Lässvårigheter och lärande i matematik. Kan man lära sig räkna trots lässvårigheter?
|
|
- Martin Öberg
- för 8 år sedan
- Visningar:
Transkript
1 Lässvårigheter och lärande i matematik Kan man lära sig räkna trots lässvårigheter?
2 Dyslexi En funktionsnedsättning i det fonologiska systemet Svårigheter att hantera språkets minsta byggstenar - Ordavkodning - Läsförståelse - Stavning - Arbetsminnet - Vokabulär - Muntliga sammanhang - Ärftlighet
3 Miljö belastning Miljöbelastning Lässvårigheter Räknesvårigheter D A B C Sårbarhet för dyskalkyli dyslexi Genetisk belastning
4 Om det inte är dyskalkyli vad är det då? (Gunnar Sjöberg, 2006) Underskott av matematikundervisning Tidstjuvar Lektioners början och slut Enskilda elevers låga arbetsinsats i skolan Enskilda elevers låga arbetsinsats hemma Relationer mellan lärare och elev Gruppstorlek och arbetsro
5 Räknesvårigheter och lässvårigheter Allmän kognitiv förmåga Arbetsminne Läsning Automatisering Regelrigiditet ADHD Fonologisk förmåga Matematik
6 Matematikord jämförelseord Storlek: stor, större, störst liten, mindre, minst Antal: många, fler, flest få, färre,? Kvantitet: mycket, mer, mest litet, mindre, minst Massa: tung, tyngre, tyngst lätt, lättare, lättast Längd: lång, längre, längst kort, kortare, kortast Höjd: hög, högre, högst låg, lägre, lägst Bredd: bred, bredare, bredast smal, smalare, smalast Tjocklek: tjock, tjockare, tjockast tunn, tunnare, tunnast Ålder: gammal, äldre, äldst ung, yngre, yngst Gudrun Malmer, 1999
7 År 1-4 År 5-6 År 7-9
8 Vårt tiobassystem För talen 1 9 finns det ett ord och en siffra för varje tal För talen finns det ett ord men två siffror för varje tal Kinesiska: tio-ett, tio-två, tio-tre Svenska: fem-ton, sex-ton, sju-tton Tre-tio, fyra-tio, fem-tio Hundra Noll
9 målinriktad Motivation uppmärksamhet uthållig koncentration visar tilltro till den egna förmågan engagerad Uppgiftsorientering nyfikenhet vilja att bemästra positivt utmanande intresse självständighet tål motgångar
10 Uppgiftsorientering, läsförståelse och matematik Läsförståelse Uppgiftsorientering Matematik
11 Fonologisk medvetenhet sol segmentering Ο O O sol syntes
12 Helhet del - del Talet 7 OOOOOOO OOOO OOO OOOOOOO
13 Central exekutiv Visuell-spatiala upplagring Episodisk buffert Fonologisk lagring Inre tysta talet Långtidsminnet Baddeley, 2006
14 Gathercole& Alloway, 2008
15 Hålla kvar, bearbeta och uppdatera information i arbetsminnet samt stänga ute irrelevant information. Läsning Skrivning Matematik Följa instruktioner
16 Klassrumssituationer - ouppmärksamma, distraherade, dagdrömmer - tillbakadragna i klassrumsdiskussioner - svårt att övervaka och kontrollera sitt arbete - svårt att komma ihåg och följa instruktioner - dålig uthållighet - presterar under sin förmåga, lär sig långsamt
17 Några principer för undervisning Övervaka elevens skolarbete Bedöm aktiviteters krav på arbetsminnet och reducera kraven när det är möjligt Skapa sammanhang i undervisningen Använd olika typer av minnesstöd i klassrummet Hjälp eleven att utveckla minnesstrategier Kontinuerlig kartläggning, analys och åtgärder
18 Exempel på svårigheter i matematik Talfakta, enkla räkneoperationer Uppskattning, tals storleksförhållanden Ordproblem Addition och subtraktion med flersiffriga tal Räkneprinciper, räknelagar Talmönster Klockan
19
20
21 Undervisningens fyra faser Den laborativa muntliga fasen Den representativa fasen Den abstrakta fasen En fas för att befästa, återkoppla och att skapa samband som grund för fortsatt lärande (Minskoff & Allsopp, 2006; Swanson, 2007)
22 Laborativa fasen Vilka kombinationer är möjliga? Hur många kombinationer finns det? Hur kan du beskriva det aktuella mönstret?
23 Representativa fasen
24 Talfamiljer 3+4=7 4+3=7 7-3=4 7-4=3
25 Övning är viktigt men måste genomföras med insikt Öva för att upptäcka mönster och relationer Öva för att automatisera utvecklingsbara strategier, inte för att drilla isolerade fakta Övning av talkombinationer måste genomföras med ett klart syfte
26 Positionssystemet
27 Begreppsliga strukturer för hela tal
28 Den mentala tallinjen Logaritmisk tallinje Linjär tallinje
29 Tallinjen Ramsräkning framåt och bakåt Talens storleksordning Talens grannar, nästan grannar Positionssystemet, ental och tiotal
30
31 Tvåhopp Tiohopp med start från olika tal
32 99 47 = = = = = = Jämför: = =
33 Tomma tallinjen
34 Mentala tallinjen Ett matematiskt redskap för tänkande Uppskattning Addition, subtraktion Talfakta Ordproblem Huvudräkning Beräkning av flersiffriga tal
35 Ordavkodning Textuppgifter i matematik Läsförståelse och förtrogenhet med räknesättens innebörder Matematiska ord fler, färre, lika med, term, summa, volym, talföljd, skillnad, udda, addition, subtraktion, tiotal, hundratal Inre representationer, lösningsmodell Automatiserade talfakta, effektiva räknestrategier Metakognition
36 Textuppgifter i matematik Vilket av de fyra lösningsförslagen är det rätta? Motivera ditt val! Försök att motivera varför du anser att vart och ett av de övriga förslagen är felaktiga. Fredrik åker buss till ett sommarläger tillsammans med 8 andra barn. Bussen kör 7 mil i timmen. Resan tar 4 timmar. Hur långt är det till sommarlägret? = 19 mil = 11 mil. 7 x 4 = 28 mil = 20 mil.
37 LURBRA 1. Läs hela texten och återge den med egna ord. 2. Upprepa frågan högt för dig själv och stryk under frågan. 3. Ringa in viktig information. 4. Bestäm räknesätt. Är detta ett flerstegsproblem? 5. Rita en lösning och berätta steg för steg hur du tänker. 6. Använd matematikspråket.
38
39 Matematikord och termer Markera vilka ord i texten som är viktiga och som kan tänkas vara svåra. Skriv orden på tavlan. Gör en gemensam tankekarta. faktor Multiplikation produkt gånger multiplicera Låt eleverna förklara hur produkt, faktor och multiplikation hör ihop
40
41 Vad får du veta? Hur kan du fråga? Vad kan du ta reda på? Vad får du till svar? Anna är 9 år och Senad är 11 år. Hur mycket äldre är Senad än Anna? Hur mycket yngre är Anna än Senad? Hur stor är skillnaden i ålder? Hur gamla var barnen för 3 år sedan? Hur gamla kommer de att vara om 10 år? Hur gammal blir Senad då Anna är dubbelt så gammal som hon är nu? Vid vilken ålder var Anna hälften så gammal som Senad? Hur många år dröjer det innan de tillsammans är 30 år? (Malmer, 1999)
42 En elev med god taluppfattning tittar på ett problem i sin helhet innan hon går in på detaljer letar efter samband mellan tal och operationer och tar hänsyn till ett problems sammanhang väljer att hitta en metod som stämmer med den egna förståelsen av sambandet mellan tal, eller mellan tal och omvärld och strävar efter den mest effektiva representationen eller tolkningen av den givna uppgiften använder hållpunkter eller benchmarks för att bedöma tals storlek känner igen orimliga resultat på uträkningar när man på vanligt sätt reflekterar över svar (B. Reys & R. E. Reys, 1995)
Matematiksvårigheter i ett brett perspektiv på lärande
Matematiksvårigheter i ett brett perspektiv på lärande Ljungby 2009 02-03 Görel Sterner, Nationellt Centrum för Matematikutbildning (NCM) gorel.sterner@ncm.gu.se Om det inte är dyskalkyli vad är det då?
Intensivundervisning i matematik Sundbyberg stad Timmersdala och Lerdala skolor i Skövde NCM, Göteborgs universitet
Intensivundervisning i matematik Sundbyberg stad Timmersdala och Lerdala skolor i Skövde NCM, Göteborgs universitet Uppdrag Sundbyberg Uppdrag Skövde Politiker Förvaltningschef Rektorer Lärare Intensivlärare
Intensivundervisning i matematik Sundbyberg stad Timmersdala och Lerdala skolor i Skövde NCM, Göteborgs universitet
Intensivundervisning i matematik Sundbyberg stad Timmersdala och Lerdala skolor i Skövde NCM, Göteborgs universitet Uppdrag Sundbyberg Politiker Förvaltningschef Uppdrag Skövde Rektorer Lärare Rektorer
Nationella prov i läsförståelse och matematik 17,7 % av eleverna i grundskolan nådde inte målen för godkänt i läsförståelse på nationella provet 2010
Nationella prov i läsförståelse och matematik 17,7 % av eleverna i grundskolan nådde inte målen för godkänt i läsförståelse på nationella provet 2010 (matematik 17,5 %). PISA 17,4 % av eleverna presterar
Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer
Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter
Kunskap om samband mellan lässvårigheter
görel sterner Lässvårigheter och räknesvårigheter Här presenteras några exempel på hur specialundervisning i matematik kan läggas upp med tanke på svårigheter kopplade till fonologi, arbetsminne, automatiseringsprocesser
Kommentarmaterial, Skolverket 1997
Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska
Sambanden mellan räknesvårigheter och lässvårigheter under de första skolåren hur hänger de ihop? Görel Sterner 2007 05-29
Sambanden mellan räknesvårigheter och lässvårigheter under de första skolåren hur hänger de ihop? Görel Sterner 2007 05-29 Jämförelseord Storlek: stor, större, störst liten, mindre, minst Antal: många,
Matematikutveckling med stöd av alternativa verktyg
Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
PP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.
MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna
Taluppfattning 0-100
Taluppfattning 0-100 Med tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings-
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken
Små barns matematik, språk och tänkande går hand i hand. Görel Sterner Eskilstuna 2008
Små barns matematik, språk och tänkande går hand i hand Görel Sterner Eskilstuna 2008 Rollek - Nalle ska gå på utflykt. - Nu är hon ledsen, hon vill inte ha den tröjan. - Nalle ska ha kalas, då ska hon
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok för stöd och stimulans Alistair McIntosh NCM NSMO Alistair McIntosh Professor emeritus, University of Tasmania Australien Nya vägar i räkneundervisningen
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Erfarenheter av intensivundervisning i matematik. Görel Sterner Nationellt centrum för matematikutbildning (NCM)
Erfarenheter av intensivundervisning i matematik Görel Sterner Nationellt centrum för matematikutbildning (NCM) gorel.sterner@ncm.gu.se Intensivundervisning i matematik Bakgrund Vad är Responsiveness to
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Räknesvårigheter och lässvårigheter
NCM 7 maj 2007 Räknesvårigheter och lässvårigheter Ingvar Lundberg Psykologiska institutionen Göteborgs universitet Föreläsningarna inrymmer En analys av sambandet mellan lässvårigheter och räknesvårigheter
kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt
Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda
Taluppfattning Utan tiotalsövergångar. Systematisk genomgång av talområden
Taluppfattning 0-100 Utan tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings-
Taluppfattning. Talområde 0-5. Systematisk genomgång tal för tal. 2015 Wendick-modellen Taluppfattning 0-5 version 1.
Taluppfattning Talområde 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 19 Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
Alistair McIntosh NSMO NCM
Alistair McIntosh NSMO NCM Syfte Hjälpa lärare att förebygga missuppfattningar och svårigheter genom god undervisning Utveckla elevers taluppfattning så långt deras förmåga räcker för fortsatta studier,
Matematik i barnets värld
Matematik i barnets värld Välkomna! Anette Skytt Elisabeth Hector Matematikutvecklare i Botkyrka kommun Banslätt 18 november 2010 Matematiken runt omkring oss och barnens matematik. Vuxna använder matematik
Intensivundervisning i matematik. Görel Sterner, NCM
Intensivundervisning i matematik Görel Sterner, NCM gorel.sterner@ncm.gu.se Varför r kämpar k en del elever med matematik? Saknar viktiga erfarenheter under förskoletiden Emotionella problem, blockeringar
Matematiksvårigheter en trasslig historia
Matematiksvårigheter en trasslig historia Föreläsning 4/5 Helena Roos Vad är matematiksvårigheter? Matematiksvårigheter är ett relativt begrepp, vi ställer elevers kunskaper i matematik i relation till
Taluppfattning. Talområde 10-20. Systematisk genomgång tal för tal
Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial
Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN
RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Nyckelord Grundläggande matematik. Ord- och begreppshäfte. Elisabet Bellander ORD OCH BEGREPP. Matematik
Nyckelord Grundläggande matematik Ord- och begreppshäfte Elisabet Bellander ORD OCH BEGREPP Matematik 1. BANK - VARDAGSORD 1. Minst 2. Uttag 3. Insättning 4. Kontonummer 5. Uttaget belopp kvitteras 6.
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,
Bedömningsstöd i taluppfattning
Bedömningsstöd i taluppfattning Elisabeth Pettersson Pedagogisk Inspiration Malmö elisabeth.pettersson@malmo.se Christina Svensson Pedagogisk Inspiration Malmö christina.svensson@malmo.se Årskurs 1 och
Min matematikordlista
1 Min matematikordlista Namn 2 ADJEKTIV STORLEK Skriv en mening om varje ord. Stor Större Störst 3 Liten Mindre Minst Rita något litet! Rita något som är ännu mindre! Rita något som är minst! 4 ANTAL Skriv
Taluppfattning Systematisk genomgång tal för tal
Taluppfattning 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial
Taluppfattning Systematisk genomgång tal för tal
Taluppfattning 6-10 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial
jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen
Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.
Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 2A matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 1Volym Vad rymmer mest? Ringa in. Vad rymmer minst? Ringa in. Ta fram tre olika föremål som rymmer olika mycket. Rita
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Matematik klass 1. Vår-terminen
Matematik klass 1 Vår-terminen Rita din matematik-bild Skriv ditt namn i rutan Måla alla rutor där svaret blir 10 3+2 1+9 5+4 6+4 3+7 5+5 4-4 8+4 3+7 9+0 2+8 2+4 7+3 7-6 5+2 5+5 4+4 3+7 6-2 6+4 8+3 6+1
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
Taluppfattning. Talområde Systematisk genomgång tal för tal
Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings- och träningsmaterial
matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall
Koll på 1B matematik FACIT Läxbok Hanna Almström Pernilla Tengvall Sanoma Utbildning 7 7Hälften och dubbelt av antal, strategier Rita dubbelt så många. Skriv. 2 4 6 4 8 5 Minska med 1. Öka med 1. 1 + 1
Lokal studieplan matematik åk 1-3
Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen
Pedagogisk kartläggning
Pedagogisk kartläggning FRÅGESTÄLLNING: LÄSA? ARBETSMINNE? RÄKNA? SKRIVA? STAVA? UPPMÄRKSAMHET? KONCENTRATION? FÖRMÅGA SE MÄNGD? LÄSA NON-ORD? Färdighetstest i Läsning VILKA BYGGSTENAR I ARBETSMINNE? Arbetsminnestest
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Studenter i lärarprogrammet GF(11GF20) 46 p G: 28 p VG: 38 p
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp Studenter i lärarprogrammet GF(11GF20) 15 högskolepoäng TentamensKod: Tentamensdatum: 18-05-22 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
5 Olga fyller hundra år idag. Vilket år föddes hon? (3) [Du kan muntligt tala om vilket år det är nu. Visa det inte skriftligt.
Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift
Taluppfattning 0-5. Systematisk genomgång tal för tal Wendick-modellen Taluppfattning 0-5 version 1.5 PROVSIDA
Taluppfattning 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 2016 Wendick-modellen Taluppfattning 0-5 version 1.5 Wendick-modellens material Wendick-modellen består av en serie
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
MATEMATIKUNDERVISNINGENS BLOCKERANDE MISSTAG 1
1 MATEMATIKUNDERVISNINGENS BLOCKERANDE MISSTAG 1 MATEMATIKUNDERVISNINGENS BLOCKERANDE MISSTAG Systematiska strukturella misstag Stora grupper elever Blockering av matematikutveckling Specifika innehållsliga
K L Ä M. Klassificeringsmodell för inlärningssvårigheter i matematik
K L Ä M Klassificeringsmodell för inlärningssvårigheter i matematik BARBARA PELICANO SOEIRO WHATCOLOURISANORANGE.WORDPRESS.COM ORANGEEDUSITE@GMAIL.COM KLÄM - Klassificeringsmodell för inlärningssvårigheter
Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal
TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -
Nationella strävansmål i matematik. Skolan skall i sin undervisning i matematik sträva efter att eleven
Nationella strävansmål i matematik Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära
Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1
Matematik med didaktisk inriktning för grundlärare i förskoleklass och grundskolans a rskurs 1-3, III, VT18 7,5 högskolepoäng Provmoment: Tentamen Matematik och matematikdidaktik, 3 hp, tillfälle 1 Ladokkod:
Matematik. Ämnesprov, läsår 2014/2015. Bedömningsanvisningar. Årskurs
Ämnesprov, läsår 2014/2015 Matematik Bedömningsanvisningar Årskurs 3 Prov som återanvänds av Skolverket omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds
FACIT. Kapitel 1. Version
FACIT Kapitel Version -0- Version -0- Vi repeterar talen 0 till 0 000 Öva begreppen.. Titta på bilden. Skriv de tal som fattas. Räkn är ett fyrsiffrigt tal 000 + 00 + 0 + 0 0 000 Tal skrivs med siffror.
Arbetsminnes- testutbildning. Neuropsykolog Björn Adler. Björn Adler
Arbetsminnes- testutbildning Neuropsykolog Björn Adler Innehåll Arbetsminnet (teori) Arbetsminnestestet Praktiskt arbete -testet Didaktik (teori) Praktiskt arbete - hjälparbetet Summering Arbetsminnet
Analys. Talet 7 OOOOO = = Syntes = Räknar 5, 6, = Räknar konkreta saker Räknar på fingrarna
Analys Talet 7 OOOOOOO OOOO OOO OOOOOO OOOOO O O O 6 1 7 = 6 + 1 5 2 7 = 5 + 2 Syntes 4 + 3 = Räknar 5, 6, 7 2 + 5 = Räknar konkreta saker Räknar på fingrarna Subtraktion 7-4 OOOOOOO OOOOOOO OOOO Taborttänkandebakåträknande
FAKTAAVSNITT: ARBETSMINNE TEORETISK MODELL
FAKTAAVSNITT: ARBETSMINNE TEORETISK MODELL Begreppet arbetsminne började användas på 1960-talet. Tidigare skrevs det istället om korttidsminne som handlar om vår förmåga att under en kort tid hålla information
Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.
Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Matematik. Namn: Datum:
Matematik Namn: Datum: Talraden Skriv färdigt talraden. 195 196 197 393 394 395 397 597 598 600 996 997 999 Addition 199 + 1 = 299 + 1 = 999 + 1 = 199 + 3 = 298 + 3 = 998 + 2 = 599 + 3 = 598 + 4 = 999
Obs! Extraversion med fler bilder. Taluppfattning. Talområde Systematisk genomgång av talområden
Obs! Extraversion med fler bilder Taluppfattning Talområde 0-100 Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med
Läs- och skrivsvårigheter och matematiksvårigheter En sambandsstudie gällande några specialpedagogers uppfattningar
Beteckning: Akademin för teknik och miljö Läs- och skrivsvårigheter och matematiksvårigheter En sambandsstudie gällande några specialpedagogers uppfattningar Hanna Albertsson Ht-2010 15 hp Grundläggande
Här följer exempel på vad som kan belysas och redovisas i utredning om elevens pedagogiska och sociala situation:
1 (4) PEDAGOGISK OCH SOCIAL BEDÖMNING, SKOLA En pedagogisk bedömning för elever i grundskolan skall visa om eleven har förutsättningar att nå grundskolans kunskapsmål. Bedömningen görs av klasslärare/
Del B, C och D samt gruppuppgifter
Del A: Du och matematiken Information om Del A Beskrivning: I Del A ska eleverna bedöma hur säkra de känner sig i vissa situationer då de ska använda matematik. Det är en fördel att börja med Del A innan
DYSKALKYLI MATEMATIKSVÅRIGHETER. Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se
MATEMATIKSVÅRIGHETER DYSKALKYLI Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se Susanna Vuorela, Studerande, Komvux Sundsvall susanna.vuorela@skola.sundsvall.se 2008-09-22
Jämföra, sortera tillsammans reflektera!
Jämföra, sortera tillsammans reflektera! Lärarens roll i barnens matematiklärande Matematik som språk Matematiska begrepp Samtala kring matematik Anna Kärre Förskollärare på Lännersta förskola Föreläsare
Ladokkod: Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4
11GF20 MaI Provmoment: Ladokkod: Tentamen ges för: Matematik 0,5 hp 15 högskolepoäng Studenter i lärarprogrammet GF 11GF20 vt17 tillfälle 1 och vt16 tillfälle 4 TentamensKod: Tentamensdatum: 17-05-12 Tid:
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III, 12F380 ht17 Varberg TentamensKod:
Manual matematiska strategier. Freja. Ettan
Manual matematiska strategier Freja Ordningstalen t.ex första, andra, tredje Ramsräkna framlänges och baklänges till 20 Mattebegrepp addition: svaret i en addition heter summa, subtraktion: svaret i en
MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN
MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp
LIVET I MATTELANDET 2
Lärarhandledning LIVET I MATTELANDET 2 TILL DIG SOM UNDERVISAR Hej och välkommen till Livet i Mattelandet säsong 2 Programserien riktar sig till elever i årskurs 1 3 och förskoleklass. Serien består av
7 Gör två tal mellan femtio och etthundra. (3) Använd alla de fyra siffrorna 4, 6, 3 och 8. Antingen 84 och 63 eller 83 och 64
Elevtest 2, version 2, lärarversion Instruktion Instruktioner och kommentarer är desamma som för testet i den ursprungliga versionen. I denna version är små förändringar av ingående tal gjorda. 1 Fortsätt
DYSKALKYLI MATEMATIKSVÅRIGHETER. Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se
MATEMATIKSVÅRIGHETER DYSKALKYLI Agneta Marsell Specialpedagog, Komvux Sundsvall agneta.marsell@skola.sundsvall.se Susanna Vuorela, Studerande, Komvux Sundsvall SannaV@horse-mail.com 2011-06-23 Agneta Marsell
Innehållsförteckning kopieringsunderlag kapitel 1
Innehållsförteckning kopieringsunderlag kapitel 1 Samtalsbilden...1 Undersökning 1A Hur många?... 2- Mönster...4 Talmönster 1... Talmönster 2...6 Tiohopp...7 Mönsterunderlag...8 Aktivitet 1B Vilket trädgårdsland
Ordlista 2B:1. väggklocka. armbandsklocka. väckarklocka. Dessa ord ska du träna. Öva orden
Ordlista 2B:1 Öva orden Dessa ord ska du träna väggklocka En väggklocka är en klocka som är gjord för att hänga på en vägg. armbandsklocka En armbandsklocka är en klocka som du ska bära runt din handled.
Arbetsområde: Från pinnar till tal
Arbetsområde: Från pinnar till tal Huvudsakligt ämne: Matematik, åk 1-3 Läsår: Tidsomfattning: Ämnets syfte Undervisning i ämnet matematik syftar till: länk Följande syftesförmågor för ämnet ska utvecklas:
a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?
1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA