Designspecifikation Optimal Styrning av Autonom Racerbil

Storlek: px
Starta visningen från sidan:

Download "Designspecifikation Optimal Styrning av Autonom Racerbil"

Transkript

1 No Oscillations Corporation Designspecifikation Optimal Styrning av Autonom Racerbil Version 1.0 Författare: Mikael Rosell Datum: 29 november 2013 Status Granskad Projektgruppen Godkänd

2 Projektidentitet E-post: Hemsida: Beställare: Kund: Kursansvarig: Projektledare: Handledare: Kristoffer Lundahl, Linköpings Universitet Telefon: , E-post: Daniel Axehill, Linköpings Universitet Telefon: , E-post: Daniel Axehill, Linköpings Universitet Telefon: , E-post: Mikael Rosell Isak Nielsen, Linköpings Universitet Telefon: , E-post: Gruppmedlemmar Namn Ansvarsroller Telefon E-post Mikael Rosell (MR) Projektledare (PL) mikro418 Victor Carlsson (VC) Informationsansvarig (IA) vicca226 Henrik Edlund (HE) Hårdvaruansvarig (HA) hened061 Mathias Hallmén (MH) Testansvaring (TA) matha848 Sofia Johnsen (SJ) Designansvarig (DA) sofjo100 Lukas Lorentzon (LL) Figuransvarig (FA) luklo656 Dennis Lundström (DL) Dokumentansvarig (DOC) denlu994 Oskar Sunesson (OS) Leveransansvarig (LA) osksu783

3 Dokumenthistorik Version Datum Förändringar Signatur Granskad Första utkastet Alla Alla Andra utkastet Alla Alla Mindre korrigeringar Alla Alla Mindre ändringar efter kommentarer Alla Alla från beställare

4 Innehåll 1 Inledning Syfte och mål Användning Definitioner Systemöversikt Hårdvara Informationsflöden mellan delsystem Koordinatsystem Reglersystem Reglering av styrservo Reglering av gas- och bromsprofil Algoritm Gränssnitt Simuleringssystem Implementation Gränssnitt Målföljningssystem Höjdgeometri Gränssnitt Visualiseringssystem Höjdgeometri Mellantider Textutskrift via projektorn Rita linjer via projektorn Gränssnitt

5 Optimal Styrning av Autonom Racerbil 1 1 Inledning Systemet består av en bilbana, radiostyrda bilar, kameror för positionering av bilarna, en dator med styrsystem och en projektor. Det nuvarande systemet har itererats fram i ett flertal tidigare projekt. Målet i detta projekt är att få en mindre oscillativ banföljning och en mer robust reglering. En simulator för de radiostyrda bilarna ska utvecklas för att kunna testa systemet utan att behöva köra det fysiska systemet. Dessutom har systemet utökats med en projektor som ska användas för att förbättra demo-effekten genom att exemeplvis projicera simuleringarna på bilbanan eller spela upp tidigare körningar. I detta dokument beskrivs funktionaliteten som behövs för att uppfylla kraven enligt kravspecifikationen. 1.1 Syfte och mål Syftet med projektet är att förbättra det system som redan finns implementerat för att göra demonstration av systemet mer attraktivt. Detta genom att få en snyggare banföljning och höja demo-effekten med hjälp av en projektor. Nuvarande systemet uppvisar ett oönskat oscillativt beteende och målet är att i största mån bli av med detta. 1.2 Användning Systemet ska efter slutleverans användas i demonstrationssyfte av avdelningen för reglerteknik på ISY men dessutom inom forskning, utbildningssyfte, laborationer och studentprojekt. 1.3 Definitioner Här definieras förkortningar och begrepp som används i dokumentet. Optimal trajektoria: Det av tidigare projektgrupp förberäknade spåret optimerat med avseende på varvtiden givet deras framtagna bilmodell. Otillåten oscillation: Avvikelser i bilens position relativt referenstrajektorian (referensspåret beräknat i tidigare projekt) klassas som otillåten oscillation om den sker med frekvens högre än 2 Hz eller med amplitud större än 20 mm. Med bilens position menas bilens mittpunkt. Kalibreringsplan: Det plan som är parallellt med bilbanans plan och skär kalibreringsmarkörernas positioner. Koordinater: Variabler i det globala koordinatsystemet betecknas med stora bokstäver och variabler i bilens koordinatsystem betecknas med små. 2 Systemöversikt Systemet består av hårdvara och mjukvara med flera olika delsystem.

6 Optimal Styrning av Autonom Racerbil 2 Den önskade trajektorian som bilen skall följa är beräknad i tidigare projekt. Denna innehåller referenstillstånd i form av position, hastighet, vinkelhastighet och offline styrsignalerna. 2.1 Hårdvara Systemet består av följande hårdvara: Bilbana Radiostyrda bilar Radiostyrd lastbil Handkontroller Två IR-kameror Projektor Dator Beställaren tilldelar projektgruppen all hårdvara. Hur hårdvarukomponenterna interagerar med varandra beskrivs i Figur 1. Bilbanan består av en bana uppbyggd av golvplattor och väggar i skumgummi. På bilbanan körs de radiostyrda bilarna som styrs via handkontrollen, antingen av datorn eller manuellt av användaren. IR-kamerornas bilder skickas till datorn där bildhanteringsalgoritmer körs för att skatta bilarnas position, hastighet och vinkelhastighet utifrån markörerna på bilarna. Detta sker med sampeltiden 100 Hz. Projektorn används för att visa information på bilbanan. All beräkning och funktionalitet finns i form av mjukvara på datorn. Figur 1: Informationsflöde mellan hårdvarukomponenter.

7 Optimal Styrning av Autonom Racerbil Informationsflöden mellan delsystem Systemet är uppdelat enligt följande delsystem: Reglersystem Simuleringssystem Målföljningssystem Visualiseringssystem Informationsflödet mellan delsystemen sker enligt Figur 2. Figur 2: Informationsflöde mellan delsystemen. Grönt motsvarar hårdvara och blått mjukvara. Tillstånden är position, hastighet och vinkelhastighet. Styrsignalerna är gaspådrag samt signal till servo. 2.3 Koordinatsystem Figur 3 visar hur bilens koordinatsystem förhåller sig till det globala. För att räkna om rörelser från bilen koordinatsystem till det globala koordinatsystemet används (1) - (4). v X = v x cos θ + v y sin θ (1) v Y = v x sin θ v y cos θ (2) a X = a x cos θ v x Ω z sin θ + a y sin θ + v y Ω z cos θ (3) a Y = a x sin θ + v x Ω z cos θ a y cos θ + v y Ω z sin θ (4) Där Ω z är vinkelhastigheten för bilen, vilket är densamma i båda koordinatsystemen. θ definieras enligt Figur 3. 3 Reglersystem Reglersystemet delas upp i två delsystem. Ett system som styr bilens styrservo och ett system som styr bilens gas- och bromsprofil.

8 Optimal Styrning av Autonom Racerbil 4 Y x Y y X X Figur 3: Bilens koordinatsystem {ˆx, ŷ i det globala koordinatsystemet { ˆX, Ŷ. Framåt på bilen definieras i positiv ˆx-riktning. 3.1 Reglering av styrservo Regulatorn som ska hantera styrningen av bilen i sidled ska inte vara modellberoende. I och med att regulatorn ska vara oberoende av modeller faller valet på en PID-regulator. Regulatorn ska använda sig av mätsignalerna r e (avståndet till spåret) och θ e (vinkel från spårets tangent till bilens riktning). Detta resulterar i två referenssignaler som ger upphov till var sin styrsignal som summeras ihop, se Figur 4. Styrsignalernas betydelse kommer att bestämmas med hjälp av storleken på parametrarna i PID-regulatorerna. Figur 4: Regulatorstruktur För vidare analys av systemet kan en treparametermodell tas fram med hjälp av stegsvarsexperiment. Det går bland annat att utföra stegsvarsexperiment på yaw-vinkeln genom att ta in ett steg i styrsignalen för att sedan utifrån stegsvarets utseende bestämma treparametermodellens parametrar. Utifrån denna modell av systemet kan en rad inställningsmetoder för PID-regulatorn avändas såsom Lambda- och IMC-trimning samt inställning enligt Åström-Hägglunds inställningsregler[3]. Nästa steg blir att utvärdera PIDregulatorn genom att jämföra referens- och mätsignaler, vilket till exempel kan göras genom att plotta och jämföra given referenssignal och mätsignal. En annan utvärderingsmetod är att summera ihop reglerfelet vid alla tidpunkter under en körning. I systemet finns det en tidsfördröjning, som måste tas hänsyn till under regleringen för att få en korrekt referensföljning. För att kompensera för tidsfördröjningen ska en tidigare

9 Optimal Styrning av Autonom Racerbil 5 framtagen modell från failsafe-systemet [4] användas för att prediktera framtida tillstånd. Tanken är att en enkel modell ska kunna korrigera för tidsfördröjningen. Till och börja med ska modellen endast prediktera från tidigare tillstånd. Om prediktering med de tidigare tillstånden inte visar sig tillräckligt kan predikteringen även ta hänsyn till de nuvarande styrsignalerna. För att göra en rimlighetsbedömning av det predikterade tillståndet kan skillnaden mellan predikterat och uppmätt tillstånd beräknas. Detta avstånd kan jämföras med det avstånd som bilen under högsta hastighet kan tillryggalägga under den predikterade tiden. Implementering av PID i pseudokod där T s är samplingstiden kan ses nedan. Det finns funktionalitet för att förhindra integratoruppvridning då styrsignalen blir mättad, där parametern i nämnaren sätts till T i enligt en tumregel. Parametrar och variabler i PID regulatorn: K - Proportionella förstärkningen Ti - Integrerande del Td - Deriverande del umin - Nedre styrsignal begränsning umax - Övre styrsignal begränsning Iprev - Det förgående värdet på I-delen i regulatorn errorprev - Det förgående värdet på felet i regulatorn Deklarera parametrar som behövs i PID-regulatorn: K, Ti, Td, Ts, umin, umax, Iprev och errorprev. Prediktera tillstånd med hjälp av rörelsemodell Vikta predikterade och uppmätta tillstånd för att få statevalue function PID(stateValue, refvalue){ Ta fram det nuvarande felet: error = refvalue - statevalue P-delen av regulatorn: P = K*error; I-delen av regulatorn: I = Iprev + K*(Ts/Ti)*error D-delen av regulatorn: D = K*(Td/Ts)*(error-errorPrev) Styrsignal från regulatorn: ureg = P+D+I Begränsning av styrsignal: if(ureg > umax) u = umax else if(ureg < umin)

10 Optimal Styrning av Autonom Racerbil 6 u = umin else u = ureg Funktionalitet för att förhindra integratoruppvridning: I = I + (Ts/Ti)*(u - ureg); Behövs vid nästa iteration: Iprev = I; errorprev = error; Returnera styrsignal: return u Om implementationen av PID-regulatorer inte klarar av att uppnå önskad prestanda är tanken att falla tillbaka på LQ-reglering. En idé är då att använda en enkel modell, som den som användes i projektet 2011, för att beskriva bilens dynamik och sedan linjärisera den i flera arbetspunkter. Se (5)-(8). ṙ e = v sin θ e (5) v = c v v + c v,g u g (6) θ e = c θ,s u s (7) ṙ int,e = r e Linjärisering kring olika arbetspunkter med θ e = 0 eller θ e 0, r e = 0 och olika hastigheter ska förbättra referensföljningen. Fördelen med att variera θ e mellan arbetspunkterna är att ṙ e påverkas mer av θ e då detta felet växer. En linjärisering kring noll medför att större fel i θ e inte påverkar ṙ e i den utsräckning som de bör göra jämfört med den olinjära modellen. Tillstånd som avviker från arbetspunkten kommer resultera i större modellfel. (8) 3.2 Reglering av gas- och bromsprofil Beräkning av gas- och bromsprofil ska göras adaptivt online. Profilen uppdateras under körning av en utvärderande algoritm. Målen med systemet som beräknar gas- och bromsprofil adaptivt online är att: Systemet ska bli oberoende av att batteriets spänningsnivå sjunker under körning Systemet ska bli oberoende av däckens slitagenivå Systemet ska bli oberoende av en förberäknad gas- och bromsprofil och ska istället lära sig att köra så fort det går längs det förberäknade spåret Systemet ska bli oberoende av vilket fordon som används Bilens gas och broms styrs med styrsignalen u g [ 1, 1]. u g = 1 innebär fullt gaspådrag och u g = 1 innebär full broms. Bilbanan delas upp i n stycken segment som kan identifieras av världskoordinaterna (X, Y ). Till varje segment hör en styrsignal, så gas- och bromsprofil för ett visst segment k ges av u g [k].

11 Optimal Styrning av Autonom Racerbil Algoritm Vi antar att bilens avvikelse från referensspåret är starkt korrelerat med bilens hastighet. Därför används avståndet mellan bilens mittpunkt och referensspåret, r e, som grund för att utvärdera möjlig gas- och bromsprofil i bilens position på bilbanan. För att minimera varvtiden ska bilens hastighet maximeras. Genom att öka hastigheten då bilen följer referensspåret bra och sänka bilens hastighet då avståndet mellan bilens mittpunkt och referensspåret är stort kan detta uppnås. Bilbanan delas upp i segment där gas- och bromsprofilen utvärderas. Styrsignalen för gas och broms i aktuellt och tidigare segment kan justeras inför nästa varv beroende på r e. Storleken på ändringen i de tidigare segmenten kan viktas med en avtagande funktion, då de närmaste segmenten är mer relevanta för hastigheten än segment på andra sidan banan. Den avtagande funktion som kommer att användas är en exponentialfunktion med basen mindre än ett. Storleken på basen bestäms experimentellt. För att bilen inte ska bli stillastående om avståndet mellan bilens mittpunkt och referensspåret blir för stort måste en minimi-nivå för bilens hastighet fastställas. Alternativt kan en ytterlägesregulator användas för att lösa detta problem genom att ta över styrningen och styra bilen tillbaka till referenstrajektorian. Då reglerfelet är stort riskerar huvudregulatorn att överstyra bilen mot referenstrajektorian, därför kan en ytterlägesregulator användas för att styra bilen på ett mindre aggressivt vis mot referenstrajektorian. För att få ett system som lär sig i en bra takt och konvergerar måste hänsyn tas till det antal segment som banan delas upp i, antal tidigare steg som ska uppdateras samt vilka avstånd som ska användas för utvärdering. Pseudokod: Definiera: r_e som avståndet mellan bilens mittpunkt och referenstrajektorian u_g som styrsignal för bilens gas Beräkna vilket segment som bilen befinner sig i utifrån bilens position i världskoordinaterna (X,Y) I segment k: if r_e > 0.01 // 1 cm används som mått (kan ändras) sänk u_g för segment k, k-1, k-2,... enligt avtagande viktfunktion elseif r_e > // 0.5 cm används som mått (kan ändras) öka u_g för segment k, k-1, k-2,... enligt avtagande viktfunktion else behåll tidigare u_g 3.3 Gränssnitt Nedan beskrivs flödet av in- och utsignaler inom reglersystemet samt till och från de andra delsystemen. Reglering av styrservo Insignaler: r e, θ e

12 Optimal Styrning av Autonom Racerbil 8 Utsignaler: u s Adaptiv gas- och bromsstyrning Insignaler: r e, (X, Y ) Utsignaler: u g 4 Simuleringssystem Simuleringssystemet ska kunna ersätta bilen, bilbanan och målföljningssystemet genom att position, hastighet och acceleration för bilen simuleras i datorn. Rörelsemodellen som kommer att användas för att simulera bilen är modellen över bilen som tagits fram i tidigare projekt. Från denna fordonsmodell fås acceleration i longitudinell-, lateral- och vinkelled. Fordonsmodellen behöver tidigare tillstånd och styrsignal (från regulator eller handkontroll) för att beräkna accelerationerna. Genom att integrera accelerationen i varje led fås hastigheterna v x och v y, positionen (X, Y ), vinkelhastigheten Ω z och vinkeln θ för bilen. Se (9)-(12). Denna fiktiva mätuppdatering kan tänkas som en ersättning till målföljningen i det fysiska systemet. X(t) = X(t T ) + T v X (t T ) + T 2 2 v X(t T ) (9) v x (t) = v x (t T ) + T v x (t T ) (10) θ(t) = θ(t T ) + T Ω z (t T ) + T 2 2 Ω z (t T ) (11) Ω z (t) = Ω z (t T ) + T Ω z (t T ) (12) Där accelerationerna v x och Ω z beräknas med fordonsmodellen. Notera att ekvationerna för Y -koordinaten inte presenteras här men kommer att motsvara dem för X-koordinaten. Steglängden T måste i dessa ekvationer vara tillräckligt liten för att få en stabil simulering. Vid val av för stort T tas för stora steg mellan de fiktiva mätuppdateringarna och simuleringen riskerar att driva iväg. För regleringen av bilen behövs dessutom felen i position och vinkel relativt referenstrajektorian. Dessa tas fram enligt (13)-(14). r e = ± (X X ref ) 2 + (Y Y ref ) 2 (13) θ e = θ ref θ (14) Vilken punkt på referenstrajektorian som skall användas avgörs genom att minimera (13) kring några punkter framåt och bakåt från den tidigare använda punkten på referenstrajektorian. Första gången simulering körs initieras bilen till en punkt på referenstrajektorian och alltså kommer r e och θ e att vara noll. För att simulatorn skall innehålla slumpmässighet ska accelerationen från fordonsmodellen adderas med vitt brus som sedan propageras från acceleration till hastighet till position. Det ska vara möjligt för användaren att välja att köra Simuleringssystemet med eller utan störningsmodell. Vid simulering av körning på bilbanan måste en kontroll göras för att säkerställa att bilen befinner sig på banan. Detta kan göras genom att använda den algoritm som togs fram av 2011 års projekt. Denna algoritm avgör om en punkt befinner sig på banan eller ej. Gör vi detta för exempelvis bilens hörn vet vi att hela bilen befinner sig på banan.

13 Optimal Styrning av Autonom Racerbil 9 I Figur 5 presenteras en schematisk bild över simulatorns moduler och vilka signaler som skickas mellan dessa samt flödet av signaler mellan andra delsystem utanför simulatorn. Denna figur gäller då simulatorn körs tillsammans med regulatorn och referenstrajektorian. Simuleringssystemet skall även kunna köras genom att styra bilen manuellt med handkontroll/tangentbord vilket innebär att regulatorn och referenstrajektorian inte längre används. Simulatorn skall alltså kunna köras i två olika uppsättningar där styrsignalen i ena fallet kommer från regulatorn och i andra fallet från handkontrollen/tangentbordet. Se Figur 6 för en överblick av systemet då simulering körs manuellt. X ref, Y ref, θ ref v x, v y, X, Y, θ Referenstrajektoria Visualiseringssystem Simulator Banbegränsning OK? X, Y v x, v y, Ω z v x, v y, Ω z v x, v y, Ω z, r e, θ e Reglersystem Simuleringssystemet Fordonsmodell u g, u s Handkontroll/ Tangentbord Figur 5: Översikt över Simuleringssystemet med vilka signaler som skickas mellan moduler. Regulator och referenstrajektoria används. v x, v y, X, Y, θ Referenstrajektoria Visualiseringssystem Simulator Banbegränsning OK? X, Y v x, v y, Ω z v x, v y, Ω z Reglersystem Simuleringssystemet Fordonsmodell u g, u s Handkontroll/ Tangentbord Figur 6: Översikt över Simuleringssystemet vilka signaler som skickas mellan moduler. Manuell styrning används.

14 Optimal Styrning av Autonom Racerbil Implementation Figur 7 visar ett flödesschema över hur simuleringssystemet ska implementeras. Figur 7: Flödesdiagram över simuleringssystemet.

15 Optimal Styrning av Autonom Racerbil Gränssnitt Nedan beskrivs flödet av in- och utsignaler inom Simuleringssystemet samt till och från de andra delsystemen. Simulator Insignaler: v x, v y, Ω z, X ref, Y ref, θ ref Utsignaler: v x, v y, r e, θ e, X, Y, θ, Ω z Fordonsmodell Insignaler: v x, v y, Ω z, u g, u s Utsignaler: v x, v y, Ω z Referenstrajektoria Utsignaler: X ref, Y ref, θ ref Reglersystem Insignaler: v x, v y, Ω z, r e, θ e, X, Y Utsignaler: u g, u s Banbegränsning Insignaler: X, Y Utsignaler: ok? Visualiseringssystem Insignaler: X, Y, θ, v x, v y Handkontroll/Tangentbord Utsignaler: u g, u s 5 Målföljningssystem Målföljningssystemet ska ta hänsyn till markörers placering i rummet i tre dimensioner. Systemet måste hantera var på banan markörerna detekteras. Kamerans position är känd samt bilarnas mönster sett rakt ovanifrån. 5.1 Höjdgeometri Detekteringsalgoritmen från tidigare års projekt ska utvidgas med att alla identifierade markörer projiceras till en mängd fördefinierade plan, se Figur 8. De fördefinierade planens höjd definieras av markörernas höjder på fordonen. Dessa plan måste anges manuellt beroende på vilka fordon som används. Då alla markörer projiceras till de fördefinierade planen fås en mängd möjliga mönster. Den nuvarande algoritmen används för att söka efter mönster bland alla dessa kombinationer. Markörerna flyttas genom att beräkna linjen mellan markörerna och kameran som kan användas för att flytta upp markörerna till nya plan, se Figur 9. Höjden h till en markör definieras utifrån kalibreringsplanet. Definitionen baseras på att markörer i andra plan

16 Optimal Styrning av Autonom Racerbil 12 Figur 8: Beskrivning av hur markörerna transformeras till olika plan samt hur de kombineras i olika mönster. ger upphov till en offset i position, anledningen till detta är att kameran är kalibrerad för att ta bilder i kalibreringsplanet. En tydligare redogörelse för detta följer nedan: Antag att en markörs position p m samt kamerans position p c i tre dimensioner i koordinatsystemet. p m är markörens position som kameran ser den, alltså i kalibreringsplanet. Det som söks är markörens nya position p s i tre dimensioner. Homogena 3D-koordinater för dessa punkter kan tas fram enligt: ( pm p m = 1 ), p c = ( pc 1 ), p s = ( ps 1 ) Plücker-koordinater L för den linje som skär dessa tre punkter kan tas fram enligt: L = p m p T c p c p T m (16) Om höjden h över kalibreringsplanet antas vara känd för den sökta markörens position p s, och en normal n till kalibreringsplanet, kan ett plan s beskrivas i homogena 3D-koordinater som innehåller punkten p s : ( n s = (17) h) Därefter kan punkten p s tas fram genom att hitta skärningspunkten mellan L och s: (15) p s = Ls (18) Genom att först p-normera p s kan markörens position i tre dimensioner tas fram. Denna kan sedan användas i detekteringsalgoritmen för att identifiera mönster.

17 Optimal Styrning av Autonom Racerbil 13 IR-kamera p c Markörens plan L p s h p p p m Figur 9: Höjdgeometrin för IR-markörerna. Kalibreringsplan Kamerans position i rummet och även markörernas positioner på ett objekt kommer att tas fram för hand med hjälp av lämpligt mätredskap. Skulle det visa sig att dessa mätningar har dålig noggrannhet, kan alternativa metoder för att bestämma positionerna användas. Med denna lösning kommer det vara enkelt att detektera en markörgeometri på lastbilen. Dessutom kommer de mätfel som uppstår på grund av höjdskillnader för bilens markörer att hanteras med den nya algoritmen. En tanke är att placera ett specifikt mönster på lastbilen respektive släpet för att på så sätt kunna identifiera positionerna på båda delarna av lastbilen. 5.2 Gränssnitt Nedan beskrivs flödet av in- och utsignaler inom målföljningssystemet samt till och från de andra delsystemen. Insignaler: Bilder från IR-kamerorna Utsignaler: (X, Y ), v x, v y, θ 6 Visualiseringssystem Visualiseringen av olika grafiska objekt via projektorn kommer implementeras med hjälp biblioteket HighGui i OpenCV. 6.1 Höjdgeometri Vid projicering ska en höjdparameter, h, användas för att specificera vilken höjd projiceringen ska ske på. Höjdparametern ska ändra skalningen som konverterar världskoordinater

18 Optimal Styrning av Autonom Racerbil 14 till pixelkoordinater då en markör befinner sig i ett annat plan relativt kalibreringsplanet i höjdled. Det första steget är att räkna ut bredden på det nya planet genom det proportionella sambandet mellan bredden på planen. w h = kw Notera att w h och w anger bredden i pixelkoordinater. När w h är beräknad används den istället för w för att räkna ut skalningsfaktorn, scale = worldscale/w h. Resultat är en skalningsfaktor som kommer konvertera världskoordinater till pixelkoordinater i det röda planet i Figur 10. Proportionalitetskonstanten k beräknas genom undersöka förhållandet mellan höjderna för de olika planen, se nedan. k = h p h h p Tanken med denna skalning är att plan på olika höjd skalas proportionerligt med höjden. Kalibreringen som utförs i kalibreringsplanet för höjden h p kan skalas till en annan höjd förutsatt att det nya planets höjd ovanför kalibreringsplanet och projektorns höjd är kända. Eftersom projektorn inte sitter rakt ovanför origo i världskoordinatsystemet måste allt som ska projiceras på andra plan än kalibreringsplanet translateras efter att det har skalats. Detta finns beskrivet i Figur 10. Hur stor translationen är för ett visst plan kan räknas ut med hjälp av homogena koordinater i tre dimensioner. Det görs genom att först, för hand, mäta positionerna i världskoordinater för projektorn och ett hörn på den projicerade bilden i kalibreringsplanet. En linje beskriven med Plücker-koordinater mellan projektorn och hörnet kan tas fram på samma sätt som i (16). För att ta fram den punkt, i ett plan parallellt med kalibreringsplanet, där detta hörn kommer att projiceras, kan man använda (17) och (18). Den bild man vill projicera i detta plan kan sedan, med hjälp av den beräknade punkten, translateras så att hörnet (och även resten av bilden) projiceras på rätt position. 6.2 Mellantider Då varvtider redan finns implementerat är det enkelt att utöka detta med stöd för mellantider. Tidtagningen sköts av målföljningssystemet och skickas sedan till visualiseringsystemet. När en ny tid fås markerar visualeringssystemet detta genom att skriva ut tiden på banan och låta linjen som markerar tidmätningsplatsen blinka. Följande datastruktur kan användas för att lagra tider: map<carnumber,map<lapnumber,map<timenumber,float>>> En map är en associativ datastruktur i C++ med par av nycklar och värden. Den första mappen har bilnummer som nyckel och ger en map med varv. Mappen med varv tar ett varvnummer och ger en map med tider. De olika tiderna är mellantider och varvtiden. 6.3 Textutskrift via projektorn Det är en rad utskrifter som ska göras på bilbanan via projektorn. I OpenCV finns det en funktion vid namn cvputtext som skriver ut text i bilden som ska ritas upp.

19 Optimal Styrning av Autonom Racerbil 15 Figur 10: Figuren visar två plan, det nya projiceringsplanet (rött) samt kalibreringensplanet (svart). Parametrar: w - bredd mellan kalibreringsmarkörerna, w h - bredden på planet vid höjd h, h - höjd för det röda planet och h p - projektorns höjd. cvputtext(mat& img, const string& text, Point org, intfontface, double fontscale, Scalar org, int thickness=1, int linetype = 8, bool bottomleftorgin=false) Ett exempel på en funktion som beskriver klockan: updateclock(){ tm *ltime = localtime(); string time; time.append(ltime->tm_hour); time.append(":"); time.append(ltime->tm_min); time.append(":"); time.append(ltime->tm_sec); cvputtext(&time,...) 6.4 Rita linjer via projektorn I mjukvaran måste det finnas funktionalitet med syftet att rita linjer för att implementera uppspelning av tidigare varv samt rita upp den körda trajektorian samtidigt som bilen körs. Det resulterar i två fall; uppritning offline samt online. I funktionaliteten för offlineläget krävs att en vektor för positionsdata samt iteratorer initieras. Tanken är att funktionen som ritar upp den körda banan använder sig av po-

20 Optimal Styrning av Autonom Racerbil 16 sitionerna i vektorn för att rita linjer mellan punkterna. Data från tidigare varv finns sparat på fil och måste därmed läsas in till vektorn. Det är bara var femte punkt som ska sparas i vektorn på grund av att tråden för visualiseringssytemet körs i 20 Hz jämfört med huvudtråden och reglersystemet som körs i 100 Hz. När detta är gjort måste iteratorerna till vektorn initieras. Sedan kommer funktion som ritar punkter kallas under varje sampel tills trajektorian är helt utritad. I online läget hämtas positionsdata direkt från tillstånden. Det är dock viktigt att spara undan varje tillstånd så detta kan användas i nästa iteration för att rita ut en linje mellan två punkter. Vid onlinefallet ska trajektorian färgkodas. Den aktuella motorsignalen kan hämtas från IOControl. IOControl är den del av programmet som hanterar styrsignaler till radiosändaren. Pseudokod för funktionerna som nämnts ovan: Definitioner: En vektor vid namn earlierlap som innehåller data från tidigare varv. Iteratorer till earlierlap definieras, preiter och Iter. Funktioner: Funktion som initierar iteratorer: function initearlierlap(){ preiter = pekare till början av vektorn earlierlap Iter = pekare till slutet av vektorn earlierlap Funktion som hämtar data som beskriver tidigare varv från fil: function getearlierlap(filename){ Öppna filen filename Töm vektorn earlierlap på eventuellt skräp if(filename öppnad){ Läs fil och spara innehåll i vektorn earlierlap (spara bara var femte punkt). Initiera iteratorer till vektorn med data: initearlierlap(); Variabeln mode anger om uppritningen ska ske från sparad eller aktuell data. Det ända skillnaden implementationsmässigt är varifrån data hämtas. I offline läge hämtas data från vektorn earlierlap och i online läge direkt från tillstånden. Funktion för att rita tidigare varv: drawearlierlap(bool mode){ Offline läge: if(mode){

21 Optimal Styrning av Autonom Racerbil 17 if(om Iter pekar på början av earlierlap)){ Spara iteratorn till nästa iteration: preiter = iter; else if(om Iter pekar på slutet av earlierlap) { do nothing else{ Rita en linje mellan två punkter, dvs punkterna som iter respektive preiter pekar på: cvline(...) Spara iteratorn till nästa iteration: preiter = iter Online läge: else{ if(första punkten){ spara punkten else if(sista punkten){ gör ingenting else{ cvline(...); spara positionsdata spara nuvarande punkten till nästa gång funktionen kallas Funktionen cvline() tar två punkter som argument och ritar en linje mellan dem. Det går även att ange vilken färg linjen ska ha. Detta blir mycket relevant när det utritade spåret ska färgas beroende på broms- och gasprofil. 6.5 Gränssnitt Insignaler: v x, v y, (X, Y ), θ Utsignaler: bild

22 Optimal Styrning av Autonom Racerbil 18 Referenser [1] Tomas Svensson, Christian Krysander, Projektmodellen Lips. Studentlitteratur. [2] Klas Nordberg, Introduction to Representations and Estimation in Geometry. [3] Martin Enqvist et al Industriell reglerteknik Kurskompendium. Institutionen för systemteknik, Linköpings Universitet, Linköping. [4] Projektgruppen Slipping limit Teknisk dokumentation Optimal Styrning av Radiostyrd Racerbil. Linköpings Universitet, Linköping.

Systemskiss Optimal Styrning av Autonom Racerbil

Systemskiss Optimal Styrning av Autonom Racerbil No Oscillations Corporation Systemskiss Optimal Styrning av Autonom Racerbil Version 1.0 Författare: Mikael Rosell Datum: 29 november 2013 Status Granskad Projektgruppen 2013-09-18 Godkänd Projektidentitet

Läs mer

Projektplan Optimal Styrning av Autonom Racerbil

Projektplan Optimal Styrning av Autonom Racerbil No Oscillations Corporation Projektplan Optimal Styrning av Autonom Racerbil Version 1.0 Författare: Mikael Rosell Datum: 29 november 2013 Status Granskad Projektgruppen 2013-09-18 Godkänd 2013-09-18 Projektidentitet

Läs mer

Systemskiss. Vidareutveckling Optimal Styrning av Radiostyrd Racerbil. Version 1.0 Simon Eiderbrant. Granskad Erik Olsson 20 September 2012

Systemskiss. Vidareutveckling Optimal Styrning av Radiostyrd Racerbil. Version 1.0 Simon Eiderbrant. Granskad Erik Olsson 20 September 2012 Systemskiss Vidareutveckling Optimal Styrning av Radiostyrd Racerbil Version 1.0 Simon Eiderbrant Status Granskad Erik Olsson 20 September 2012 Godkänd Projektidentitet Grupp-e-post: Hemsida: Beställare:

Läs mer

No Oscillations Corporation. Efterstudie. Optimal Styrning av Autonom Racerbil. Version 0.1 Författare: Sofia Johnsen Datum: 20 december 2013

No Oscillations Corporation. Efterstudie. Optimal Styrning av Autonom Racerbil. Version 0.1 Författare: Sofia Johnsen Datum: 20 december 2013 No Oscillations Corporation Efterstudie Optimal Styrning av Autonom Racerbil Version 0.1 Författare: Sofia Johnsen Datum: 20 december 2013 Status Granskad Sofia Johnsen 2013-12-12 Godkänd Projektidentitet

Läs mer

Kravspecifikation. Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil. Version 1.1 Joel Lejonklou 26 november 2012

Kravspecifikation. Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil. Version 1.1 Joel Lejonklou 26 november 2012 Kravspecifikation Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil Version. Joel Lejonklou 26 november 202 Status Granskad Simon Eiderbrant 26 November 202 Godkänd Kurskod: TSRT0 E-post: joele569@student.liu.se

Läs mer

Teknisk Dokumentation

Teknisk Dokumentation No Oscillations Corporation Teknisk Dokumentation Optimal Styrning av Autonom Racerbil Version 1.0 Författare: Mikael Rosell Datum: 29 december 2013 Status Granskad Alla 2013-12-29 Godkänd Projektidentitet

Läs mer

Kravspecifikation LiU Racetrack

Kravspecifikation LiU Racetrack Kravspecifikation LiU Racetrack Version. Författare: Salko Bjelevac Datum: 2 oktober 204 Status Granskad Projektgruppen 204-09-22 Godkänd Isak Nielsen 204-09-22 Projektidentitet E-post: Hemsida: Beställare:

Läs mer

Testplan. Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil. Version 1.1 Fredrik Karlsson 26 november Granskad JL, FK 26 november 2012

Testplan. Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil. Version 1.1 Fredrik Karlsson 26 november Granskad JL, FK 26 november 2012 Testplan Vidareutveckling av Optimal Styrning av Radiostyrd Racerbil Version. Fredrik Karlsson 26 november 202 Status Granskad JL, FK 26 november 202 Godkänd Kurskod: TSRT0 E-post: freca476@student.liu.se

Läs mer

Användarhandledning Optimal Styrning av Autonom Racerbil

Användarhandledning Optimal Styrning av Autonom Racerbil No Oscillations Corporation Användarhandledning Optimal Styrning av Autonom Racerbil Version 1.0 Författare: Sofia Johnsen Datum: 20 december 2013 Status Granskad MR 2013-12-11 Godkänd Projektidentitet

Läs mer

Testplan Racetrack 2015

Testplan Racetrack 2015 Testplan Racetrack 205 Version.0 Författare: Henrik Bäckman Datum: 7 december 205 Status Granskad OH, HB 205-0-06 Godkänd Projektidentitet Grupp E-mail: Hemsida: Beställare: Kund: Examinator: Projektledare:

Läs mer

Systemskiss Racetrack 2015

Systemskiss Racetrack 2015 Systemskiss Racetrack 2015 Version 1.0 Författare: Jonathan Stenström Datum: 17 november 2015 Status Granskad JS, LK, IK 2015-09-20 Godkänd Projektidentitet Grupp E-mail: Hemsida: Beställare: Kund: Examinator:

Läs mer

Användarhandledning. Optimal Styrning av Radiostyrd Racerbil. Version 1.0 Isak Nielsen 10 december Granskad Per Svennerbrandt 30 november 2011

Användarhandledning. Optimal Styrning av Radiostyrd Racerbil. Version 1.0 Isak Nielsen 10 december Granskad Per Svennerbrandt 30 november 2011 Användarhandledning Optimal Styrning av Radiostyrd Racerbil Version 1.0 Isak Nielsen 10 december 2011 Status Granskad Per Svennerbrandt 30 november 2011 Godkänd Projektidentitet Grupp-e-post: Hemsida:

Läs mer

Testprotokoll Racetrack 2015

Testprotokoll Racetrack 2015 Testprotokoll Racetrack 205 Version.0 Författare: Henrik Bäckman Datum: 8 december 205 Status Granskad LK, HB 205--26 Godkänd Projektidentitet Grupp E-mail: Hemsida: Beställare: Kund: Examinator: Projektledare:

Läs mer

LiTH. WalkCAM 2007/05/15. Testplan. Mitun Dey Version 1.0. Status. Granskad. Godkänd. Reglerteknisk projektkurs WalkCAM LIPs

LiTH. WalkCAM 2007/05/15. Testplan. Mitun Dey Version 1.0. Status. Granskad. Godkänd. Reglerteknisk projektkurs WalkCAM LIPs Testplan Mitun Dey Version 1.0 Status Granskad Godkänd 1 PROJEKTIDENTITET Reglerteknisk projektkurs, WalkCAM, 2007/VT Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Henrik Johansson Projektledare

Läs mer

Testplan Autonom truck

Testplan Autonom truck Testplan Autonom truck Version 1.1 Redaktör: Joar Manhed Datum: 20 november 2018 Status Granskad Kim Byström 2018-11-20 Godkänd Andreas Bergström 2018-10-12 Projektidentitet Grupp E-post: Hemsida: Beställare:

Läs mer

Systemskiss. Joachim Lundh TSRT10 - SEGWAY 6 december 2010 Version 1.0. Status:

Systemskiss. Joachim Lundh TSRT10 - SEGWAY 6 december 2010 Version 1.0. Status: Systemskiss Joachim Lundh TSRT10 - SEGWAY 6 december 2010 Version 1.0 Status: Granskad Alla 6 december 2010 Godkänd Markus (DOK) 6 december 2010 PROJEKTIDENTITET Segway, HT 2010 Tekniska högskolan vid

Läs mer

Projektdirektiv Oskar Ljungqvist Sida 1. Kund/Examinator: Daniel Axehill, Reglerteknik/LiU

Projektdirektiv Oskar Ljungqvist Sida 1. Kund/Examinator: Daniel Axehill, Reglerteknik/LiU 2018-08-30 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering, ISY Student, ISY Läsperiod 1-2, HT 2018. Projektet klart senast vid projektkonferensen. Löpande rapportering:

Läs mer

HARALD Testprotokoll

HARALD Testprotokoll HARALD Testprotokoll Version 0.2 Redaktör: Patrik Sköld Datum: 9 maj 2006 Status Granskad Johan Sjöberg 2006-05-09 Godkänd - yyyy-mm-dd Projektidentitet Gruppens e-post: Beställare: Kund: Kursansvarig:

Läs mer

Systemskiss. Flygande Autonomt Spaningsplan. Version 1.0. Dokumentansva Datum: 13 februari Dokumentansvarig: Henrik Abrahamsson.

Systemskiss. Flygande Autonomt Spaningsplan. Version 1.0. Dokumentansva Datum: 13 februari Dokumentansvarig: Henrik Abrahamsson. Flygande Autonomt Spaningsplan Version 1.0 Dokumentansvarig: Henrik Abrahamsson Dokumentansva Datum: 13 februari 2008 Status Granskad Godkänd Projektidentitet Hemsida: Kund: http://www.isy.liu.se/edu/projekt/tsrt71/2008/flygproj2008/

Läs mer

Testplan. Flygande Autonomt Spaningsplan. Version 1.0. Dokumentansvarig: Henrik Abrahamsson Datum: 14 mars Status.

Testplan. Flygande Autonomt Spaningsplan. Version 1.0. Dokumentansvarig: Henrik Abrahamsson Datum: 14 mars Status. Flygande Autonomt Spaningsplan Version 1.0 Dokumentansvarig: Henrik Abrahamsson Datum: 14 mars 2008 Status Granskad Godkänd Projektidentitet Hemsida: Kund: http://www.isy.liu.se/edu/projekt/tsrt71/2008/flygproj2008/

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,

Läs mer

Användarhandledning LiU Racetrack

Användarhandledning LiU Racetrack Användarhandledning LiU Racetrack Version 1.0 Författare: Kristin Bergstrand Datum: 3 december 2014 Status Granskad Projektgruppen 2014-12-03 Godkänd Projektidentitet E-post: Hemsida: Beställare: Kund:

Läs mer

F13: Regulatorstrukturer och implementering

F13: Regulatorstrukturer och implementering Föreläsning 2 PID-reglering Förra föreläsningen F3: Regulatorstrukturer och implementering 25 Februari, 209 Lunds Universitet, Inst för Reglerteknik. Bodediagram för PID-regulator 2. Metoder för empirisk

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system

Läs mer

Testprotokoll Autonom målföljning med quadcopter

Testprotokoll Autonom målföljning med quadcopter Version 1.0 Robo Ptarmigan 3 december 2015 Status Granskad HC 2015-11-29 Godkänd Projektidentitet Gruppmail: Hemsida: Beställare: Kund: Kursansvarig: Projektledare: Handledare: karlo343@student.liu.se

Läs mer

Systemskiss. LiTH. Autopositioneringssystem för utlagda undervattenssensorer Erik Andersson Version 1.0. Status

Systemskiss. LiTH. Autopositioneringssystem för utlagda undervattenssensorer Erik Andersson Version 1.0. Status Autopositioneringssystem för utlagda undervattenssensorer 2007-02-05 LiTH Systemskiss Erik Andersson Version 1.0 Status Granskad Godkänd DOK Henrik Ohlsson Systemskiss10.pdf 1 Autopositioneringssystem

Läs mer

Systemskiss. LiTH Autonom bandvagn med stereokamera 2010-09-24. Gustav Hanning Version 1.0. Status. TSRT10 8Yare LIPs. Granskad

Systemskiss. LiTH Autonom bandvagn med stereokamera 2010-09-24. Gustav Hanning Version 1.0. Status. TSRT10 8Yare LIPs. Granskad Gustav Hanning Version 1.0 Status Granskad Godkänd Jonas Callmer 2010-09-24 1 PROJEKTIDENTITET 2010/HT, 8Yare Linköpings tekniska högskola, institutionen för systemteknik (ISY) Namn Ansvar Telefon E-post

Läs mer

LiTH. WalkCAM 2007/05/15. Testrapport. Mitun Dey Version 1.0. Status. Granskad. Godkänd. Reglerteknisk projektkurs WalkCAM LIPs

LiTH. WalkCAM 2007/05/15. Testrapport. Mitun Dey Version 1.0. Status. Granskad. Godkänd. Reglerteknisk projektkurs WalkCAM LIPs Testrapport Mitun Dey Version 1.0 Status Granskad Godkänd 1 PROJEKTIDENTITET Reglerteknisk projektkurs, WalkCAM, 2007/VT Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Henrik Johansson Projektledare

Läs mer

Industriell reglerteknik: Föreläsning 3

Industriell reglerteknik: Föreläsning 3 Industriell reglerteknik: Föreläsning 3 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 19 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3.

TSIU61: Reglerteknik. Sammanfattning från föreläsning 3 (2/4) ˆ PID-reglering. ˆ Specifikationer. ˆ Sammanfattning av föreläsning 3. TSIU6 Föreläsning 4 Gustaf Hendeby HT 207 / 22 Innehåll föreläsning 4 TSIU6: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se ˆ Sammanfattning av föreläsning

Läs mer

Systemskiss. Redaktör: Anders Toverland Version 1.0. Status. LiTH Fordonssimulator. Granskad Godkänd. TSRT71 Anders Toverland

Systemskiss. Redaktör: Anders Toverland Version 1.0. Status. LiTH Fordonssimulator. Granskad Godkänd. TSRT71 Anders Toverland Systemskiss Redaktör: Version 1.0 Granskad Godkänd Status Sida 1 PROJEKTIDENTITET Grupp 1, 2005/VT, Linköpings Tekniska Högskola, ISY Gruppdeltagare Namn Ansvar Telefon E-post Anders Wikström Kvalitetsansvarig

Läs mer

Systemskiss. LiTH Kamerabaserat Positioneringssystem för Hamnkranar Mikael Ögren Version 1.0. Status

Systemskiss. LiTH Kamerabaserat Positioneringssystem för Hamnkranar Mikael Ögren Version 1.0. Status Mikael Ögren Version 1.0 Granskad Status Godkänd 1 PROJEKTIDENTITET 09/HT, CaPS Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Mohsen Alami designansvarig(des) 073-7704709 mohal385@student.liu.se

Läs mer

TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby.

TSIU61: Reglerteknik. PID-reglering Specifikationer. Gustaf Hendeby. TSIU61: Reglerteknik Föreläsning 4 PID-reglering Specifikationer Gustaf Hendeby gustaf.hendeby@liu.se TSIU61 Föreläsning 4 Gustaf Hendeby HT1 2017 1 / 22 Innehåll föreläsning 4 ˆ Sammanfattning av föreläsning

Läs mer

Testplan. Redaktör: Sofie Dam Version 0.1. Status. Planering och sensorfusion för autonom truck Granskad Dokumentansvarig - Godkänd

Testplan. Redaktör: Sofie Dam Version 0.1. Status. Planering och sensorfusion för autonom truck Granskad Dokumentansvarig - Godkänd Redaktör: Sofie Dam Version 0.1 Status Granskad Dokumentansvarig - Godkänd 1 GruppTruck Projektidentitet 2017/HT, GruppTruck Tekniska högskolan vid Linköpings universitet, ISY Gruppdeltagare Namn Ansvar

Läs mer

LiTH, Reglerteknik Saab Dynamics. Testplan Collision avoidance för autonomt fordon Version 1.0

LiTH, Reglerteknik Saab Dynamics. Testplan Collision avoidance för autonomt fordon Version 1.0 LiTH, Reglerteknik Saab Dynamics Testplan Collision avoidance för autonomt fordon Version 1.0 Torbjörn Lindström 3 maj 2005 Granskad Godkänd Collision avoidance för autonomt fordon i Sammanfattning Testplan

Läs mer

Systemskiss. LiTH AMASE Accurate Multipoint Acquisition from Stereovision Equipment. Jon Månsson Version 1.0

Systemskiss. LiTH AMASE Accurate Multipoint Acquisition from Stereovision Equipment. Jon Månsson Version 1.0 2006-02-15 Systemskiss Jon Månsson Version 1.0 Granskad Godkänd TSBB51 LIPs John Wood johha697@student.liu.se 1 PROJEKTIDENTITET VT2006, Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Mikael

Läs mer

Testplan. LiTH. Autopositioneringssystem för utlagda undervattenssensorer Martin Skoglund Version 1.1. Status

Testplan. LiTH. Autopositioneringssystem för utlagda undervattenssensorer Martin Skoglund Version 1.1. Status Autopositioneringssystem för utlagda undervattenssensorer 2007-05-04 LiTH Testplan Martin Skoglund Version 1.1 Status Granskad Godkänd testplan1.1.pdf 1 PROJEKTIDENTITET Autopositionering för utlagda undervattenssensorer,

Läs mer

För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning.

För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning. För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning. Används för att reglera en process. T.ex. om man vill ha en bestämd nivå, eller ett speciellt tryck i en rörledning kanske.

Läs mer

LIPs Fredrik Ljungberg ChrKr Projektdirektiv18_ROV.doc CKr

LIPs Fredrik Ljungberg ChrKr Projektdirektiv18_ROV.doc CKr Fredrik Ljungberg 2018-08-28 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Parter Projektets bakgrund och Remotely Operated Underwater Vehicle Fredrik Ljungberg, ISY

Läs mer

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN

REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta

Läs mer

Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem

Regulator. G (s) Figur 1: Blockdiagram för ett typiskt reglersystem Rs) + Σ Es) Regulator G s) R Us) Process G s) P Ys) Figur : Blockdiagram för ett typiskt reglersystem Något om PID-reglering PID-regulatorn består av proportionell del, integrerande del och deriverande

Läs mer

Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation

Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation Lunds Universitet LTH Ingenjörshögskolan i Helsingborg Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation REGLERTEKNIK Laboration 2 Empirisk undersökning av PID-regulator

Läs mer

Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen.

Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Reglering Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Regulator eller reglerenhet används för att optimera

Läs mer

Testprotokoll. Redaktör: Sofie Dam Version 0.1. Status. Planering och sensorfusion för autonom truck Granskad Dokumentansvarig - Godkänd

Testprotokoll. Redaktör: Sofie Dam Version 0.1. Status. Planering och sensorfusion för autonom truck Granskad Dokumentansvarig - Godkänd Redaktör: Sofie Dam Version 0.1 Status Granskad Dokumentansvarig - Godkänd 1 GruppTruck Projektidentitet 2017/HT, GruppTruck Tekniska högskolan vid Linköpings universitet, ISY Gruppdeltagare Namn Ansvar

Läs mer

Uppdrag för LEGO projektet Hitta en vattensamling på Mars

Uppdrag för LEGO projektet Hitta en vattensamling på Mars LEGO projekt Projektets mål är att ni gruppvis skall öva på att genomföra ett projekt. Vi använder programmet LabVIEW för att ni redan nu skall bli bekant med dess grunder till hjälp i kommande kurser.

Läs mer

Industriell reglerteknik: Föreläsning 6

Industriell reglerteknik: Föreläsning 6 Föreläsningar 1 / 15 Industriell reglerteknik: Föreläsning 6 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Systemskiss Autonom målföljning med quadcopter

Systemskiss Autonom målföljning med quadcopter Version 1.1 Robo Ptarmigan 30 november 2015 Status Granskad GN, KL 2015-09-25 Godkänd Projektidentitet Gruppmail: Hemsida: Beställare: Kund: Kursansvarig: Projektledare: Handledare: karlo343@student.liu.se

Läs mer

LiTH Golfspelande industrirobot Designspecifikation. Designansvarig: Mikaela Waller Version 1.0. Status. Granskad Martin

LiTH Golfspelande industrirobot Designspecifikation. Designansvarig: Mikaela Waller Version 1.0. Status. Granskad Martin Golfspelande industrirobot 2004-02-25 Designspecifikation Designansvarig: Mikaela Waller Version 1.0 Status Granskad Martin 2004-02-24 Godkänd Martin 2004-02-24 Dokumentansvarig: Elin Eklund i Golfspelande

Läs mer

Testspecifikation. Henrik Hagelin TSRT10 - SEGWAY 6 december 2010 Version 1.0. Status:

Testspecifikation. Henrik Hagelin TSRT10 - SEGWAY 6 december 2010 Version 1.0. Status: Testspecifikation Henrik Hagelin TSRT10 - SEGWAY 6 december 2010 Version 1.0 Status: Granskad Alla 6 december 2010 Godkänd DOK, PL 6 december 2010 PROJEKTIDENTITET Segway, HT 2010 Tekniska högskolan vid

Läs mer

Kravspecifikation Remotely Operated Underwater Vehicle

Kravspecifikation Remotely Operated Underwater Vehicle Kravspecifikation Remotely Operated Underwater Vehicle Version.4 Författare: Patricia Sundin Datum: 8 november 202 Status Granskad Alla 20/09/202 Godkänd Isak Nielsen 20/09/202 Kursnamn: Reglerteknisk

Läs mer

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING

TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING TID: 13 mars 2018, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 070-3113019 BESÖKER SALEN: 09.30,

Läs mer

LIPs Isak Nielsen ChrKr Projektdirektiv13_ROV.doc CKr

LIPs Isak Nielsen ChrKr Projektdirektiv13_ROV.doc CKr Isak Nielsen 2013/08/28 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Remotely Operated Underwater Vehicle Isak Nielsen, ISY Student Micael Derelöv och Isak Nielsen

Läs mer

Projektplan. LiTH Reglering av Avgaser, Trottel och Turbo 2008-02-11. Fredrik Petersson Version 1.0. Status. Reglerteknisk Projektkurs RATT LIPs

Projektplan. LiTH Reglering av Avgaser, Trottel och Turbo 2008-02-11. Fredrik Petersson Version 1.0. Status. Reglerteknisk Projektkurs RATT LIPs Fredrik Petersson Version 1.0 Status Granskad 2008-02-11 NL, PA Godkänd 1 2 PROJEKTIDENTITET VT 2008, RATT-Gruppen Linköpings tekniska högskola, ISY- Fordonssystem Namn Ansvar Telefon E-post Daniel Ahlberg

Läs mer

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik

Föreläsning 3. Reglerteknik AK. c Bo Wahlberg. 9 september Avdelningen för reglerteknik Skolan för elektro- och systemteknik Föreläsning 3 Reglerteknik AK c Bo Wahlberg Avdelningen för reglerteknik Skolan för elektro- och systemteknik 9 september 2013 Introduktion Förra gången: PID-reglering Dagens program: Stabilitet Rotort

Läs mer

Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist

Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist ösningar till tentamen i Industriell reglerteknik TSRT7 Tentamensdatum: 28-3-2 Martin Enqvist a) Z-transformering av sambanden som beskriver den tidsdiskreta regulatorn ger Iz) = KT Sz T i z ) Ez) = Kz

Läs mer

Systemskiss. Michael Andersson Version 1.0: 2012-09-24. Status. Platooning 2012-09-24. Granskad DOK, PL 2012-09-19 Godkänd Erik Frisk 2012-09-24

Systemskiss. Michael Andersson Version 1.0: 2012-09-24. Status. Platooning 2012-09-24. Granskad DOK, PL 2012-09-19 Godkänd Erik Frisk 2012-09-24 2012-09-24 Systemskiss Michael Andersson Version 1.0: 2012-09-24 Status Granskad DOK, PL 2012-09-19 Godkänd Erik Frisk 2012-09-24 Systemskiss i 2012-09-24 Projektidentitet, TSRT10, HT2012, Tekniska högskolan

Läs mer

Systemteknik/Processreglering F2

Systemteknik/Processreglering F2 Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med

Läs mer

LIPs Daniel Axehill ChrKr Projektdirektiv_Saab_v3 CKr

LIPs Daniel Axehill ChrKr Projektdirektiv_Saab_v3 CKr Daniel Axehill 2006-01-19 Sida 1 Projektnamn Beställare Daniel Axehill, ISY Projektledare Student Projektbeslut Torbjörn Crona, Daniel Axehill Projekttid Läsperiod 3-4, vårterminen 2006. Projektet klart

Läs mer

Kravspecifikation. LiTH Segmentering av MR-bilder med ITK Anders Eklund Version 1.0. Status

Kravspecifikation. LiTH Segmentering av MR-bilder med ITK Anders Eklund Version 1.0. Status 2006-02-02 Kravspecifikation Version.0 Status Granskad Godkänd Bilder och grafik projektkurs, CDIO MCIV LIPs 2006-02-02 PROJEKTIDENTITET MCIV 2006 VT Linköpings Tekniska Högskola, CVL Namn Ansvar Telefon

Läs mer

REGLERTEKNIK Laboration 5

REGLERTEKNIK Laboration 5 6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,

Läs mer

Testplan Autonom målföljning med quadcopter

Testplan Autonom målföljning med quadcopter Version 1.0 Robo Ptarmigan 3 december 2015 Status Granskad AF, GN, HC 2015-11-05 Godkänd Projektidentitet Gruppmail: Hemsida: Beställare: Kund: Kursansvarig: Projektledare: Handledare: karlo343@student.liu.se

Läs mer

Systemskiss. Remotely Operated Underwater Vehicle. Version 1.0. Simon Lindblom. 22 september Status

Systemskiss. Remotely Operated Underwater Vehicle. Version 1.0. Simon Lindblom. 22 september Status Systemskiss Remotely Operated Underwater Vehicle Version 1.0 Simon Lindblom 22 september 2014 Status Granskad SL, OW 2014-09-22 Godkänd Isak Nielsen 2014-09-22 Projektidentitet E-post: Hemsida: Beställare:

Läs mer

LiTH Autonom styrning av mobil robot 2007-03-26 Testplan Version 1.0 TSRT71-Reglertekniskt projektkurs Anders Lindgren L IPs

LiTH Autonom styrning av mobil robot 2007-03-26 Testplan Version 1.0 TSRT71-Reglertekniskt projektkurs Anders Lindgren L IPs Testplan Version 1.0 Status Granskad Godkänd TSRT71-Reglertekniskt projektkurs LIPs PROJEKTIDENTITET Autonom styrning av mobil robot Vårterminen 2007 Linköpings Tekniska Högskola, ISY Namn Ansvar Telefon

Läs mer

Testprotokoll Följning av djur Kolmården djurpark

Testprotokoll Följning av djur Kolmården djurpark Version 1.0 Projektgrupp: Tar-Get 2017-12-15 Status Granskad JS 2017-12-12 Godkänd Beställare 2017-12-12 PROJEKTIDENTITET 2017/HT, Linköpings Universitet, ISY Gruppdeltagare Namn Ansvar Telefon E-post

Läs mer

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj

Läs mer

Projektdirektiv Christian Andersson Naesseth Sida 1

Projektdirektiv Christian Andersson Naesseth Sida 1 Christian Andersson Naesseth 2018-08-30 Sida 1 Projektnamn Beställare Projektledare Projektbeslut Projekttid Rapportering Drönarprojekt Visionen Christian Andersson Naesseth, ISY Studenter Gustaf Hendeby

Läs mer

Testplan Erik Jakobsson Version 1.1

Testplan Erik Jakobsson Version 1.1 Erik Jakobsson Version 1.1 Granskad Status Godkänd 1 PROJEKTIDENTITET 09/HT, Linköpings tekniska högskola, ISY Namn Ansvar Telefon E-post Mohsen Alami designansvarig (DES) 073-7704709 mohal385@student.liu.se

Läs mer

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK

TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK TENTAMEN I TSRT07 INDUSTRIELL REGLERTEKNIK SAL: ISY:s datorsalar (Asgård) TID: 2016-08-17 kl. 8:00 12:00 KURS: TSRT07 Industriell reglerteknik PROVKOD: DAT1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG

Läs mer

Testplan. Remotely Operated Underwater Vehicle. Version 1.0. Elias Nilsson. 1 oktober Status

Testplan. Remotely Operated Underwater Vehicle. Version 1.0. Elias Nilsson. 1 oktober Status Testplan Remotely Operated Underwater Vehicle Version 1.0 Elias Nilsson 1 oktober 2014 Status Granskad SL 2014-10-01 Godkänd Isak Nielsen 2014-10-01 Projektidentitet E-post: Hemsida: Beställare: Kund:

Läs mer

Industriella styrsystem, TSIU06. Föreläsning 1

Industriella styrsystem, TSIU06. Föreläsning 1 Industriella styrsystem, TSIU06 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Utgångspunkter Vad? Varför? Hur? Vad? Reglerteknik - Konsten att styra system automatiskt Vad? System - Ett objekt

Läs mer

HARALD. Version 0.2 Redaktör: Patrik Johansson Datum: 8 maj 2006. Status. Granskad - yyyy-mm-dd Godkänd - yyyy-mm-dd

HARALD. Version 0.2 Redaktör: Patrik Johansson Datum: 8 maj 2006. Status. Granskad - yyyy-mm-dd Godkänd - yyyy-mm-dd HARALD Användarhandledning Version 0.2 Redaktör: Patrik Johansson Datum: 8 maj 2006 Status Granskad - yyyy-mm-dd Godkänd - yyyy-mm-dd Projektidentitet Gruppens e-post: Hemsida: Beställare: Kund: Kursansvarig:

Läs mer

Operatörer och användargränssnitt vid processtyrning Datorövning 1 - Reglerteknik

Operatörer och användargränssnitt vid processtyrning Datorövning 1 - Reglerteknik UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK B Carlsson 9911. Senaste revision 15 februari 2006 Operatörer och användargränssnitt vid processtyrning Datorövning 1 - Reglerteknik Senaste inlämningsdag

Läs mer

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars

Läs mer

HARALD. Systemskiss. Version 0.3 Redaktör: Patrik Johansson Datum: 20 februari 2006. Status

HARALD. Systemskiss. Version 0.3 Redaktör: Patrik Johansson Datum: 20 februari 2006. Status HARALD Systemskiss Version 0.3 Redaktör: Patrik Johansson Datum: 20 februari 2006 Status Granskad Johan Sjöberg 2006-02-10 Godkänd - yyyy-mm-dd Projektidentitet Gruppens e-post: Beställare: Kund: Kursansvarig:

Läs mer

Industriella styrsystem, TSIU04. Föreläsning 1

Industriella styrsystem, TSIU04. Föreläsning 1 Industriella styrsystem, TSIU04 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Mål Ge kunskaper och färdigheter om reglerteknik närmare verkligheten. Mera precist: Trimning av PID-regulatorer.

Läs mer

I N N E H Å L L. Styrning och optimering av bilbana

I N N E H Å L L. Styrning och optimering av bilbana september 08 Erik Frisk september 08 Version.0 Granskad Godkänd Viktor Leek Status TFYY5 Ingenjörsprojekt Y I N N E H Å L L Inledning. Parter...............................................

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning av förra föreläsningen H(s) W(s) 2 R(s)

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Reglerteknik AK, FRTF05

Reglerteknik AK, FRTF05 Institutionen för REGLERTEKNIK Reglerteknik AK, FRTF05 Tentamen 3 april 208 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar

Läs mer

Systemskiss. Status. David Sandberg, Tobias Lundqvist, Rasmus Dewoon, Marcus Wirebrand Version 1.0. Granskad Godkänd

Systemskiss. Status. David Sandberg, Tobias Lundqvist, Rasmus Dewoon, Marcus Wirebrand Version 1.0. Granskad Godkänd Systemskiss David Sandberg, Tobias Lundqvist, Rasmus Dewoon, Marcus Wirebrand Version 1.0 Status Granskad Godkänd Projektidentitet Grupp 2, 2010/HT Linköpings Tekniska Högskola, ISY Namn Ansvar Telefon

Läs mer

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar

Exempel: DC-servo med styrsignalmättning DEL III: OLINJÄR REGLERTEORI. DC-servo forts.: Rampsvar och sinussvar Reglerteori 6, Föreläsning 8 Daniel Axehill / 6 Sammanfattning av föreläsning 7 TSRT9 Reglerteori Föreläsning 8: Olinjäriteter och stabilitet Daniel Axehill Reglerteknik, ISY, Linköpings Universitet H

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden!

Välkomna till TSRT19 Reglerteknik Föreläsning 8. Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Välkomna till TSRT19 Reglerteknik Föreläsning 8 Sammanfattning av föreläsning 7 Framkoppling Den röda tråden! Sammanfattning föreläsning 8 2 Σ F(s) Lead-lag design: Givet ett Bode-diagram för ett öppet

Läs mer

TSRT91 Reglerteknik: Föreläsning 2

TSRT91 Reglerteknik: Föreläsning 2 Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

TESTPLAN. Markus Vilhelmsson. Version 1.3. Status Detektion och felisolering i förbränningsmotor

TESTPLAN. Markus Vilhelmsson. Version 1.3. Status Detektion och felisolering i förbränningsmotor TESTPLAN Markus Vilhelmsson Version 1.3 Status Granskad Godkänd LIPS Kravspecifikation i bohli890@student.liu.se PROJEKTIDENTITET HT15, Detektion och felisolering i er Linköpings universitet, Institutionen

Läs mer

Industriella styrsystem, TSIU06. Föreläsning 1

Industriella styrsystem, TSIU06. Föreläsning 1 Industriella styrsystem, TSIU06 Föreläsning 1 Reglerteknik, ISY, Linköpings Universitet Kursöversikt 2(34) Detta är en laborations- och projektkurs. Praktiken kommer före teorin (kursen Reglerteknik) Tre

Läs mer

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna.

A. Stationära felet blir 0. B. Stationära felet blir 10 %. C. Man kan inte avgöra vad stationära felet blir enbart med hjälp av polerna. Man använder en observatör för att skatta tillståndsvariablerna i ett system, och återkopplar sedan från det skattade tillståndet. Hur påverkas slutna systemets överföringsfunktion om man gör observatören

Läs mer

TSRT91 Reglerteknik: Föreläsning 5

TSRT91 Reglerteknik: Föreläsning 5 TSRT9 Reglerteknik: Föreläsning 5 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar / 23 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

Kravspecifikation. Flygande Autonomt Spaningsplan. Version 1.2. Dokumentansvarig: Henrik Abrahamsson Datum: 29 april Status.

Kravspecifikation. Flygande Autonomt Spaningsplan. Version 1.2. Dokumentansvarig: Henrik Abrahamsson Datum: 29 april Status. Flygande Autonomt Spaningsplan Version.2 Dokumentansvarig: Henrik Abrahamsson Datum: 29 april 2008 Status Granskad Godkänd Projektidentitet Hemsida: Kund: LiTH http://www.isy.liu.se/edu/projekt/tsrt7/2008/flygproj2008/

Läs mer

Systemskiss Minröjningsbandvagn

Systemskiss Minröjningsbandvagn Systemskiss Minröjningsbandvagn Version 1.0 Utgivare: Emmeline Kemperyd Datum: 19 september 2013 Status Granskad Anton Pettersson 2013-09-19 Godkänd Projektidentitet Gruppens e-post: Hemsida: Beställare:

Läs mer

TENTAMEN I REGLERTEKNIK Y/D

TENTAMEN I REGLERTEKNIK Y/D TENTAMEN I REGLERTEKNIK Y/D SAL: TER3 TID: 8 augusti 8, klockan 8-3 KURS: TSRT, Reglerteknik Y/D PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANTAL SIDOR PÅ TENTAMEN (INKLUSIVE FÖRSÄTTSBLAD): 6 ANSVARIG

Läs mer

TSRT91 Reglerteknik: Föreläsning 12

TSRT91 Reglerteknik: Föreläsning 12 TSRT91 Reglerteknik: Föreläsning 12 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 15 1 Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.

Läs mer

LiTH Autonom styrning av mobil robot 2007-02-15. Projektplan. Martin Elfstadius & Fredrik Danielsson. Version 1.0

LiTH Autonom styrning av mobil robot 2007-02-15. Projektplan. Martin Elfstadius & Fredrik Danielsson. Version 1.0 Projektplan Martin Elfstadius & Fredrik Danielsson Version 1.0 Status Granskad Godkänd 1 PROJEKTIDENTITET Autonom styrning av mobil robot Vårterminen 2007 Linköpings Tekniska Högskola, ISY Namn Ansvar

Läs mer

Välkomna till TSRT19 Reglerteknik M Föreläsning 9

Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Välkomna till TSRT19 Reglerteknik M Föreläsning 9 Sammanfattning av föreläsning 8 Prestandabegränsningar Robusthet Mer generell återkopplingsstruktur Sammanfattning föreläsning 8 2 F(s) Lead-lag design:

Läs mer

Projektplan. LiTH Segmentering av MR-bilder med ITK Anders Eklund. Version 1.0. Status. Bilder och grafik projektkurs, CDIO MCIV LIPs

Projektplan. LiTH Segmentering av MR-bilder med ITK Anders Eklund. Version 1.0. Status. Bilder och grafik projektkurs, CDIO MCIV LIPs Segmentering av MR-bilder med ITK 2006-02-02 Projektplan Version 1.0 Status Granskad Godkänd Bilder och grafik projektkurs, CDIO MCIV LIPs 1 PROJEKTIDENTITET MCIV 2006 VT Linköpings Tekniska Högskola,

Läs mer

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2

Läs mer