Matematik Åk 3 Tal och räkning

Storlek: px
Starta visningen från sidan:

Download "Matematik Åk 3 Tal och räkning"

Transkript

1 FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund

2 Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan räkna från: Fyll i talen som fattas: till:

3 De små kuberna är värda 1. Stavarna är värda 10. Plattorna är värda 100. Hur mycket är då detta?

4 Rita med pengar. 29 kr 104 kr 370 kr 755 kr Du har så här mycket pengar: Du ska betala 2 kronor. Rita vad du har kvar. (198 kr) Du har så här mycket pengar: Du ska betala 10 kronor. Rita vad du har kvar. (593 kr) 5 Jag kan använda och beskriva tal.

5 Kan du jämföra och storleksordna tal inom talområdet ? Ringa in den burk som innehåller mest pärlor Sortera korten i storleksordning. Börja med det minsta Sortera korten i storleksordning. Börja med det största

6 Ungefär var på tallinjen finns följande tal? Dra en pil dit (prickig) a) Måla den som står på tredje plats blå. b) Gör prickar på tröjan på den tionde personen. c) På vilken plats står flickan med keps? sjätte d) Ola står näst sist. När de fyra första i kön köpt sina biljetter, på vilken plats står Ola då? sjunde (blå) e) Gör en egen fråga till kön. Egna förslag. Exempel: Hur mycket längre fram i kön står fl ickan med mössa än pojken som dricker läsk?flflfl fl Jag kan jämföra och storleksordna tal inom talområdet

7 Kan du dela upp tal i udda och jämna? Kan du se sambandet mellan hälften och dubbelt? Ringa in alla jämna tal och sätt X under alla udda tal X X X Hur kan man veta om stora tal är udda eller jämna? Visa hur du tänker. De som slutar på 0, 2, 4, 6 och 8 är jämna. De övriga är udda. Hur mycket är dubbelt så mycket som 7? 14 15? ? ? 1340 Skriv vad varorna kostar nu. REA! Halva priset! 1200 kr 460 kr Kostar nu 600 kr 230 kr Kostar nu 64 kr 8400 kr 28 kr 462 kr Kostar nu 32 kr kr 14 kr 231 kr Kostar nu Kostar nu Kostar nu 8

8 I en låda ligger 20 saker. Det är bilar, båtar och flygplan. Hälften av sakerna är bilar. 10 Hur många bilar är det? Resten är båtar och flygplan. Det är dubbelt så många bilar som båtar. Hur många flygplan är det i lådan? Rita hur du löser uppgiften. 5 Egna förslag. Exempel: Bestäm nu själv hur många frukter det finns i en låda. Hälften av frukterna ska vara bananer. Beskriv sedan hur många äpplen och päron det finns. Visa hur du skulle lösa uppgiften. Egna förslag. Exempel: 20 bananer, 10 äpplen, 10 päron Jag bestämmer att jag har 20 bananer. Då ska det vara 40 frukter totalt eftersom 20 är hälften av 40. Jag kan dela upp tal i udda och jämna. Jag kan se sambandet mellan hälften och dubbelt. 9

9 Kan du göra uppskattningar och se vad som är rimligt? Hur många 20 kronors-sedlar ska du lämna fram om du handlar något som kostar 37 kr? Jag lämnar fram 2 sedlar. 49 kr? Jag lämnar fram 3 sedlar. 91 kr? Jag lämnar fram 5 sedlar. 119 kr? Jag lämnar fram 6 sedlar. Hur många 100 kronors-sedlar ska du lämna fram om du handlar något som kostar 119 kr? Jag lämnar fram 2 sedlar. 181 kr? Jag lämnar fram 2 sedlar. 345 kr? Jag lämnar fram 4 sedlar. 574 kr? Jag lämnar fram 6 sedlar. 10

10 Kajsa, Tage, Ture, Elis och Madde har plockat kantareller. Ungefär hur många kantareller har de plockat tillsammans? ca 200 st Om de delar lika, ungefär hur många får var och en med sig hem? 40 st Sara handlar en munkjacka för 189 kronor, ett par byxor för 248 kronor och en mössa för 52 kronor. Räcker 500 kronor till alla kläderna? Visa hur du tänker. Ja 52 kr Exempel: kr 248 kr =

11 Vad är rimligt? Ringa in. Världens bästa kvinnliga höjdhoppare hoppar ungefär 20 cm 2 meter 20 meter En bil på en motorväg kör ungefär 100 km/timme 1000 km/timme km/timme En normallång man väger ungefär 10 kg 20 kg 80 kg 200 kg Jag kan göra uppskattningar och se vad som är rimligt. 12

12 Kan du beskriva och fortsätta mönster och talföljder? Fortsätt talmönstren Fortsätt mönstren. A B C B C D C D E DEF EFG FGH A Ö B Ä C Å DZ EY FX Gör nu ett eget mönster och förklara hur det är uppbyggt. Egna förslag. Exempel: 100, 103, 106, 109, 112, 115 Mitt mönster ökar med 3 varje gång. 13

13 Hur bred är bokhyllan? 115 cm Termometern hos Sara visar så här många grader. Hur många grader visar den? En trollslända och en groda hoppar på näckrosblad. När de börjar står båda på det första bladet. Medan trollsländan hoppar ett blad hoppar grodan tre. Hur långt har trollsländan kommit när grodan är framme på sista bladet? Till det 9:e bladet Hur mycket pengar har Lisa? 70 kr Jag kan beskriva och fortsätta mönster. Jag kan beskriva och fortsätta talföljder inom talområdet

14 = Förstår du likhetstecknets betydelse? Skriv talen som fattas. 4 3 = = = 8-3 Egna förslag. + = 2 20 = = = 9-2 = 5 + = = = Vilket räknesätt? Skriv rätt tecken = = = = = = 20 Vilka tal kan du skriva i ormen? 8 = = = 2 f ö rslag uttryck som b l i r 8 4 = Egna Jag förstår att det alltid måste vara lika mycket på båda sidor om ett likhetstecken. 15

15 Vet du hur addition och subtraktion hör ihop? Räkna. a) = 46 b) = 16 Hur kan du ta hjälp av uppgift a) när du löser uppgift b)? Subtraktion är omvänd addition = = 16 Skriv en räknehändelse som handlar om uppgift a). Egna förslag. Exempel: Jag har 30 kr men behöver 46 kr. Då måste jag spara 16 kr till. Räkna ut hur mycket är med hjälp av flickans ledtråd. Visa hur du gör = = = 92 16

16 Räkna ut hur mycket är med hjälp av pojkens ledtråd. Visa hur du gör = = = 70 Gör fyra olika uppgifter. Du får bara använda talen 8, 5 och = = = = 8 Gör fyra olika uppgifter. Bestäm själv vilka tre tal du får använda. Egna förslag. Exempel: = = = = 3 Jag vet hur addition och subtraktion hör ihop. 17

17 Vet du hur addition och multiplikation hör ihop? Vet du hur multiplikation och division hör ihop? Kan du använda olika uttrycksformer? På vilket sätt tycker du att det är enklast att lösa uppgiften 3 36? Ringa in det. a) b) c) = = = = = = 108 Lös uppgiften 4 12 på samma sätt som i exemplet du ringat in. Om jag valt a: = = = 48 Om jag valt b: = = 48 Om jag valt c: = = 48 Kalle och Pelle ska handla innebandybollar till klassen. Bollarna kostar 5 kronor styck. De har 30 kronor. Hur många bollar får klassen? 6 Visa lösningen med både addition och multiplikation = = 30 18

18 Räkna = = = = 4 5 Räkna. a) 3 6 = 18 b) 18 = 6 3 Hur kan du ta hjälp av uppgift a) när du löser b)? 3. 6 = = 6 3 Skriv en räknehändelse eller rita en bild som handlar om uppgift b). Egna förslag. Exempel: Hur många barn kan dela på 18 kronor och få 6 kr var? Jag vet hur addition och multiplikation hör ihop. Jag vet hur multiplikation och division hör ihop. 19 Jag kan använda olika uttrycksformer såsom bild, räknehändelse och matematiska symboler.

19 Kan du räkna i huvudet med de fyra räknesätten inom talområdet 0-20? Petra och hennes två kompisar ska dela lika på 18 kronor. Hur mycket får var och en? De får 6 kr var. Stina läser 6 sidor varje kväll under 3 dagar. Hur många sidor har hon då läst? 18 sidor Boken har 20 sidor. Hur många sidor har hon sedan kvar att läsa? 2 sidor Igår var det + 8º ute. Idag är det + 17º. Hur många graders skillnad är det om man jämför idag med igår? 9 Tessie ska köpa klubbor till sig själv och tre kamrater. Klubborna kostar 4 kr styck. Räcker 20 kr till klubborna? Ja Får hon pengar över? Ja, 4 kr över. Jag kan räkna i huvudet med de fyra räknesätten inom talområdet

20 Kan du lösa enkla uppgifter med större tal i huvudet? Sara ska handla åt sin farmor. Hon handlar 3 kolatårtor för 30 kronor styck. Sara har 100 kronor med sig. Hur mycket får hon tillbaka? 10 kr Karim ska spara pengar till ett nytt dataspel. Spelet kostar 390 kr. Han har 250 kronor. Hur mycket pengar fattas? 140 kr Sanna, Alva och Ida har 9 stycken 5-kronor som de ska dela lika. Hur mycket pengar har de tillsammans? Hur många 5-kronor får de var? Hur mycket pengar får var och en? 3 st var 45 kr 15 kr var 23 kg 15 kg 12 kg Stefan och hans familj ska åka på semester till Grekland. De får ha 60 kg packning tillsammans. Hur många fler kg kan de packa? 10 kg Jag kan lösa enkla uppgifter med större tal i huvudet. 21

21 Kan du använda skriftliga räknemetoder inom addition och subtraktion 0-200? Kan du lösa problem genom att välja räknesätt och lösningsstrategi? Sara har 75 pärlor i sitt halsband. Plötsligt går det sönder och 43 av pärlorna åker av. Hur många pärlor sitter kvar på halsbandet? Visa hur du tänker. 32 pärlor Egna förslag. Exempel: = 32 Viktor samlar på leksaksbåtar. Han vill ha 200 stycken. Nu har han 167. Hur många båtar fattas? Visa hur du tänker. 33 st Egna förslag. Exempel: = 33 Katja har sparat ihop 195 kronor. Hon köper en leksakshäst för 137 kronor. Hur mycket pengar har hon sedan kvar? Visa hur du tänker. 58 kr Egna förslag. Exempel: = kr 22

22 Samina ska ha kalas. Hon har bjudit 9 kompisar. Bara 7 kompisar kan komma på kalaset. Hon har köpt en stor påse godis som hon ska dela upp i olika småpåsar. Hur många småpåsar behöver hon? 8 st Det finns 24 colaflaskor, 10 tuggummipaket, 11 tablettaskar och 30 godisormar. Visa hur hon kan dela upp godiset så att alla får lika mycket. 3 colafl flaskor var, 1 tuggummipaket var, 1 tablettask var, 3 godisormar var Vad blev över? 2 tuggummipaket, 3 tablettaskar och 6 godisormar Jag kan använda skriftliga räknemetoder inom addition och subtraktion Jag kan lösa problem genom att välja räknesätt och lösningsstrategi. 23

23 Kan du dela upp helheter i olika antal delar? Kan du jämföra och namnge delar som bråk? Johanna ska bjuda på äppelhalvor till mellis. Joel vill ha 4 äppelhalvor, Lotta 2 äppelhalvor, David 3 äppelhalvor och Johanna själv vill ha ett helt äpple. Vem får mest äpple? Joel Vilka får lika mycket äpple? Visa hur du tänker. Lotta och Johanna Egna förslag. Exempel: O = D + D Sedan vill barnen ha mandarinklyftor. En mandarin har 8 klyftor. Hur många mandariner går det åt? Visa hur du tänker. 4 st Egna förslag. Exempel: = 32 klyftor 32 = 4 mandariner 8 24

24 Lotta Joel David Johanna Till middag bakar kompisarna pizza med oliver, ananas och skinka. Vilka har den största pizzadelen med oliver? Vem har den minsta pizzadelen med ananas? Lotta och Joel Lotta Vilka har lika stor pizzadel med skinka? David och Johanna Måla cirklarna Måla kvadraterna Jag kan dela upp helheter i olika antal delar. Jag kan jämföra och namnge delar som bråk. 25

25 Kan du lösa problem genom att rita eller använda konkret material? Använd pengar eller något annat material eller rita din lösning. Josef ska spara till en cykel. Han har 230 kronor. Cykeln kostar 600 kronor. Varje vecka får han 20 kronor i veckopeng. Hur många veckor dröjer det innan han kan köpa cykeln? 19 veckor Visa för en kompis eller din lärare hur du löser den här uppgiften. Egna förslag. Exempel: Efter 19 veckor har han 610 kr. Jag kan lösa problem genom att rita eller använda konkret material. 26

26 Kan du se olika lösningar och välja den enklaste? På vilket sätt tycker du att det är enklast att lösa uppgiften ? Ringa in det. a) = 22 b) Jag räknar 7 steg framåt och hamnar på 22 (16, 17, 18, 19, 20, 21, 22). c) 7 är 3 mindre än 10 ( = 25). Sedan tar jag bort 3 ( 25 3 ) och hamnar på 22. Använd nu samma sätt som det du valde och lös uppgiften Om jag valt a: = 33 Om jag valt b: 26, 27, 28, 29, 30,31, 32, 33 Om jag valt c: 8 är 2 mindre än 10 (25+10 = 35). Sedan tar jag bort 2 (35-2) och hamnar på 33. På vilket sätt tycker du att det är enklast att lösa uppgiften ? Ringa in det. a) 109 är ett mindre än 110 ( = 90), då blir svaret ett mindre än 90 (90 1 = 89). b) Jag räknar 20 steg bakåt (108, 107, 106 ). c) Jag tar först bort 9 så att jag har 100 kvar (109 9 = 100). Sedan tar jag bort 11 till ( = 89). Använd nu samma sätt som det du valde och lös uppgiften Om jag valt a: 219 är ett mindre än 220. ( = 190), då blir svaret ett mindre än 190 (190-1 = 189). Om jag valt b: Jag räknar 30 steg bakåt. Om jag valt c: Jag tar först bort 19, så har jag 200 kvar. 27

27 Sara, Karin och Tuva ska lösa uppgiften: Vad är hälften av 440? Ringa in det sätt du tycker är enklast. Sara: Jag tar 100-talen för sig och 10-talen för sig. Karin: Jag lägger fram alla pengarna i en hög. Först delar jag ut en 100-lapp till mig och en till min syster. Sedan ser jag vad som finns kvar och fortsätter att dela resten av pengarna lika mellan mig och min syster. Det vi får var är svaret på frågan. Tuva: Jag tänker delat med 2 är 2 så hälften av 440 blir då 220. Lös nu denna uppgift på samma sätt. Vad är hälften av 280? Som Sara och Karin: se deras förklaringar Som Tuva: delat med 2 är 1 och 8 delat med 2 är 4. Alltså är 280 = Jag kan se olika lösningar och välja den enklaste. 28

28 Kan du lösa problem, visa hur du tänker och se om lösningarna är rimliga? Ritas kiosk säljer 12 st äppeldrickor en varm sommardag. Varje dricka kostar 8 kr. Ungefär hur mycket pengar får Rita in på försäljningen? Ringa in. ca 80 kr ca 100 kr ca 180 kr Visa hur du löser uppgiften. Egna förslag. Exempel: = 96 Lös nu uppgiften på ett annat sätt. Egna förslag. Exempel: = = = = 16 Vilket sätt tycker du är lättast? Om det fina vädret håller i sig, tror Rita att hon kommer att sälja lika mycket varje dag under två veckor till. Hur mycket dricka är det rimligt att hon köper in? Visa hur du tänker st Egna förslag. Exempel: = 168 st Jag kan lösa problem, visa hur jag tänker och se om lösningarna är rimliga. 29

29 Catherine Bergman Maria Österlund KlaraMålentalNY.indd Catherine Bergman Maria Österlund KlaraMa lengeony.indd Catherine Bergman Maria Österlund Klara målen används inför de nationella proven i matematik för åk 3. I häftena finns uppgifter som tränar och befäster kunskaper kopplade till Lgr 11. Innehållet är tydligt presenterat så att eleverna blir medvetna om vad de kan och om de eventuellt behöver extra stöd för att klara målen. Eleverna får reflektera över sina kunskaper, och fylla i matrisen som finns sist i häftet. Det ger en tydlig översikt av elevens matematiska kunskaper. Här kan man också ange vad eleven behöver öva mer på och hur det ska gå till. Klara målen i matematik för åk 3 består av två häften: Lgr 11 Matematik Åk 3 Tal och räkning Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik Tal och räkning (inkl. algebra, samband och problemlösning) Geometri, mätningar och statistik (inkl. sannolikhet) Facit till häftena finns på ISBN

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter.

tjugofyra tvåhundratrettioåtta Skriv talet som kommer efter. Skriv talet som kommer före. Fortsätt att skriva talen som kommer efter. läsa, skriva och storleksordna tal antal Skriv talet som kommer efter. 6 7 79 80 699 700 869 870 Skriv talet som kommer före. 26 27 49 50 899 900 59 540 Fortsätt att skriva talen som kommer efter. 296

Läs mer

Lokal studieplan matematik åk 1-3

Lokal studieplan matematik åk 1-3 Lokal studieplan matematik åk 1-3 Kunskaps område Taluppfat tning och tals användni ng Centralt Innehåll Kunskapskrav Moment Åk1 Moment Åk2 Moment Åk3 Naturliga tal och deras egenskaper samt hur talen

Läs mer

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.

Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll. ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation

Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att

Läs mer

Catherine Bergman Maria Österlund

Catherine Bergman Maria Österlund Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen

jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:

Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter: Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling

Inledning. Polydronmaterialet. Tio områden. Lgr11-koppling Inledning Polydronmaterialet De färgglada bitarna i Polydronmaterialet har länge lockat till byggen av alla möjliga slag. Den geometriska funktionen är tydlig och möjligheterna till många matematiska upptäckter

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning

Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål förskoleklass Taluppfattning Strävansmål för Förskoleklass Exempel på arbetsuppgifter Fridhemsskolans uppnåendemål Taluppfattning Kunna skriva siffrorna Kunna uppräkning 1-100 Kunna nedräkning 10-0 Kunna ordningstalen upp till 10

Läs mer

PP i matematik år 2. Taluppfattning och tals användning.

PP i matematik år 2. Taluppfattning och tals användning. PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,

Läs mer

Södervångskolans mål i matematik

Södervångskolans mål i matematik Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal

Läs mer

Lokal pedagogisk planering

Lokal pedagogisk planering Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet

Läs mer

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.

Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri. MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta

Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter

Läs mer

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Att välja räknesätt när du löser matematiska problem. Skriv din lösning! Eric har 165 kr. Towa har dubbelt så mycket. Didrik har 20 kr färre än Towa. Hur mycket har de tillsammans?

Läs mer

ESN lokala kursplan Lgr11 Ämne: Matematik

ESN lokala kursplan Lgr11 Ämne: Matematik ESN lokala kursplan Lgr11 Ämne: Matematik Övergripande Mål: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska begrepp och samband

Läs mer

PRIMA MATEMATIK EXTRABOK 2 FACIT

PRIMA MATEMATIK EXTRABOK 2 FACIT PRIMA MATEMATIK EXTRABOK FACIT Skriv rätt tecken. Välj mellan = < < 11 1 = > 1 0 = > 1 1 > > < = < < Skriv så att det stämmer. ; 11= ; 11 0 ; ; ; ; ; 1= ; 1 = ; ; ; 1 ; 0 1 ; 0 ; = ; ; Skriv rätt tecken.

Läs mer

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att

Läs mer

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri

kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom

Läs mer

MÄSTERKATTEN 1A FACIT. Jag

MÄSTERKATTEN 1A FACIT. Jag MÄSTERKATTEN A FACIT VANTEN Problemlösning Arbeta två och två. Musen, i bild, har gömt några ostbitar i den gröna burken.. Hur många tror ni att han har gömt?. Hur många har han då sammanlagt? Vi har jämfört

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler.

Matematik. Syfte. reflektera över rimlighet i situationer med matematisk anknytning, och använda ämnesspecifika ord, begrepp och symboler. Matematik Kurskod: SGRMAT7 Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska en som sådan.

Läs mer

PRIMA MATEMATIK EXTRABOK 1 FACIT

PRIMA MATEMATIK EXTRABOK 1 FACIT PRIMA MATEMATIK EXTRABOK FACIT Hur många? Ringa in det minsta talet i varje ruta. Ringa in det största talet i varje ruta. Måla rutor så att det stämmer åt båda håll. Exempel: Skriv talraden.,,, Skriv

Läs mer

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven

Ämnesplan i matematik för Häggenås, Bringåsen och Treälven Ämnesplan i matematik för Häggenås, Bringåsen och Treälven (2009-05-14) Namn Utarbetad under läsåret 08/09 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Tummen upp! Matte Kartläggning åk 4

Tummen upp! Matte Kartläggning åk 4 Tryck.nr 47-11063-6 4711063_Omsl_T_Upp_Matte_4.indd Alla sidor 2014-01-27 07.32 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 4 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning

Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Hagabackens rektorsområde Ramshyttans rektorsområde Algebraskogen. Tema: Taluppfattning och tals användning, algebra och problemlösning Planering för perioden: v. 34-51 Ämne: Matematik År: 1 Lärare: Jessica

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Om Favorit matematik för åk 4-6 och Lgr 11

Om Favorit matematik för åk 4-6 och Lgr 11 Om Favorit matematik för åk 4-6 och Lgr 11 Tydlig och medveten matematikundervisning Mera 4A Mera Favmoatremiattik 4A Favmoatremiattik En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning

Läs mer

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3

Exempel på uppgifter från års ämnesprov i matematik för årskurs 3 Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition

Läs mer

Taluppfattning. Talområde 10-20. Systematisk genomgång tal för tal

Taluppfattning. Talområde 10-20. Systematisk genomgång tal för tal Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens träningsmaterial Wendick-modellen består av en serie med strukturerade träningsmaterial

Läs mer

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod:

22,5 högskolepoäng. Provmoment: Ladokkod: Tentamen ges för: Matematik 3hp. Studenter i inriktningen GSME. TentamensKod: SMID Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Matematik 3hp Studenter i inriktningen GSME 22,5 högskolepoäng Tentamensdatum: 12-08-30 Tid: 09.00-13.00 Hjälpmedel: Inga Totalt antal poäng på

Läs mer

ARBETSPLAN MATEMATIK

ARBETSPLAN MATEMATIK ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte i årskurs 3 BEDÖMNINGSSTÖD till TUMMEN UPP! matte i årskurs 3 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man i den svenska skolan

Läs mer

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11

Målet i sikte åk 1 3. Målet i sikte 1 3. kartläggning i matematik. Lgr11 Må Målet i sikte åk Målet i sikte Målet i sikte är ett kopieringsmaterial som kartlägger elevernas kunskaper i matematik. Utgångspunkt är det centrala innehållet och kunskapskraven i Lgr. För varje område

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN

MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN MATEMATIK ÅR 1-3 STENMO, SKOGSKÄLLAN Så här arbetar vi: Matematiken är ett språk. Vår undervisning har som mål att eleverna ska förstå och kunna använda det språket. Vi arbetar med grundläggande begrepp

Läs mer

Bedömning för lärande i matematik

Bedömning för lärande i matematik Bedömning för lärande i matematik Vilka har arbeta med materialet Varför ser det ut som det gör När och hur kan du som lärare använda materialet Katarina Kjellström PRIM-gruppen Vilka har deltagit i arbetet

Läs mer

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal

Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. - + Talsort ental, tiotal, hundratal osv siffran 7 är tiotal TEORI Pixel 4A kapitel 1 Heltal Siffror 0 1 2 3 4 5 6 7 8 9 Tal skrivs med en eller flera siffror Ett tal kan vara en eller flera siffror men en siffra är alltid ensam. Tallinje mindre färre sjunker -

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Matematik. Namn: Datum:

Matematik. Namn: Datum: Matematik Namn: Datum: Multiplikation, tabell 2 och 4. Hur många ben har djuren tillsammans? + = = + + = = + + + + = = + = = + + + = = Skriv färdigt multiplikationen! 3 4 = 4 2 = 2 5 = 4 6 = 4 0 = 4 5

Läs mer

Innehåll och förslag till användning

Innehåll och förslag till användning Övningar för de första skolåren med interaktiv skrivtavla och programmet RM Easiteach Next generation. Materialet är anpassat till och har referenser till. Innehåll och förslag till användning De interaktiva

Läs mer

Taluppfattning. Talområde Systematisk genomgång tal för tal

Taluppfattning. Talområde Systematisk genomgång tal för tal Taluppfattning Talområde 10-20 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings- och träningsmaterial

Läs mer

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups.

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups. 3 Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

48 p G: 29 p VG: 38 p

48 p G: 29 p VG: 38 p 11F322 MaI Provmoment: Matematik 5 hp Ladokkod: Tentamen ges för: Studenter i lärarprogrammet F-3 15 högskolepoäng TentamensKod: Tentamensdatum: 16-05-31 Tid: 09.00-13.00 Hjälpmedel: Inga hjälpmedel Totalt

Läs mer

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal

Vardagsord. Förstår ord som fler än, färre än osv. Har kunskap om hälften/dubbelt. Ex. Uppfattning om antal TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det femte skolåret: Eleven skall ha förvärvat sådana grundläggande kunskaper i matematik som behövs för att kunna beskriva och hantera situationer

Läs mer

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan

Gunnar Hyltegren. Ämnet matematik 2011 i grundskolan Ämnet matematik 2011 i grundskolan Förmågor som skall utvecklas i matematik 2011 - gr Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Veckomatte åk 3 med 10 moment

Veckomatte åk 3 med 10 moment Veckomatte åk 3 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen om matematik Lgr11 3 Grundläggande struktur i Veckomatte Åk 3 4 Strategier för Veckomatte Åk 3 5 Veckomatte

Läs mer

Observationsschema Problemlösningsförmåga

Observationsschema Problemlösningsförmåga Observationsschema Problemlösningsförmåga Klass: Elevens namn Kan formulera räknehändelser i addition/ subtraktion/multiplikation/division. Läser och visar förståelse för matematiska problem. Kan överföra

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var

Läs mer

Kunskapsprofil Resultat på ämnesprovet

Kunskapsprofil Resultat på ämnesprovet Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N

Läs mer

Veckomatte åk 4 med 10 moment

Veckomatte åk 4 med 10 moment Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i

Läs mer

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall

Förskoleklassen År 1 År 2 År 3 År 4 År 5 År 6. Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Eleven skall Lokal kursplan i matematik Tal antal, mönster talmönster räkna antal oavsett föremålens storlek jämföra antalet föremål i två mängder genom att parbilda dem, t.ex. en tallrik till varje barn. räkna föremål

Läs mer

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar

Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar Matematikplanering 7B Läsår 15/16 Nästan allt omkring dig har underliggande matematik. En del anser att den bara ligger där och väntar på att bli upptäckt. Mönster, statistik, överlevnad, evolution, mopeder

Läs mer

mattetankar Reflektion kring de olika svaren

mattetankar Reflektion kring de olika svaren Reflektion kring de olika svaren Taluppfattning och tals användning 15 Skriv trehundrasju Reflektion: 31007 tyder på att eleven tolkar talet som 3, 100, 7 3007 tyder på att eleven tolkar talet som 300,

Läs mer

Centralt innehåll. I årskurs 1.3

Centralt innehåll. I årskurs 1.3 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan.

Läs mer

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1

Matematik klass 3. Höstterminen. Anneli Weiland Matematik åk 3 HT 1 Matematik klass 3 Höstterminen Anneli Weiland Matematik åk 3 HT 1 Minns du från klass 2? Tiokamraterna 10=5+ 10=1+ 10=2+ 10=5+ 10=4+ 10=0+ 10=9+ 10=4+ 10=7+ 10=3+ 10=6+ 10=10+ 10=2+ 10=1+ 10=3+ 10=7+ 10=6+

Läs mer

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum:

Gillar du uppgifterna kan du hitta fler i bloggen, lillehammer.moobis.se. Matematik. Namn: Datum: Matematik Namn: Datum: Mattepapper Blandad räkning 340 + 210 = 720 + 130 = 400-50 = 800-350 = 40 2 = 30 2 = 800 = + 300 700 = + 350 Visa hur du löser uppgifterna! 58 + 29 129 + 37 Visa hur du löser uppgifterna!

Läs mer

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6

BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6 BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs

Läs mer

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN

Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN RUMSUPPFATTNING GEOMETRI OCH MÄTNING MATEMATIK REDOVISNING OCH MATEMATISKT SPRÅK TALUPPFATTNING, OCH RÄKNEMETODER STATISTIK Kursplan för matematik År 1-5 Rösjöskolan TÄBY KOMMUN Kursplan i matematik Lgr

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen

Läs mer

Innehållsförteckning kopieringsunderlag kapitel 1

Innehållsförteckning kopieringsunderlag kapitel 1 Innehållsförteckning kopieringsunderlag kapitel 1 Sifferträning... 1-5 Sifferstöd...6 Antal och siffror... 7-13 Min talbok... 14-19 Kulramsbilder 1-10... 20-21 Tärningsbilderna...22 Talblock...23 Tiostaplar...

Läs mer

KURSBESKRIVNING - MATEMATIK

KURSBESKRIVNING - MATEMATIK KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal

Läs mer

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =

Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 = Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion

Läs mer

MATEMATIK 3.5 MATEMATIK

MATEMATIK 3.5 MATEMATIK 3.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Matematik... 2. Svenska... 4. Svenska som andraspråk... 5. Idrott och hälsa... 6. Musik... 7. Biologi... 7. Fysik... 8. Kemi... 8. Geografi...

Matematik... 2. Svenska... 4. Svenska som andraspråk... 5. Idrott och hälsa... 6. Musik... 7. Biologi... 7. Fysik... 8. Kemi... 8. Geografi... 2010-08-23 Lokal kursplan år 2 Matematik... 2 Svenska... 4 Svenska som andraspråk... 5 Idrott och hälsa... 6 Musik... 7 Biologi... 7 Fysik... 8 Kemi... 8 Geografi... 9 Historia... 9 Religion... 10 Samhällskunskap...

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik

Betyg i årskurs 6. Grundskolans läroplan Kursplan i ämnet matematik Betyg i årskurs 6 Betyg i årskurs 6, respektive årskurs 7 för specialskolan, träder i kraft hösten 2012. Under läsåret 2011/2012 ska kunskapskraven för betyget E i slutet av årskurs 6 respektive årskurs

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

MATEMATIK 5.5 MATEMATIK

MATEMATIK 5.5 MATEMATIK 5.5 TETIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk

Läs mer

Storvretaskolans Kursplan för Matematik F-klass- år 5

Storvretaskolans Kursplan för Matematik F-klass- år 5 2010-11-01 Storvretaskolans Kursplan för Matematik F-klass- år 5 Skolan skall i sin undervisning sträva efter att eleven : utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Matematik F- 6 Checklista för matematik K L A R A T Begreppsbildning år år år år år år år Kunna ord om: F 1 2 3 4 5 6 storlek ex störst, minst antal ex flera, färre volym ex mest, minst vikt ex tyngst,

Läs mer

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups.

Gleerups Utbildning AB Box 367, 201 23 Malmö Kundservice tfn 040-20 98 10 Kundservice fax 040-12 71 05 e-post info@gleerups.se www.gleerups. Lärarhandledning I din hand håller du ett läromedel från Gleerups. Gleerups författare är lärare med erfarenhet från klassrummet. Lärare och elever hjälper till att utveckla våra läromedel genom värdefulla

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Matematik klass 1 Problemlösning nummer 1

Matematik klass 1 Problemlösning nummer 1 Matematik klass 1 Problemlösning nummer 1 ditt eget matteproblem Skriv ditt namn här Anneli Weiland, HepPed A och O Matematik åk 1 Problemlösning 1 Kalle hade fem gamla böcker i sin låda. Nu fick han tre

Läs mer

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE

GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE MÄSTERKATTEN B FACIT GUBBEN OCh GUMMAN SOM GJORDE ARBETSBYTE Problemlösning Arbeta två och två. Gubben hade bakat plåtar med bullar. Några bullar på varje plåt blev brända.. Hur många bullar tror ni gubben

Läs mer

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter. Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med

Läs mer

Tummen upp! Matte Kartläggning åk 5

Tummen upp! Matte Kartläggning åk 5 Tryck.nr 47-11064-3 4711064_t_upp_ma_5_omsl.indd Alla sidor 2014-01-27 12.29 TUMMEN UPP! Ç I TUMMEN UPP! MATTE KARTLÄGGNING ÅK 5 finns övningar som är direkt kopplade till kunskapskraven i åk 6. Kunskapskraven

Läs mer

Bedömningsexempel Matematik årskurs 3

Bedömningsexempel Matematik årskurs 3 Bedömningsexempel Matematik årskurs 3 Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter i årskurs 3, 2010... 5 Skriftliga räknemetoder... 5 Huvudräkning, multiplikation och division... 7 Likheter,

Läs mer

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder

Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Matematik Elever skall i samtliga årskurser ges tillfälle till regelbunden träning i muntliga och skriftliga räknemetoder Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven

Läs mer

LÄS, TÄNK OCH LÖS STEG SOMMARJOBBET

LÄS, TÄNK OCH LÖS STEG SOMMARJOBBET LÄS, TÄNK OCH LÖS STEG 2 SOMMARJOBBET Copy ISBN 978-91-86611-68-2 2013 Mirvi Unge Thorsén och Askunge AB Produktion Mirvi Unge Thorsén Illustration Oskar Jonsson Första upplagan 1 Boken uppfyller miljökraven

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Veckomatte år 1-2 med 10 moment

Veckomatte år 1-2 med 10 moment Veckomatte år 1-2 med 10 moment av Ulf Eskilsson Innehållsfrteckning Innehållsfrteckning 1 Inledning 2 Utdrag ur kursplanen om matematik Lgr-11 3 Grundläggande struktur fr Veckomatte år 1-2 4 Översikt

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Små barns matematik, språk och tänkande går hand i hand. Görel Sterner Eskilstuna 2008

Små barns matematik, språk och tänkande går hand i hand. Görel Sterner Eskilstuna 2008 Små barns matematik, språk och tänkande går hand i hand Görel Sterner Eskilstuna 2008 Rollek - Nalle ska gå på utflykt. - Nu är hon ledsen, hon vill inte ha den tröjan. - Nalle ska ha kalas, då ska hon

Läs mer