Taluppfattning. Talområde Systematisk genomgång tal för tal

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Taluppfattning. Talområde 10-20. Systematisk genomgång tal för tal"

Transkript

1 Taluppfattning Talområde Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo

2 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial som säkrar viktiga basfärdigheter i skolan. Modern forskning har påvisat att färdigheter måste nötas in, och våra material bygger på en tydlig metodik, stegvis träning och strukturerade listor för upprepad läsning och räkning. Våra erfarenheter bekräftar också att detta arbetssätt kan göra underverk. Färdigheter måste nötas in. Hjärnans inlärningssystem är uppdelat i det som leder till färdigheter och det som mera har med kunskaper att göra. Färdighetsträningen har negligerats eftersom det underliga begreppet pluggskola har tillåtits få makt över tänkandet i skolan. (Professor Martin Ingvar, Dyslexi 2008, s. 107) I Wendick-modellen ingår f.n. 11 st olika material: Intensivläsning Språkljudsutveckling Taluppfattning 0-5 Taluppfattning 6-10 Taluppfattning Räkneflyt 1 - Addition och subtraktion 1-10 Räkneflyt 2 - Addition och subtraktion Räkneflyt 3 - Multiplikation och division 1-10 RäkneTest 1 - Add-Sub 1-10 RäkneTest 2 - Add-Sub RäkneTest 3 - Multi-Div 1-10 Läs mer och beställ på Om Taluppfattning Wendick-modellen Taluppfattning riktar sig till lärare som är involverade i elevers tidiga matematikutveckling. Materialen möjliggör att varje elev kan få den tid och den träningsmängd som den behöver för att sätta grunderna. Taluppfattning Har en tydlig och strukturerad metodik. Konkretiserar och ger en systematisk genomgång av varje siffra och tal inom talområdet Baseras på noggrann undervisning om aktuella siffror och tal och därefter träning. Utvecklar förståelsen av att använda tal vilket ger ökad säkerhet och bättre förutsättningar för elevens måluppfyllelse i matte. Har en enkel och ren sidlayout utan perceptionsstörande innehåll. Taluppfattning kan med fördel användas som ett förberedande material innan man övergår till våra Räkneflyt-material. Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 2

3 Innehållsförteckning Introduktion 5-6 Om materialet 7-8 Sidhänvisningar till uppgifterna 9 Förklaring av uppgifterna Talet Talet Talet Talet Talet Talet Repetition Talet Talet Talet Talet Talet Repetition Repetition Bilagor: 150 Kartläggning Små steg 151 Förlagor Större än >, Mindre än < 152 Kort till problemtal 153 Dragspel Spel Kasta tärning 157 Spel - Clownen Spelregler - Spelkort Talstege 166 Facit Skriva siffror träna mera Pärmryggar Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 3

4 Introduktion Wendick-modellen Taluppfattning är tredje delen av ett material där eleven får möta ett tal åt gången. Varje tal innehåller ett flertal uppgifter som eleven får jobba igenom. Här börjar vi med talet 10 som repetition och fortsätter med talen 11, 12, 13, 14, 15, 16, 17, 18, 19 och 20. Systermaterialen Taluppfattning 0-5 och Taluppfattning 6-10 är uppbyggda på samma sätt. Taluppfattning lägger också grunden för Wendick-modellens Räkneflyt, där eleven utmanas till automatisering av räkning inom de fyra räkne-sätten. Den konkreta fasen Det talas om tre faser som man jobbar med i matematiken. Den första benämns som den konkreta fasen. Här sker det laborativa arbetet med verkliga objekt och åskådligt material, och i denna fas förväntas eleven befinna sig under den största tiden i förskola och förskoleklass. I Taluppfattning ingår en del uppgifter som utmanar eleven inom det konkreta området. Tänk på att språket bidrar till att tydliggöra innehållet. Får eleven hjälp att sätta ord på sina upptäckter och erfarenheter kan språk och handling samspela med varandra. K O N K R E T A I den konkreta fasen ger det laborativa arbetet eleverna kinestetiska (genom rörelse) och taktila (genom att röra vid) erfarenheter som kan underlätta utvecklingen av begreppslig förståelse och att minnas. Lärare bör försäkra sig om att det laborativa arbetet bidrar till att matematiska begrepp och idéer synliggörs och att eleven utvecklar nya tankeformer så att de frigör sig från behovet av det laborativa materialet. Med hjälp av laborativt material kan viktiga matematiska begrepp och idéer lyftas fram och undersökas. Görel Sterner, Dyslexi aktuellt om läs- och skrivsvårigheter Nr 3/2006 Den representativa fasen Efter den konkreta fasen går eleven successivt in i den representativa fasen. Det innebär att eleven nu utvecklar förståelse genom att rita egna bilder som representerar matematiska begrepp och lösningar på uppgifter. Det är huvudsakligen i denna fas som både Taluppfattning 0-5, 6-10 och opererar. Genom att få rita enkla bilder och streck samtidigt som muntlig förklaring ges, kan eleven lösa uppgifter utan att behöva använda laborativt material. Taluppfattning utmanar eleven att se talmönster och att uppfatta samband mellan addition och subtraktion. R E P R E S E N T A T I V A lll Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 4

5 Den abstrakta fasen Den abstrakta fasen slutligen handlar om att eleven ska fördjupa den förståelse som har utvecklats i den konkreta och den representativa fasen. Här lär sig eleven att tänka och lösa uppgifter utan hjälp av konkret material och genom att enbart använda siffror. Erfarenheter visar att samtal mellan lärare och elev om matematiska begrepp är oerhört viktiga. Några uppgifter i Taluppfattning 0-5 resp ligger inom detta område, fler i Taluppfattning medan Wendick-modellen Räkneflyt helt handlar om denna fas. Centralt innehåll i åk Taluppfattning och tals användning Naturliga tal och deras egenskaper, samt hur talen kan delas upp och användas för att ange antal och ordning, Lgr 11. Eleven bygger inte upp en grundläggande taluppfattning av sig själv. Grunden måste alltid läggas i form av en genomtänkt och strukturerad undervisning samt tid för träning. Utmärkande för alla materialen i Taluppfattning är att eleven erbjuds många uppgifter inom varje tal för att bli trygg i sin talkunskap. Eleven börjar med att möta siffrans form och träning av denna för att sedan erövra de olika delarna som talet innehåller. Tanken är också att läraren före varje ny arbetsuppgift ska undervisa och samtala för att berika elevens lärande. Mer om detta under rubriken Förklaring av uppgifterna. Till varje uppgift ges även en förklaring hur författarna har tänkt att läraren kan presentera uppgifterna och hur eleven ska genomföra dessa. A B S T R A K T A 2+3=5 5-2=3 3+_=5 _+3=5 Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 5

6 Om materialet Repetitionsuppgifter Taluppfattning innehåller en tydlig progression, där eleven med hjälp av små steg ser sin egen utveckling. Här jobbar eleven med ett tal i taget. Repetitionsuppgifter sker efter talet 15 (10-15), 20 (15-20) och slutligen repetition av hela talområdet Form och Innehåll Eleven har genom arbetet med siffror och tal lärt sig att varje siffersymbol har både en form och ett innehåll. Formen har eleven gått igenom i talområdet 0-9 och nu fortsätter eleven att arbeta med talen som innehåll, Här möter eleven begreppen ental och tiotal. Talramsan En god taluppfattning förutsätter att eleven behärskar talramsan som fortsätter 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Eleven kommer att lära sig vilket tal som kommer före och vilket som kommer efter det tal som tränas, utan att först behöva ramsräkna varje gång. Talen som kommer före och efter aktuellt tal kallas för talets grannar. Eleven kommer också att träna på namnen som kan vara svåra genom att man benämner t.ex. ordet tre först i tretton, femton, sexton, sjutton. Däremot avviker elva, tolv, fjorton (fyra) och nitton (nio) och till sist tjugo som inte härleder till två. Spel Olika spel och spelregler är beskrivna och ligger under bilagor. Syftet är att nöta in talen på ett alternativt sätt. Talstege I Talstegen färglägger eleven efter hand varje steg som erövrats och får då en tydlig återkoppling om vilka tal som hen förhoppningsvis nu behärskar och vilka tal som återstår. Syftet är att ge ökad motivation. Skriva siffror träna mera Talområdet tränar eleven endast något med att forma siffror. Vid behov använder eleven arbetsblad med rutor och linjer för att öva mer på att skriva siffrorna som ligger sist i materialet. Pärmryggar Det finns färdiga pärmryggsetiketter att kopiera och med hjälp av dessa kan läraren klä pärmen med alla kopierade arbetsblad. Förklaring av uppgifterna Här förklarar vi vad uppgifterna syftar till och förslag på hur dessa är tänkta att utföras. Vi ger också tips om vad du som lärare kan undervisa om kopplat till resp. arbetsblad. Förutom talen möter eleven också olika representationer för resp. tal, talens storlek och inbördes relation, mönster och talmönster, addition och subtraktion, summa och differens, pengar, dubbelt och hälften, udda och jämna tal, lika många =, större än >, mindre än <, fler, färre, mönster och ordningstal, kopiering, flertal, tiotal och ental. Siffra = form Tal = innehåll Arbetshäften För varje nytt tal kan du som lärare i förväg kopiera och göra ett arbetshäfte till eleven. Alternativ kan du sätta ihop ett par tal till ett häfte. Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 6

7 Som framsida väljer du kapitelbladet i Taluppfattning med den talbubbla som visar vilket tal eleven ska jobba med. Väljer du att kopiera sidan i färg har varje tal dessutom sin egen färg. För varje tal finns det olika typer av uppgifter att träna på för att ge eleven en grundläggande förståelse och färdighet. Dessa uppgifter finns förtecknade i alfabetisk ordning på följande sida. Kartläggning Små steg Kartläggningsblanketten Små steg visar var eleven befinner sig i sin matematiska utveckling. I stora drag handlar det om en progression även om stegen kan utvecklas i en liten annan ordning. Hela kartläggningsmaterialet Små steg återfinns i alla Wendick-modellens Räkne- Test. Facit Facit finns under Bilagor på problemtalen 1-100, Räkna och måla-bilderna samt på flertalsuppgifterna. Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 7

8 Talet Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 8

9 ett tiotal noll ental Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 9

10 Tal och talmönster Dra streck mellan prickarna i nummerordning! Skriv talen som fattas! Fortsätt talmönstret! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 10

11 10-kamrater Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 11

12 Tal som fattas! 10 - = = = = = = = = = = 0 10 kr ska finnas i varje ruta. Rita det som fattas! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 12

13 Dubbelt Rita dubbelt så många! Skriv antalet! Ringa in talet som är dubbelt så stort! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 13

14 Hälften Måla hälften så många! Skriv antalet! Ringa in talet som är hälften så stort! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 14

15 Udda och jämna tal Udda tal Jämna tal Skriv talen som fattas! Måla jämna tal och udda tal Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 15

16 Måla 2 färre! Större än >, Mindre än < Sätt ut rätt tecken > < Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 16

17 Flertal Rita 7 bollar i Ruta 1. Dela upp bollarna i Lådorna 1, 2 och 4. Skriv på mattespråk! Rita 10 bollar i Ruta 1. Dela upp bollarna i Lådorna 2, 3 och 5. Skriv på mattespråk! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 17

18 Räkna ut uppgifterna! Flertal Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 18

19 Mönster och ordningstal Måla färdigt mönstret! Måla ett eget mönster! Måla färdigt mönstret! Sätt ett kryss över det tionde hjärtat! Rita en likadan! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 19

20 Räknesaga En mus äter ost. Det kommer två möss till. Då blir det tre möss. Skriv på mattespråket! = 3 Svar: 3 möss Rita, berätta och skriv en egen räknesaga! Skriv på mattespråket! Svar: Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 20

21 Problemlösning 1. Tim har 5 kronor. Christer har dubbelt så mycket. Hur mycket har Christer? 2. Tilde har 10 kritor. Sara har hälften så många. Hur många har Sara? 3. I kön till matsalen står 8 barn. Hälften är pojkar. Hur många flickor är det? 4. En liten klubba kostar 2 kronor. En stor klubba kostar dubbelt så mycket. Hur mycket kostar den stora klubban? 5. Isak ser 4 myror på en sten. Selma ser dubbelt så många på marken. Hur många myror ser Selma? 6. Max köper två klubbor. De kostar 10 kronor. Vad kostar en klubba? 7. Pappa steker 6 korvar till Miriam och Leon. Miriam äter dubbelt så många som Leon. Hur många korvar äter Miriam? 8. Mark har 6 bilar. Eva har hälften så många. Hur många har de tillsammans? Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 21

22 Repetition Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 22

23 Skriv talen! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 23

24 Måla talen! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 24

25 Addition upptäck samband Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 25

26 Subtraktion upptäck samband! Wendick-modellen Taluppfattning 6-10 version 1.1 PROVSIDA 26

Taluppfattning. Talområde Systematisk genomgång tal för tal

Taluppfattning. Talområde Systematisk genomgång tal för tal Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings- och träningsmaterial

Läs mer

Taluppfattning Systematisk genomgång tal för tal

Taluppfattning Systematisk genomgång tal för tal Taluppfattning 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial

Läs mer

Taluppfattning Systematisk genomgång tal för tal

Taluppfattning Systematisk genomgång tal för tal Taluppfattning 6-10 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial

Läs mer

Taluppfattning 0-100

Taluppfattning 0-100 Taluppfattning 0-100 Med tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings-

Läs mer

Taluppfattning 0-5. Systematisk genomgång tal för tal Wendick-modellen Taluppfattning 0-5 version 1.5 PROVSIDA

Taluppfattning 0-5. Systematisk genomgång tal för tal Wendick-modellen Taluppfattning 0-5 version 1.5 PROVSIDA Taluppfattning 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 2016 Wendick-modellen Taluppfattning 0-5 version 1.5 Wendick-modellens material Wendick-modellen består av en serie

Läs mer

Taluppfattning Utan tiotalsövergångar. Systematisk genomgång av talområden

Taluppfattning Utan tiotalsövergångar. Systematisk genomgång av talområden Taluppfattning 0-100 Utan tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

Obs! Extraversion med fler bilder. Taluppfattning. Talområde Systematisk genomgång av talområden

Obs! Extraversion med fler bilder. Taluppfattning. Talområde Systematisk genomgång av talområden Obs! Extraversion med fler bilder Taluppfattning Talområde 0-100 Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med

Läs mer

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.

Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1. Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

Klockan. Analog. Systematisk genomgång av klockslag och tidsuppfattning

Klockan. Analog. Systematisk genomgång av klockslag och tidsuppfattning Klockan Analog Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

Klockan Med analog tid Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick

Klockan Med analog tid Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick Klockan Med analog tid Systematisk genomgång av klockslag och tidsuppfattning Gunnel Wendick Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade träningsmaterial som säkrar

Läs mer

RäkneTest 3. Multiplikation/Division med bråkstreck

RäkneTest 3. Multiplikation/Division med bråkstreck RäkneTest 3 Multiplikation/Division 1-10 med bråkstreck Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade test- och träningsmaterial som

Läs mer

RäkneTest 1. Addition och Subtraktion. Talområde 1-10

RäkneTest 1. Addition och Subtraktion. Talområde 1-10 RäkneTest 1 Addition och Subtraktion Talområde 1-10 Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial som

Läs mer

Räkneflyt 1. Addition och Subtraktion. Färdighetsträning i matte. Talområde 1-10

Räkneflyt 1. Addition och Subtraktion. Färdighetsträning i matte. Talområde 1-10 Räkneflyt 1 Addition och Subtraktion Talområde 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

Räkneflyt 2. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20

Räkneflyt 2. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20 Räkneflyt 2 Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

Räkneflyt 3. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10

Räkneflyt 3. Multiplikation och Division. Färdighetsträning i matte. Tabeller 1-10 Räkneflyt 3 Multiplikation och Division Tabeller 1-10 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie strukturerade kartläggnings-

Läs mer

RäkneTest 2. Addition och Subtraktion. Talområde 11-20. 2015 Wendick-modellen RäkneTest 2 Addition och subtraktion 11-20, version 1.

RäkneTest 2. Addition och Subtraktion. Talområde 11-20. 2015 Wendick-modellen RäkneTest 2 Addition och subtraktion 11-20, version 1. RäkneTest 2 Addition och Subtraktion Talområde 11-20 Gunnel Wendick Inga-Lis Klackenmo 1 Wendick-modellens material Wendick-modellen består av en serie med strukturerade test- och träningsmaterial som

Läs mer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer

Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Kunskap om samband mellan lässvårigheter

Kunskap om samband mellan lässvårigheter görel sterner Lässvårigheter och räknesvårigheter Här presenteras några exempel på hur specialundervisning i matematik kan läggas upp med tanke på svårigheter kopplade till fonologi, arbetsminne, automatiseringsprocesser

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20

Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20 Räkneflyt Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 7 Förståelse

Läs mer

Stora Plus. Uppgifter i addition där summan är högst 20 kallar vi i skolan för Stora plus. (term + term = summa).

Stora Plus. Uppgifter i addition där summan är högst 20 kallar vi i skolan för Stora plus. (term + term = summa). Allmänt Stora Plus Uppgifter i addition där summan är högst 20 kallar vi i skolan för Stora plus. (term + term = summa). I steg 1 är en av termerna högre än 10 t ex 11+3. Dessa tal bör vara enkla för barnen

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

MÄSTERKATTEN 1A FACIT. Jag

MÄSTERKATTEN 1A FACIT. Jag MÄSTERKATTEN A FACIT VANTEN Problemlösning Arbeta två och två. Musen, i bild, har gömt några ostbitar i den gröna burken.. Hur många tror ni att han har gömt?. Hur många har han då sammanlagt? Vi har jämfört

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1

Matematik klass 2. Höstterminen. Anneli Weiland Matematik åk 2 HT 1 Matematik klass 2 Höstterminen Anneli Weiland Matematik åk 2 HT 1 Minns du från klass 1? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Lyssna, Skriv och Läs!

Lyssna, Skriv och Läs! Lyssna, Skriv och Läs! Läsinlärning från grunden Gunnel Wendick Innehållsförteckning Introduktion 5-8 Sidhänvisningar till uppgifterna 9 Förklaring av uppgifterna 10-13 O o 15-19 S s 20-24 A a 25-29 L

Läs mer

Lilla Plus. Uppgifter i addition där summan är högst 10 kallar vi i skolan för Lilla plus. (term + term = summa)

Lilla Plus. Uppgifter i addition där summan är högst 10 kallar vi i skolan för Lilla plus. (term + term = summa) Allmänt Lilla Plus Uppgifter i addition där summan är högst 10 kallar vi i skolan för Lilla plus. (term + term = summa) Här nedan har vi delat in additionsuppgifterna i olika svårighetsgrader. I början

Läs mer

Taluppfattning och allsidiga räknefärdigheter

Taluppfattning och allsidiga räknefärdigheter Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Wendick-modellens signum

Wendick-modellens signum Wendick-modellen Wendick-modellen Wendick-modellens signum Strukturerade material (wendick.se) Ren layout Tydliga mönster Små utvecklingssteg Tydlig och långsam progression Betonar vikten av baskunskaper/färdigheter

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Korsorden är gjorda i fyra nivåer för att möjliggöra individanpassning och repetition inom de olika områdena när kunskaperna utökats.

Korsorden är gjorda i fyra nivåer för att möjliggöra individanpassning och repetition inom de olika områdena när kunskaperna utökats. Matematiska begrepp är en av de centrala delarna i Lgr-11 och matematikundervisningen, även i yngre åldrar. Syftet talar om att eleverna ska ges förutsättningar att utveckla förtrogenhet med grundläggande

Läs mer

Dubblor. Lärarstöd med spel och arbetsblad

Dubblor. Lärarstöd med spel och arbetsblad Dubblor Lärarstöd med spel och arbetsblad Innehållet i Dubblor är hämtat ur lärarstödet Mattehoppet / Strategier. Materialet är avsett att stödja en strukturerad undervisning för att eleverna ska ha möjlighet

Läs mer

Tummen upp! Matte ÅK 6

Tummen upp! Matte ÅK 6 Tummen upp! Matte ÅK 6 Tummen upp! är ett häfte som kartlägger elevernas kunskaper i förhållande till kunskapskraven i Lgr 11. PROVLEKTION: RESONERA OCH KOMMUNICERA Provlektion Följande provlektion är

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Tränarguide del 2. Mattelek. www.flexprogram.se

Tränarguide del 2. Mattelek. www.flexprogram.se Tränarguide del 2 Mattelek www.flexprogram.se 1 ANTALSUPPFATTNING - MINST/STÖRST ANTAL Övningarna inom detta område tränar elevernas uppfattning av antal. Ett antal objekt presenteras i två separata rutor.

Läs mer

Lektionsaktivitet: Tals helhet och delar

Lektionsaktivitet: Tals helhet och delar Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 7: Om tal och tid Lektionsaktivitet: Tals helhet och delar Berit Bergius & Lena Trygg, NCM Syfte Syftet med aktiviteten är att ge erfarenheter

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?

a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många? 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA

Läs mer

Lärarhandledning matematik

Lärarhandledning matematik Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren

Läs mer

Matematik klass 1. Vår-terminen

Matematik klass 1. Vår-terminen Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Språkljud Test. Kartläggning av uttal med bilder. Gunnel Wendick

Språkljud Test. Kartläggning av uttal med bilder. Gunnel Wendick Språkljud Test Kartläggning av uttal med bilder Gunnel Wendick Om Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial som säkrar viktiga basfärdigheter

Läs mer

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland

Matematik F-3. Nytt annorlunda läromedel för lågstadiet. Anneli Weiland Matematik F-3 Nytt annorlunda läromedel för lågstadiet 1 Varför ny matematik? Jag har saknat en tydlig bok som fokuserar på matematik Bort med glättiga bilder, matematik är vackert utan bilder Två grundläggande

Läs mer

Hundrarutor, markörer, penna och miniräknare. På följande sidor finns hundrarutor för kopiering.

Hundrarutor, markörer, penna och miniräknare. På följande sidor finns hundrarutor för kopiering. strävorna 4A 100-rutan taluppfattning färdighetsträning mönster Avsikt och matematikinnehåll På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta

Läs mer

Lässvårigheter och lärande i matematik. Kan man lära sig räkna trots lässvårigheter?

Lässvårigheter och lärande i matematik. Kan man lära sig räkna trots lässvårigheter? Lässvårigheter och lärande i matematik Kan man lära sig räkna trots lässvårigheter? Dyslexi En funktionsnedsättning i det fonologiska systemet Svårigheter att hantera språkets minsta byggstenar - Ordavkodning

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter.

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter. läsa, skriva och storleksordna tal antal Skriv talet som kommer efter. 6 7 79 80 699 700 869 870 Skriv talet som kommer före. 26 27 49 50 899 900 59 540 Fortsätt att skriva talen som kommer efter. 296

Läs mer

Vad är det som gör skillnad?

Vad är det som gör skillnad? Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström

Läs mer

Innehåll och förslag till användning

Innehåll och förslag till användning Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva

Läs mer

Steg-Vis. Innehållsförteckning

Steg-Vis. Innehållsförteckning Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15

Läs mer

Vad kan vi i Sverige lära av Singapores matematikundervisning?

Vad kan vi i Sverige lära av Singapores matematikundervisning? Vad kan vi i Sverige lära av Singapores matematikundervisning? Singapore tillhör sedan länge toppnationerna i internationella undersökningar som Pisa och TIMSS. Deras framgångar har gjort att många andra

Läs mer

Strukturerad intensivundervisning

Strukturerad intensivundervisning Susanne Lantz & Helena Roos Strukturerad intensivundervisning i aritmetik I en undervisning som är inkluderande betraktas olikheter som tillgångar och alla elever ges möjligheter att vara aktiva. Här beskriver

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Hagabackens rektorsområde Ramshyttans rektorsområde Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Planering för perioden: v. 34-51 Ämne: Matematik År: 1 Lärare: Jessica

Läs mer

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Matematikutveckling med stöd av alternativa verktyg

Matematikutveckling med stöd av alternativa verktyg Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska

Läs mer

Identifiering av stödbehov

Identifiering av stödbehov Identifiering av stödbehov Bedömning i matematik Förskola - vår Lärarhandledning Allmänna principer för bedömningen Bekanta dig på förhand med instruktionerna och materialet. Kontrollera att du har allt

Läs mer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer

Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna

Läs mer

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE MÄSTERKATTEN B FACIT GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE Problemlösning Arbeta två och två. Gubben hade bakat plåtar med bullar. Några bullar på varje plåt blev brända.. Hur många bullar tror ni gubben

Läs mer

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups.

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups. 3 Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

Att lyckas med problemlösning huvudmålet i grundskolans matematik

Att lyckas med problemlösning huvudmålet i grundskolans matematik Att lyckas med problemlösning huvudmålet i grundskolans matematik Ingrid Olsson. Har du några funderingar så är min mailadress: ingrid.olsson5@bredband.net Problemlösning som huvudmål Problemlösning har

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

MULTIPLIKATION ISBN

MULTIPLIKATION ISBN Till läraren MULTIPLIKATION ISBN 978-91-7762-696-1 För att kunna lösa vardagliga matematiska problem måste eleverna bland annat ha väl inövade färdigheter i olika räknesätt. Repetitioner och individuella

Läs mer

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall Koll på 2B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Addition, subtraktion Dubbelt. Skriv. 2 + 2 = 5 + 5 = + = + = 6 8 9 + 9 = 7 + 7 = 8 + 8 = 6 + 6 = 8 6 2 Tiokamrater.

Läs mer

Om det finns något som de flesta som arbetar med barn är överens om, så är

Om det finns något som de flesta som arbetar med barn är överens om, så är inledning Om det finns något som de flesta som arbetar med barn är överens om, så är det att fantasi är något positivt och önskvärt i barns liv. Fantasi och kreativitet hör nära samman och det är just

Läs mer

Plan för matematikutvecklingen

Plan för matematikutvecklingen Plan för matematikutvecklingen i förskola, förskoleklass och skola i Ale kommun Det faktiska matematiska syns i alltsammans. Anne-Marie Körling 2010-10-20 1 Innehåll Allmän del Inledning Vad är det att

Läs mer

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1

I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 BEGREPP ÅR 3 Taluppfattning och tals användning ADDITION 3 + 4 = 7 term + term = summa I addition adderar vi. Vi kan addera termerna i vilken ordning vi vill: 1 + 7 = 7 + 1 SUBTRAKTION 7-4 = 3 term term

Läs mer

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009

Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Taluppfattning åtgärda. Sammanfattning Västerås 3 och 4 februari 2009 Skriver först en liten sammanfattande inledning, tar upp de områden vi samtalade om och mycket av det vi tog upp hittar ni i Förstå

Läs mer

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1

Matematik klass 2. Vårterminen. Anneli Weiland Matematik åk 2 VT 1 Matematik klass 2 Vårterminen Anneli Weiland Matematik åk 2 VT 1 Minns du från höstens bok? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+

Läs mer

Att utveckla taluppfattning genom att dela upp tal är mycket vanligt i de

Att utveckla taluppfattning genom att dela upp tal är mycket vanligt i de Jorryt van Bommel Räkna med ägg När elever möter matematikinnehåll genom arbete med konkret och laborativt material är det av vikt att steget från konkret arbete till abstrakt och generell matematik inte

Läs mer

34 Plus och minus. Elevbok Safaridelen sidan 32 Diagnos sidan 44 Förstoringsglaset sidan 46 Kikaren sidan 50 Längd sidan 54

34 Plus och minus. Elevbok Safaridelen sidan 32 Diagnos sidan 44 Förstoringsglaset sidan 46 Kikaren sidan 50 Längd sidan 54 2 Plus och minus Kapitlet behandlar addition och subtraktion inom talområdet 0-100 med uppgifter som 42 + 3 och 45 3. Vid uträkningen blir det inga tiotalsövergångar. Till en början får eleverna hjälp

Läs mer

Kommentarmaterial, Skolverket 1997

Kommentarmaterial, Skolverket 1997 Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska

Läs mer

Matematik i barnets värld

Matematik i barnets värld Matematik i barnets värld Välkomna! Anette Skytt Elisabeth Hector Matematikutvecklare i Botkyrka kommun Banslätt 18 november 2010 Matematiken runt omkring oss och barnens matematik. Vuxna använder matematik

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning BONNIERS. Andra upplagan, reviderade sidor

Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer. Matte. Safari. Direkt. Lärarhandledning BONNIERS. Andra upplagan, reviderade sidor Matte Direkt Pernilla Falck Margareta Picetti Siw Elofsdotter Meijer Safari 1B Lärarhandledning BONNIERS 8 Minus Kapitlet inleds med en repetition av subtraktion i talområdet 0-10, så att eleverna kan

Läs mer

PRIMA MATEMATIK UTMANING 1 FACIT

PRIMA MATEMATIK UTMANING 1 FACIT Kapitel om talen,,,, och 0 ela upp talen, och använa likhetstecknet. Va betyer siffran på bilen? Skriv eller berätta för en kompis. september Öva på att använa matematiska symboler. Va betyer siffran på

Läs mer

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven

Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära

Läs mer

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1 Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer