Differentiell psykologi
|
|
- Fredrik Hedlund
- för 6 år sedan
- Visningar:
Transkript
1 Differentiell psykologi Torsdag 13 september 2012 Reliabilitet
2 Dagens agenda Värt att veta om normalfördelningen Frågesport Kort intro till kvalitetsparametrarna: reliabilitet och validitet Reliabilitet ett vardagligt exempel Reliabilitet utifrån Klassisk testteori Reliabilitet för ett instrument (instrumentets precision) Antaganden och olika estimat Exempel ur litteraturen om HADS Item analys Demonstration KSP MA Vad påverkar reliabilitetsestimaten Reliabilitet för en mätning (precision för en mätning) Uppgifter till fredag Petter Gustavsson 11 september
3 Normalfördelningen z-värden T-värden Percentiler Standardavvikelser
4 Petter Gustavsson 11 september
5 Normalfördelningens egenskaper (percentiler och standard poäng) Petter Gustavsson 11 september
6 z-värden, standard avvikelser och T-värden? 1. Ett z-värde på 0 motsvaras av ett T-värde på 0 ( ) Sant ( ) Falskt 2. Ett z-värde på 1 motsvaras av 1 standard avvikelse från medelvärdet, och ett T-värde på 84 ( ) Sant ( ) Falskt 3. Två hela (+) standardavvikelser från medelvärdet = 70 T-poäng ( ) Sant ( ) Falskt Petter Gustavsson 11 september
7 Percentiler, standard avvikelser och T- värden? 4. Flöjande tabell visar det ungefärliga sambandet mellan standard avvikelser och percentiler (kumulativt i normalfördelningen) -2sd 2% -1sd 16% 0 50% +1sd 84% +2sd 98% ( ) Sant ( ) Falskt Petter Gustavsson 11 september
8 Standard avvikelser, T-värden, Percentiler 5. Om mitt T-värde på ett test blir 40, så ligger jag 4 standard avvikelser under vad som är normalt ( ) Sant ( ) Falskt 6. Om mitt T-värde på ett test blir 40, så kan man räkna med att jag presterat bättre än minst 15.8 procent av de som utgjorde standardiseringsgruppen ( ) Sant ( ) Falskt Petter Gustavsson 11 september
9 Mera frågor 7. Om jag presterat bättre än 40% av personerna i standardiserings gruppen så skulle mitt IQ vara över Markus flyttar sig från den 90:e percentilen till den 99:e percentilen på T- fördelningen, detta betyder att han relativt har ökat lika många poäng som Petter som flyttat sig från den 50:e till den 59:e percentilen ( ) Sant ( ) Falskt ( ) Sant ( ) Falskt Petter Gustavsson 11 september
10 Mera frågor 9. Det är en lika stor skillnad mellan Kimmos poäng på den 99.9 percentilen och Arnes på den 98 percentilen, som det är mellan Petters poäng på den 84 percentilen och Andreas på den 98 percentilen. Alltså lika många T-poäng. ( ) Sant ( ) Falskt 10. Under -1 samt över +1 sd från medel i normalfördelningen förväntas sammanlagt ungefär 84% av populationens värden att ligga. ( ) Sant ( ) Falskt Petter Gustavsson 11 september
11 Petter Gustavsson 11 september
12 Övning: tolkning mot kriterium: Underlag Petter Gustavsson 11 september
13 Kvalitetsaspekterna: Reliabilitet och Validitet En kort introduktion inför våra kurstillfällen idag och på fredag Petter Gustavsson 11 september
14 Reliabilitet Varje mätning tenderar vara förknippad med ett större eller mindre slumpmässigt fel (som antas vara okorrelerade) Reliabiliteten handlar om i vilken omfattning våra mätningar också reflekterar mätfel. Metoder finns för att uppskatta (beräkna) mängden mätfel. Reliabilitet beräknas för ett instruments användning vid en specifik situation (många studier lär oss i vilken grad vi kan generalisera kunskapen om ett instruments reliabiliet) Petter Gustavsson 11 september
15 Reliabilitet : hur mycket av den sanna variationen speglas i den observerade variationen Kvoten mellan den sanna variansen/den observerade variansen Korrelationen (den kvadrerade) mellan sann variation och observerad variation Petter Gustavsson 11 september
16 Validitet Validitet handlar om på vilka grunder vi har stöd för att säga att vår testning avspeglar en mätning av fenomenet: Validity refers to the degree to which evidence and theory support the interpretations of test scores entailed by proposed uses of test Petter Gustavsson 11 september
17 1999
18 Validation Validation involves accumulating evidence to provide a sound scientific basis for the proposed score interpretations. A sound validity argument integrates various strands of evidence into a coherent account of the degree to which existing evidence and theory support the intended interpretation of test scores for specific uses. Standards, Petter Gustavsson 11 september
19 Sources of validity evidence Evidence based on: Test content Reponse processes Internal structure Relations to other variables Consequenses of testing Petter Gustavsson 11 september
20 Evidens för intern struktur:..handlar om att ta fram evidens för att samtliga indikatorer på ett fenomen, verkligen avspeglar detta fenomen och inget annat. Vad skulle konsekvensen bli om det inte var så? Tänk er att ni hade uppgiften att ta fram evidens för att HADS depressionskala hade en godtagbar intern struktur. Hur skulle ni göra? Vad skulle ni testa? Vilken statistisk metod skulle kunna användas? Petter Gustavsson 11 september
21 HADS: Depression T Variation i de sanna värdena på en latent variabel depression Påverkar svaren på de 7 indikatorerna Petter Gustavsson 11 september
22 Sources of validity evidence Evidence based on: Test content Reponse processes Internal structure Relations to other variables Consequenses of testing Petter Gustavsson 11 september
23 Kvalitetsaspekt: Reliabilitet =precision i mätningarna Ett vardagligt exempel Petter Gustavsson 11 september
24 Petter Gustavsson 11 september
25 Petter Gustavsson 11 september
26 Exempel Egentlig kroppstemperatur (T) Mätning i örat av kroppstemperatur (O=T+E) Petter Gustavsson 11 september
27 Reliabilitet för en metod att mäta kroppstemperatur Hur skulle vi kunna gå tillväga för att lära oss mer om hur precist denna metod mäter? Givet att vi vet den egentliga kroppstemperaturen? Givet att vi inte vet den egentliga kroppstemperaturen? Petter Gustavsson 11 september
28 Reliabilitet: Givet att vi vet den egentliga kroppstemperaturen? : Reliabilitet=>hur mycket av den sanna variationen speglas i den observerade variationen Kvoten mellan den sanna variansen/den observerade variansen Korrelationen (den kvadrerade) mellan sann variation och observerad variation Petter Gustavsson 11 september
29 Reliabilitet: Petter Gustavsson 11 september
30 Reliabilitet: Givet att vi inte vet den egentliga kroppstemperaturen? Petter Gustavsson 11 september
31 Men Vi har ju aldrig tillgång till de sanna värdena, och då inte heller den sanna variansen eller den sanna variationen Gör antagandet om Parallella Test Petter Gustavsson 11 september
32 Utgångspunkt Egentlig kroppstemperatur (T) Mätning i örat av kroppstemperatur (O=T+E) Petter Gustavsson 11 september
33 Reproduktion Egentlig temperatur (T) O1= T + E1 Tillfälle nr 1 O2= T + E2 Tillfälle nr 2 Petter Gustavsson 11 september
34 Reliabilitet som test-retest prövning Egentligt värde (T): samma oavsett tidpunkt O1= T + E1 Testresultat tidpunkt 1 O2= T + E2 Testresultat tidpunkt 2 Petter Gustavsson 11 september
35 Estimering Egentlig temperatur (T) Upprepa Observation samma instrument efter viss tid i annat öra O1= T + E1 Observation nr 1 O2= T + E2 Observation nr 2 r=
36 Reliabilitet : Vid kännedom om sanna värden så kan reliabilitet estimeras genom att den sanna variationen speglas i (eller samvarieras med) den observerade variationen Kvoten mellan den sanna variansen/den observerade variansen Korrelationen (den kvadrerade) mellan sann variation och observerad variation Genom antagandet om parallella test så kan reliabilitet estimeras genom en korrelationsberäkning. Denna estimerade korrelation tolkas direkt som kvoten mellan den sanna variansen/den observerade variansen och som estimat på den kvadrerade korrelationen mellan sann variation och observerad variation. Petter Gustavsson 11 september
37 Reliabilitet : Oavsett om man konceptualiserar reliabilitet som en kvot eller en korrelation: Mellan vilka värden kan reliabilitetsestimat variera? Petter Gustavsson 11 september
38 Reliabiliet Utifrån klassisk test teori Petter Gustavsson 11 september
39 Dagens agenda Värt att veta om normalfördelningen Frågesport Kort intro till kvalitetsparametrarna: reliabilitet och validitet Reliabilitet ett vardagligt exempel Reliabilitet utifrån Klassisk testteori Reliabilitet för ett instrument (instrumentets precision) Antaganden och olika estimat Exempel ur litteraturen om HADS Item analys Demonstration KSP MA Vad påverkar reliabilitetsestimaten Reliabilitet för en mätning (precision för en mätning) Uppgifter till fredag Petter Gustavsson 11 september
40 Utgångspunkter Petter Gustavsson 11 september
41 3. Antagandet om slumpmässiga fel Varje mätning tenderar vara förknippad med ett större eller mindre slumpmässigt fel Resultaten av de upprepade enskilda mätningar med sådana slumpmässiga fel följer en sk normal-fördelning Felen antas vara okorrelerade Petter Gustavsson 11 september
42 Estimering av reliabilitet R Reliabilitet (CTT) Estimering av reliabilitet (för ett instrument) Metoder baserade på Classical test theory Parallella test: Test-retest och alternativa test Internal consistency measures Estimeirng av reliabilitet (för en mätning) standard error of measurement
43 Reliabilitet för ett instrument Ur den klassiska testteorins antaganden om true scores, observed scores och measurment error och relationerna mellan dessa kan fyra (helt likvärdiga) konceptualiseringar göras av Reliabilitet: Furr: sid 82-88, Petter Gustavsson 11 september
44 Fyra (helt likvärdiga) konceptualiseringar av Reliabilitet Petter Gustavsson 11 september
45 Men, Men som du kan se i alla fyra konceputaliseringar så efterfrågas information som vi inte kan veta: Test personernas true scores Felen förknippade med deras respektive responser Petter Gustavsson 11 september
46 För att estimera reliabilitet måste därför ytterligare antagande göras: Antagandet om Parallella test förutsätter att 1. Vid en test-retest design så antas att respondenternas true scores är de samma (över tid eller oavsett form. Eftersom klassisk testteori i tidigare skrifter kommit att beteckna true scores med den grekiska bokstaven τ (tau) så benämns detta som tau-ekvivalens. 2. Det förutsätts också att testen (över tid) har samma nivå av mätfel. När dessa två delantagandena (tillsammans benämnda antagandet om parallella test) görs så betraktas den vanliga korrelationskoefficienten i en test-retest design som lika med Reliabilitet. Petter Gustavsson 11 september
47 Med andra ord: Antagandet om parallella test Med parallellitet menas att 1. de mäter samma sak, det sanna värdet för varje person är exakt det samma för respektive test. (=tau-ekvivalens) 2. Testen har samma nivå av fel varians. Enligt klassisk test teori är korrelationen mellan två parallella test lika med reliabiliteten Sid Petter Gustavsson 11 september
48 Är det rimligt att tro att dessa antaganden uppfylls? Furr diskuterar detta på sida Han pekar bland annat på att: Tau-ekvivalens antagandet kan också bli svårt att uppfylla vid en test-retest design om man inte kan vara säker på att respondenternas true scores är stabilt mellan testningarna Tau-ekvivalens antagandet kan bli svårt att uppfylla vid en alternativ-form design då det torde bli svårt att konstruera två alternativa former av ett test som innehållsmässigt är så lika att de kan förväntas reflektera samma fenomen Petter Gustavsson 11 september
49 Hur kommer vi då runt detta? Kan vi inte utnyttja att vi inte bara gör en mätning i de flesta psykologisk test? Kan vi inte dra nytta av att mätningarna vi gör med våra indikatorer? = våra mätningar på item-nivå är ju upprepade mätningar! Petter Gustavsson 11 september
50 teori Population av mätningar/ item representerande egenskap X
51 teori Urval av mätningar/item ur populationen
52 teori Urval av mätningar/item från populationen av mätningar/item =test
53 teori Urval av item/mätningar från populationen av item/mätningar O+E T =test
54 Split-half Split-half korrelationen som estimat på reliabiliteten mellan halvorna baserat på antagandet om parallellitet 2/2 1/2
55 Split-half test Egentligt värde (T): samma oavsett uppdelning O1= T + E1 Testresultat för 1/2 O2= T + E2 Testresultat för 2/2
56 Formel: Split-half reliability Petter Gustavsson 11 september
57 Split-half estimat av reliabilitet Ett försök att förenkla designen för att estimera reliabilitet är att (istället för att administrera testet två gånger) utgå från alla item i testet och dela upp dem (slumpmässigt) i två deltest. Om det är ett bra test så borde antagandet om parallellitet vara lättare att uppfylla Men ett problem uppstår i och med att det finns många sätt att dela upp testet på och hur ska man hantera att reliabiltetsestimatet kommer att variera på grund av detta? Utveckla en estimeringsmetod som bygger på förhållandet mellan alla item (och inte bara två set av item) = Cronbach s alpha Petter Gustavsson 11 september
58 Chronbach s α (1) Ju högre korrelation mellan Ingående item (ju mindre icke-relavant variation och fel) och desto bättre reproduktion.
59 Chronbach s α (2) Ju fler item som används ur populationen desto bättre kan sanna värdet reproduceras
60 Cronbach s α Bestäms utifrån Antal item som utgör skalan Samvariationen mellan dem Kan uttryckas och förstås utifrån medelvärdet av alla möjliga (mellan item) korrelationer
61 Cronbach s α Varianstermer: Total varians för skalan (summerad varians för alla item och deras samband) Summerade variansen för varje item Formel:
62 Cronbach s alpha Antagandet som behöver göras för att estimera C s alpha är en uppluckring av antagandet om parallellitet. För att beräkna C s alpha görs antagandet att item måste vara essentially tau-ekvivalenta. Självklart måste vi ju utgå från att respektive item reflekterar samma true scores (tau-ekvivalens mellan item), men vi lär oss stå ut med de inte behöver ha exakt samma nivå av felvarians (vilket leder fram till benämningen essentially tau-ekvivalens). Petter Gustavsson 11 september
63 Summering av reliabilitetsantaganden Vi har talat om två huvudantaganden: Antagandet om parallellitet (paralella test) Med delantagandena om tau-ekvivalens och samma nivå av mätfel Antagandet om essentiell tau-ekvivalens Som liberaliserar antagandet ovan Petter Gustavsson 11 september
64 Summering av reliabilitetsantaganden Antagandena görs för att beräkna: Antagandet om parallellitet (paralella test) Test-retest reliabilitet Split-half reliabilitet Antagandet om essentiell tau-ekvivalens Cronbach s alpha Petter Gustavsson 11 september
65 Summering av reliabilitetsantaganden Underlaget som krävs för dessa estimeringar är Instrumentets total testpoäng Test-retest reliabilitet Item som utgör testet Cronbach s alpha Split-half reliabilitet Petter Gustavsson 11 september
66 Exempel: Reliabilitestestimat för HADS D Petter Gustavsson 11 september
67 HADS: estimering av test-retest reliabilitet Petter Gustavsson 11 september
68 Petter Gustavsson 11 september
69 Petter Gustavsson 11 september
70 Petter Gustavsson 11 september
71 HADS: estimering av Cronbach s α Petter Gustavsson 11 september
72 Petter Gustavsson 11 september
73 Petter Gustavsson 11 september
74 Petter Gustavsson 11 september
75 Petter Gustavsson 11 september
76 Petter Gustavsson 11 september
77 HADS: Vad blir de olika estimaten? Reliabilitet ANX DEP Test-retest Split-half Cronbach s alpha Petter Gustavsson 11 september
78 Item-analys Analys syftande till att identifiera källor till bristande precision. Petter Gustavsson 11 september
79 Item-analys Analys syftande till att identifiera källor till bristande precision. Statistik baserat på en enskild indikator i relation till alla andra indikatorer som utgör testet, dvs Testet delas upp utifrån sina X ingående indikatorer i En specifik indikator Det ursprungliga testet minus den specifika indikatorn Vanligt är att man studerar korrelationen för alla möjliga uppdelningar Corrected item total correlation Fundera på vad som utmärker ett bra respektive dåligt resultat. Petter Gustavsson 11 september
80 Item-analysen brukar summeras Se resultat från HADS artiklarna ovan. Petter Gustavsson 11 september
81 Petter Gustavsson 11 september
82 Petter Gustavsson 11 september
83 Mer om ITEM ANALYS Item medelvärde Hur borde items medelvärde förhålla sig till varandra (enl KTT) Item varians Hur borde bra och dåliga items varians förhålla sig till varandra (enl KTT) Items bidrag till upprepning av mätningarna Hur borde bra och dåliga items korrelationer med den den totala variationen förhålla sig till varandra Items bidrag till Cronbach s alfa Hur borde eliminering av ett item påverka alfa i det förändrade instrumentet, givet olika karakteristika enligt ovan? Petter Gustavsson 11 september
84 Exempel: Reliabilitetsanalys och item analys av KSP Monotoni undvikande skalan SPSS Data från normeringsstudien 1978 Petter Gustavsson 11 september
85 KSP Monotony Avoidance Petter Gustavsson 11 september
86 Petter Gustavsson 11 september
87 Petter Gustavsson 11 september
88 Petter Gustavsson 11 september
89 Petter Gustavsson 11 september
90 Petter Gustavsson 11 september
91 Petter Gustavsson 11 september
92 Petter Gustavsson 11 september
93 Petter Gustavsson 11 september
94 Petter Gustavsson 11 september
95 Petter Gustavsson 11 september
96 Petter Gustavsson 11 september
97 Petter Gustavsson 11 september
98 Petter Gustavsson 11 september
99 Petter Gustavsson 11 september
100 Petter Gustavsson 11 september
101 Item-total correlation Item-total korrelationen som estimat på reliabiliteten för enskilt item
102 Item-total korrelation Egentligt värde (T): samma oavsett uppdelning O1= T + E1 Testresultat för 9 av 10 O2= T + E2 Testresultat för 1 item
103 Petter Gustavsson 11 september
104 Cronbach s if item deleted Här prövas antagandet om att ytterligare item bidrar till precisionen i mätningen Genom att gå från 9 => 10 item (eller tvärtom, bidrog den till precisionen). Petter Gustavsson 11 september
105 Petter Gustavsson 11 september
106 Vad påverkar ett reliabilitetsestimat? Giltigheten i antagandena Uppmätt variation i undersökningsgruppen Samvariation mellan ingående item. Givet samma antal item: reliabiliteten ökar med ökad samvariation mellan item Antal item Givet samma samvariation mellan item: reliabiliteten ökar med ökat antal item Petter Gustavsson 11 september
107 Petter Gustavsson 11 september
108 Reliabilitetsnivåernas konsekvenser The prophecy formula: Petter Gustavsson 11 september
109 Reliabilitetsnivåernas konsekvenser En korrelation mellan två mätningar torde enligt klassisk test teori bestämmas av Den egentliga korrelationen mellan mätningarnas sanna värden Båda mätningarnas respektive reliabilitet Konsekvens: reliabiliteten i en eller båda mätningarna påverkar taket för hur hög en korrelation kan bli (vad händer om vi säger att den sanna korrelationen är 1?) Hur påverkar detta hur vi tolkar resultat i artiklar? Petter Gustavsson 11 september
110 Petter Gustavsson 11 september
111 Dagens agenda Värt att veta om normalfördelningen Frågesport Kort intro till kvalitetsparametrarna: reliabilitet och validitet Reliabilitet ett vardagligt exempel Reliabilitet utifrån Klassisk testteori Reliabilitet för ett instrument (instrumentets precision) Antaganden och olika estimat Exempel ur litteraturen om HADS Item analys Demonstration KSP MA Vad påverkar reliabilitetsestimaten Reliabilitet för en mätning (precision för en mätning) Uppgifter till fredag Petter Gustavsson 11 september
112 Estimering av reliabilitet för en mätning R Reliabilitet (CTT) Estimering av reliabilitet (för ett instrument) Metoder baserade på Classical test theory Parallella test: Test-retest och alternativa test Internal consistency measures Estimeirng av reliabilitet (för en mätning) standard error of measurement
113 3. Antagandet om slumpmässiga fel Varje mätning tenderar vara förknippad med ett större eller mindre slumpmässigt fel Resultaten av de upprepade enskilda mätningar med sådana slumpmässiga fel följer en sk normal-fördelning Felen antas vara okorrelerade Petter Gustavsson 11 september
114 Reliabilitet Den enskilda mätningens fel På individ-nivå Instrumentets nivå av mätfel På grupp-nivå T2 T1 T1 Petter Gustavsson 11 september
115 Standard error of measurement Standard error of measurement (SEm) Att estimera SEm är ytterligare ett sätt att uttrycka reliabiliteten
116 Standard error of measurement SEm uttrycker i vilken utsträckning en individs testresultat skulle kunna variera utifrån en teoretisk slumpfördelning som avspeglar precisionen i mätningen Till skillnad från andra reliabilitetsmått kan man använda detta på individnivå, tex som bas för att bilda konfidensintervall.
117 SEm: Formel
118 SEm: Parametrar SEm S obs Reliabilitet Rxx
119 Petters resultat på Monotoniundikande skalan: Testpoäng: 26 poäng Standardavvikelse i jämförelsegrupp: 4.7 Reliabilitet för mätningen i denna grupp Petter Gustavsson 11 september
120 Petters resultat på Monotoniundikande skalan: Testpoäng: 26 poäng Standardavvikelse i jämförelsegrupp: 4.7 Reliabilitet för mätningen i denna grupp Petter Gustavsson 11 september
121 Konfidensintervall 68%: %: %:
122 Omvandlat till T-värden
123 Övningar Petter Gustavsson 11 september
124 Egen övning: Sätt konfidensintervall runt er egen skattning Ta fram testpoängen för din Monotoni undvikande skattning Reliabilitets estimat (alpha=0,84 se tidigare bild) Ta fram SD för din jämförelsegrupp (se T-värdes tabell från måndagens övning) Bilda ett 95% konfidensintervall Översätt dina gränsvärden till T-tabellen Petter Gustavsson 11 september
125 Övning: tolkning mot kriterium: Underlag Petter Gustavsson 11 september
126 På fredag Frågor att fundera över Hur skapar vi mer precisa mätningar? Varför är inte Cronbach s alpha ett estimat för dimensionalitet? Hitta uppgifter om ett instruments reliabilitet (se artikel om MDI) Hur har de estimerat instrumentets reliabilitet Vilket blev deras resultat Petter Gustavsson 11 september
127 www/ www/ www/
Differentiell psykologi
Differentiell psykologi Torsdag 8 september 2011 Reliabilitet Dagens agenda MDI skattningsövning resultat av kriterietolkning Värt att veta om normalfördelningen Frågesport Kort info om kursboken : Personality
Psykometrins grunder. Agenda för dagen
Psykometrins grunder Agenda för dagen Psykometri en kärnkompetens inom psykologyrket Det psykologiska instrumentets anatomi Antaganden och teori bakom psykologiska mätningar Petter Gustavsson 5 september
Differentiell psykologi
Differentiell psykologi Fredag 14 september 2012 Validitet Dagens agenda Avstämning och Uppgifter inför idag Valdidtetsbegreppet Sources of validity evidence Evidence based on content Evidence based on
Differentiell psykologi
Differentiell psykologi Tisdag 25 september 2012 Generalizability Theory Dagens agenda Repetition: Sensitivitet och specificitet Övningsuppgift från gårdagen Generalizability theory Kritik mot CTT/TST
Differentiell psykologi
Differentiell psykologi Tisdag 24 september 2013 Confirmatory Factor Analysis CFA Dagens agenda Repetition: Sensitivitet och specificitet Övningsuppgift från idag Confirmatory Factor Analysis Utveckling
Differentiell psykologi
Differentiell psykologi Tisdag 25 september 2012 Frågestund Repetition Agenda Skillnader i definitioner mellan underlagen Statistik Instuderings- och tentamensfrågor Regressionsdiagnostik Fråga om Reliabilitet
Differentiell psykologi
Differentiell psykologi Tisdag 20 september 2011 Integrering och frågestund Moment II: Personlighet och intelligens Petter Gustavsson 20 september 20112 Upplägg: Momentansvarig: Petter Första veckan: Intelligens
Exempel på tidigare tentamen
Exempel på tidigare tentamen Fråga 1. Redogör för hur ett typiskt psykologiskt instrument är uppbyggt (=vilka beståndsdelar har testet/ testets anatomi /hur ser instrumentet ut) om det tänks vara uppbyggt
Differentiell psykologi
Differentiell psykologi Måndagen den 19/9 2011 Sensitivitet och specificitet Version 1.1 Dagens agenda Validering av kriterietolkningar Diagnostiska studier Exempel på diagnostisk studie av MDI Olika prövningar
34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Kriterier och riktlinjer för evidensbaserad bedömning av mätinstrument
Kriterier och riktlinjer för evidensbaserad bedömning av mätinstrument Evidens för instrument kan mätas med liknande kriterier som vid mätning av evidens för interventioner 1. Nedan finns en sammanfattning
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Differentiell psykologi
Differentiell psykologi Måndag 5 september 2 Det psykologiska instrumentets anatomi - introduktion Det psykologiska instrumentets anatomi : Introduktion Introduktionens två delar Exponering: mätning in
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Differentiell psykologi: Moment I: Lärandemål, instuderingsuppgift och instuderingsfrågor
Differentiell psykologi: Moment I: Lärandemål, instuderingsuppgift och instuderingsfrågor Inledning Välkommen till kursen i differentiell psykologi och det första momentet om psykometri och statistik.
Hypotestestning och repetition
Hypotestestning och repetition Statistisk inferens Vid inferens använder man urvalet för att uttala sig om populationen Centralmått Medelvärde: x= Σx i / n Median Typvärde Spridningsmått Används för att
Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Lösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå
Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)
Faktoranalys - Som en god cigarr
Innehåll Faktoranalys - Som en god cigarr Faktoranalys. Användningsområde. Krav/rekommen. 3. Olika typer av FA 4. Faktorladdningar 5. Eigenvalue 6. Rotation 7. Laddningar & Korr. 8. Jämförelse av metoder
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska
EXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två
Vetenskaplig metod och Statistik
Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Tentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
OBS! Vi har nya rutiner.
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Provmoment: Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna hjälpmedel: Miniräknare Tentan består av
Vi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Tentamen vetenskaplig teori och metod, Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1
Namn/Kod Vetenskaplig teori och metod Provmoment: Tentamen 1 Ladokkod: 61ST01 Tentamen ges för: SSK GSJUK13v Tentamenskod: Tentamensdatum: 2015 10 02 Tid: 09:00 12:00 Hjälpmedel: Inga hjälpmedel Totalt
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Analytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens
Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större
Vetenskaplig Metod och Statistik. Maja Llena Garde Fysikum, SU Vetenskapens Hus
Vetenskaplig Metod och Statistik Maja Llena Garde Fysikum, SU Vetenskapens Hus 2010 10 20 Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet?
Analytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Manual för granskning av artiklar som bedömer en mätmetods egenskaper
Manual för granskning av artiklar som bedömer en mätmetods egenskaper Denna manual är tänkt att användas tillsammans med Mall för granskning av vetenskapliga artiklar om mätmetoder. Syftet med manualen
Beskrivande statistik. Tony Pansell, Leg optiker Docent, Universitetslektor
Beskrivande statistik Tony Pansell, Leg optiker Docent, Universitetslektor Beskrivande statistik Grunden för all analys är ordning och reda! Beskrivande statistik hjälper oss att överskådligt sammanfatta
OBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Statistiska analyser C2 Bivariat analys. Wieland Wermke
+ Statistiska analyser C2 Bivariat analys Wieland Wermke + Bivariat analys n Mål: Vi vill veta något om ett samband mellan två fenomen n à inom kvantitativa strategier kan man undersöka detta genom att
Statistiska analysmetoder, en introduktion. Fördjupad forskningsmetodik, allmän del Våren 2018
Statistiska analysmetoder, en introduktion Fördjupad forskningsmetodik, allmän del Våren 2018 Vad är statistisk dataanalys? Analys och tolkning av kvantitativa data -> förutsätter numeriskt datamaterial
Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade
HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.
STATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Föreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Examinationsuppgifter del 2
UMEÅ UNIVERSITET Institutionen för Matematik och Matematisk statistisk Statistik för ingenjörer, poäng, Anders Lundquist 7-- Examinationsuppgifter del Redovisas muntligt den / (Ö-vik) samt / (Lycksele).
Standardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Forskarutbildningen i Beteendevetenskapliga
Umeå universitet Institutionen för tillämpad utbildningsvetenskap KURSPLAN Forskarutbildningen i Beteendevetenskapliga mätningar Baskurs: 37,5 hp Moment 1: Introduktion till beteendevetenskapliga mätningar,
Studentens namn: Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetoder Provmoment: Vetenskapsteori respektive forskningsmetod Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 2015-09-29
Innehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Finansiering. Föreläsning 6 Risk och avkastning BMA: Kap. 7. Jonas Råsbrant
Finansiering Föreläsning 6 Risk och avkastning BMA: Kap. 7 Jonas Råsbrant jonas.rasbrant@fek.uu.se Föreläsningens innehåll Historisk avkastning för finansiella tillgångar Beräkning av avkastning och risk
Statistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Föreläsning G60 Statistiska metoder
Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala
ANOVA Mellangruppsdesign
ANOVA Mellangruppsdesign Envägs variansanlays, mellangruppsdesign Variabler En oberoende variabel ( envägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier,
7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Introduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Följande resultat erhålls (enhet: 1000psi):
Variansanalys Exempel Aluminiumstavar utsätts för uppvärmningsbehandlingar enligt fyra olika standardmetoder. Efter behandlingen uppmäts dragstyrkan hos varje stav. Fem upprepningar görs för varje behandling.
Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)
Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas
Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.
PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)
Anvisningar till kursen
Anvisningar till kursen TILLÄMPAD ENKÄTMETODIK: Att mäta och validera latenta och manifesta psykologiska begrepp (7,5 p) HT 2014 Kursansvarig: Claudia Bernhard- Oettel Kursanvisningar Kursens innehåll
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?
När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns
Grundläggande matematisk statistik
Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06
Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse
Analytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
Föreläsning 7: Punktskattningar
Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT
Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence
FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Kursnamn: Vetenskapsteori och grundläggande forskningsmetod
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2013-02-19 kl. 09:00 13:00 Tillåtna hjälpmedel: Miniräknare Tentan består
Samplingfördelningar 1
Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi
Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-09-26 Tillåtna hjälpmedel: Miniräknare Tentan består av
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 22 december, 2016 Examinatorer: Kerstin Wiklander och Erik Broman.
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Tentamen i Matematisk statistik Kurskod S0001M
Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (9 uppgifter) Tentamensdatum 2013-08-27 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson och
FÖRELÄSNING 8:
FÖRELÄSNING 8: 016-05-17 LÄRANDEMÅL Konfidensintervall för väntevärdet då variansen är okänd T-fördelningen Goodness of fit-test χ -fördelningen Hypotestest Signifikansgrad Samla in data Sammanställ data
Statistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Att välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
Jag tycker jag är -2. Beskrivning av instrumentet och dess användningsområde. Översikt. Vilka grupper är instrumentet gjort för?
Beskrivning av instrumentet och dess användningsområde Jag tycker jag är-2 är ett självskattningsinstrument som syftar till att bedöma barns och ungas självkänsla [1,2]. Formuläret är anpassat för att
Innehåll. Standardavvikelse... 3 Betarisk... 3 Value at Risk... 4 Risknivån i strukturerade produkter... 4
Del 22 Riskbedömning Innehåll Standardavvikelse... 3 Betarisk... 3 Value at Risk... 4 Risknivån i strukturerade produkter... 4 Vid investeringar i finansiella instrument följer vanligen en mängd olika
Tentamen Tillämpad statistik A5 (15hp)
Uppsala universitet Statistiska institutionen A5 2014-08-26 Tentamen Tillämpad statistik A5 (15hp) 2014-08-26 UPPLYSNINGAR A. Tillåtna hjälpmedel: Miniräknare Formelsamlingar: A4/A8 Tabell- och formelsamling
Ekonomisk styrning Delkurs Finansiering
Ekonomisk styrning Delkurs Finansiering Föreläsning 6 Introduktion till portföljteorin BMA: Kap. 7-8 Jonas Råsbrant jonas.rasbrant@indek.kth.se Föreläsningens innehåll Historisk avkastning för finansiella
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
GRANSKNINGSUNDERLAG. Te knis k de l. Kriterier för kva litets vä rderin g a v s ta n da rdis era de bedöm n in gs m etoder in om s ocia lt a rbete
1 GRANSKNINGSUNDERLAG Kriterier för kva litets vä rderin g a v s ta n da rdis era de bedöm n in gs m etoder in om s ocia lt a rbete Te knis k de l Namn på granskat instrument Namn på granskare En he t
Höftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
Skriv tydligt. Besvara inte frågor med lösryckta ord, utan sammanhängande och tydligt. Visa även dina beräkningar.
KOD: Kurskod: PM1303 Kursnamn: Vetenskapsteori och grundläggande forskningsmetod Ansvarig lärare: Magnus Lindwall Tentamensdatum: 2013-04-20 kl. 09:00 13:00 Tillåtna hjälpmedel: Miniräknare Tentan består
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) Statistiska institutionen, Uppsala universitet
Preliminära lösningar för Tentamen Tillämpad statistik A5 (15hp) 2016-01-13 Statistiska institutionen, Uppsala universitet Uppgift 1 (20 poäng) A) (4p) Om kommunens befolkning i den lokala arbetsmarknaden