16 maj 201. TFYA12, Rickard Armiento, Föreläsning 1 Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi April 2, 201, KoK kap. 1-2 Formalia Föreläsare och kursansvarig:

Läs mer

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen Skriftlig deltentamen, FYTA12 Statistisk fysik, 6hp, 28 Februari 2012, kl 10.15 15.15. Tillåtna hjälpmedel: Ett a4 anteckningsblad, skrivdon. Totalt 30 poäng. För godkänt: 15 poäng. För väl godkänt: 24

Läs mer

Energitekniska formler med kommentarer

Energitekniska formler med kommentarer Energitekniska formler med kommentarer Energiteknik del 2 Anders Bengtsson 19 januari 2011 Sammanfattning Det finns egentligen inga formler som alltid kan användas. Med en formel tänker man sig ofta en

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER

REPETITIONSKURS I KEMI LÖSNINGAR TILL ÖVNINGSUPPGIFTER KEMI REPETITIONSKURS I LÖSNINGAR TILL ÖVNINGSUPPGIFTER Magnus Ehinger Fullständiga lösningar till beräkningsuppgifterna. Kemins grunder.10 Vi antar att vi har 10 000 Li-atomer. Av dessa är då 74 st 6 Li

Läs mer

Kapitel II. Termodynamikens statistiska bas

Kapitel II. Termodynamikens statistiska bas Kapitel II Termodynamikens statistiska bas Introduktion Termodynamik vs. Statistik mekanik En gas består av ett stort antal atomer Termodynamiken beskriver gasens jämviktstillståndet med ett fåtal tillståndsvariabler

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3.

1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. Lösning till tentamen 2008 12 15 för Grundläggande kemi 10 hp Sid 1(5) 1. a) Förklara, genom användning av något lämpligt kemiskt argument, varför H 2 SeO 4 är en starkare syra än H 2 SeO 3. b) Beräkna

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl. 08.30-12.30 CHALMERS 1 (3) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2015-01-05 kl.

Läs mer

Tentamen KFKA05 för B, 2011-10-19 kl 14-19

Tentamen KFKA05 för B, 2011-10-19 kl 14-19 Tentamen KFKA05 för B, 2011-10-19 kl 14-19 Även för de som läste KFK080 för B hösten 2010 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen.

och/eller låga temperaturer bildar de vätskor, nåt som inte händer för Dieterici-modellen, och virialexpansionen. 9. Realgaser ermodynamiska potentialer (ermo 2): Krister Henriksson 9. 9.. Introduktion Realgaser uppvisar beteende som idealgasen saknar. Speciellt vid höga tryck och/eller låga temperaturer bildar de

Läs mer

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

TENTAMEN I TERMODYNAMIK för K2, Kf2 och TM2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30 CHALMERS 1 (5) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi ermodynamik (KVM091/KVM090) ENAMEN I ERMODYNAMIK för K2, Kf2 och M2 (KVM091 och KVM090) 2013-01-15 kl. 08.30-12.30

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00 CHALMERS 1 (4) Energi och Miljö/Värmeteknik och maskinlära Kemi- och bioteknik/fysikalisk kemi Termodynamik (KVM091/KVM090) TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM091 och KVM090) 2010-01-15 kl. 14.00-18.00

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH

Ch. 2-1/2/4 Termodynamik C. Norberg, LTH GRUNDLÄGGANDE BEGREPP System (slutet system) = en viss förutbestämd och identifierbar massa m. System Systemgräns Omgivning. Kontrollvolym (öppet system) = en volym som avgränsar ett visst område. Massa

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen

ENERGI? Kylskåpet passar precis i rummets dörröppning. Ställ kylskåpet i öppningen ENERGI? Energi kan varken skapas eller förstöras, kan endast omvandlas till andra energiformer. Betrakta ett välisolerat, tätslutande rum. I rummet står ett kylskåp med kylskåpsdörren öppen. Kylskåpet

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära

Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära Umeå Universitet Kodnummer... Allmän kemi för miljö- och hälsoskyddsområdet Lärare: Olle Nygren och Roger Lindahl Tentamen i Kemi för miljö- och hälsoskyddsområdet: Allmän kemi och jämviktslära 29 november

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen

Innehåll. Energibalans och temperatur. Termer och begrepp. Mål. Hur mycket energi. Förbränning av fasta bränslen Innehåll balans och temperatur Oorganisk Kemi I Föreläsning 4 14.4.2011 Förbränningsvärme balans Värmeöverföring Temperaturer Termer och begrepp Standardbildningsentalpi Värmevärde Effektivt och kalorimetriskt

Läs mer

Skrivning i termodynamik, jämvikt och biokemi, KOO081, KOO041, 2006-12-18

Skrivning i termodynamik, jämvikt och biokemi, KOO081, KOO041, 2006-12-18 Skrivning i termodynamik, jämvikt och biokemi, KOO081, KOO041, 2006-12-18 Hjälpmedel: bifogade konstanter, formler och omräkningsfaktorer, atomvikter samt egen miniräknare. För godkänt krävs minst 15 poäng

Läs mer

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats

Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Termodynamik Föreläsning 6 Termodynamikens 2:a Huvudsats Jens Fjelstad 2010 09 14 1 / 30 Innehåll Termodynamikens 2:a huvudsats, värmemaskin, reversibilitet & irreversibilitet TFS 2:a upplagan (Çengel

Läs mer

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra

4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4. Kemisk jämvikt när motsatta reaktioner balanserar varandra 4.1. Skriv fullständiga formler för följande reaktioner som kan gå i båda riktningarna (alla ämnen är i gasform): a) Kolmonoxid + kvävedioxid

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar

Läs mer

Kemisk jämvikt. Kap 3

Kemisk jämvikt. Kap 3 Kemisk jämvikt Kap 3 En reaktionsformel säger vilka ämnen som reagerar vilka som bildas samt förhållandena mellan ämnena En reaktionsformel säger inte hur mycket som reagerar/bildas Ingen reaktion ger

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar.

Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Föreläsning 4. Koncentrationer, reaktionsformler, ämnens aggregationstillstånd och intermolekylära bindningar. Koncentrationer i vätskelösningar. Kap. 12.2+3. Lösning = lösningsmedel + löst(a) ämne(n)

Läs mer

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet

Tentamen i KEMI del A för basåret GU (NBAK10) kl Institutionen för kemi, Göteborgs universitet Tentamen i KEMI del A för basåret GU (NBAK10) 2007-02-15 kl. 08.30-13.30 Institutionen för kemi, Göteborgs universitet Lokal: Väg och Vatten-huset Hjälpmedel: Räknare Ansvarig lärare: Leif Holmlid 772

Läs mer