Enligt termodynamiken svarar differensen av idealgasers molära värmekapacitet mot den allmänna gaskonstanten R

Relevanta dokument
Då en homogen jämntjock stav töjs med en kraft F i stavens riktning, beskrivs spänningen σ på ett godtyckligt avstånd från stödpunkten som .

1.1 Mätning av permittiviteten i vakuum med en skivkondensator

Det termodynamiska arbetet kan beräknas som en kurvintegral över cykeln. Figur 1. Exempel på en termodynamisk cykel.

SOLENOIDENS MAGNETFÄLT

HALVLEDARES ELEKTRISKA KONDUKTIVITET

Genom att kombinera ekvationer (1) och (3) fås ett samband mellan strömmens och spänningens amplitud (eller effektivvärden) C, (4)

DEN FOTOELEKTRISKA EFFEKTEN

LJUSETS DIFFRAKTION. 1 Inledning. Ljusets diffraktion

l, 1 k 1 l, 2 k 2 l, N k N T Figur 1. Beräknandet av värmekonduktiviteten för en struktur med flera lager.

Figur 1. Funktionsprincipen för Michelson-interferometer.

1. Mekanisk svängningsrörelse

LABORATION 2 TERMODYNAMIK BESTÄMNING AV C p /C v

Vågrörelselära och optik

Högpresterande. Särskilt begåvade

BESTÄMNING AV C P /C V FÖR LUFT

Densitet Tabellen nedan visar massan och volymen för olika mängder kopparnubb.

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

1. INLEDNING 2. TEORI. Arbete TD3 Temperaturberoendet för en vätskas ångtryck

LÄRARHANDLEDNING Harmonisk svängningsrörelse

Tentamen 1 i Matematik 1, HF1903 Torsdag 22 augusti Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

PTG 2015 övning 1. Problem 1

Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar

ANDRAGRADSKURVOR Vi betraktar ekvationen

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

Arbete är ingen tillståndsstorhet!

Kap 4 energianalys av slutna system

Arbetet beror på vägen

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Uppgifter 2 Grundläggande akustik (II) & SDOF

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Var i en nöjespark får man uppleva de starkaste krafterna? Enligt

Tentamen i Mekanik II

Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till f(x) = 1 x.

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Lite fakta om proteinmodeller, som deltar mycket i den här tentamen

Uppgift 1. Egenskaper. Kallformad CHS av den austenitiska stålsorten Målsättning

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Tentamen i Mekanik 5C1107, baskurs S2. Problemtentamen

Föreläsning 17: Jämviktsläge för flexibla system

4 rörelsemängd. en modell för gaser. Innehåll

och kallas ytintegral AREAN AV EN BUKTIG YTA

Figur 1. Schematisk bild över en toroid. Vid praktiska tillämpningar är ledning runt toroiden oftast tätare snurrad än bildens exempel.

Laboration Svängningar

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Tentamen i Termodynamik för K och B kl 8-13

Tentamen Mekanik F del 2 (FFM520)


Tentamen i FTF140 Termodynamik och statistisk fysik för F3

6 Tryck LÖSNINGSFÖRSLAG. 6. Tryck Tigerns tryck är betydligt större än kattens. Pa 3,9 MPa 0,00064

Tentamen i KFK080 Termodynamik kl 08-13

I en utspädd sur lösning faller sackaros sönder enligt följande reaktion: När man följde reaktionen som en funktion av tiden erhölls följande data:

Räkneövning 2 hösten 2014

Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar

Tentamen, Termodynamik och ytkemi, KFKA01,

Lösningar till tentamen i Kemisk termodynamik

@

Tentamen i Mekanik SG1102, m. k OPEN. Problemtentamen

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Linnéuniversitetet Institutionen för fysik och elektroteknik

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Termodynamik FL4. 1:a HS ENERGIBALANS VÄRMEKAPACITET IDEALA GASER ENERGIBALANS FÖR SLUTNA SYSTEM

FYTA11: Molekylvibrationer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

13 Potensfunktioner. Vi ska titta närmare på några potensfunktioner och skaffa oss en idé om hur deras kurvor ser ut. Vi har tidigare sett grafen till

Sekantmetoden Beräkningsmatematik TANA21 Linköpings universitet Caroline Cornelius, Anja Hellander Ht 2018

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar

Dagens program. Linjära ekvationssystem och matriser

Räkneuppgifter i matematik, kemi och fysik för repetition av gymnasiet. Farmaceutiska Fakulteten

Svar och anvisningar

0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x

WALLENBERGS FYSIKPRIS 2014

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Labbrapport svängande skivor

Tentamen Modellering och simulering inom fältteori, 21 oktober, 2006

Lösningar till tentamen i Kemisk termodynamik

Livet i Bokstavslandet Läsebok åk 1

Andra EP-laborationen

Omtentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i Mekanik SG1107, baskurs S2. Problemtentamen

Inledande kurs i matematik, avsnitt P.2. Linjens ekvation kan vi skriva som. Varje icke-lodrät linje i planet kan skrivas i formen.

Övningstenta Svar och anvisningar. Uppgift 1. a) Hastigheten v(t) får vi genom att integrera: v(t) = a(t)dt

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Tentamen i Kemisk Termodynamik kl 14-19

Tenta Elektrisk mätteknik och vågfysik (FFY616)

/ ^'u*/ Vridmoment. Extrauppgifter. version 0.11 [131110]

4-8 Cirklar. Inledning

Lufttryck i ballong laboration Mätteknik

Laboration 1: Gravitation

Magnetiska fält laboration 1FA514 Elektimagnetism I

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

Grafisk manual (kort version)

Transkript:

ADIABATKONSTANTEN 1 Inledning Med ett ämnes specifika värmekapacitet c avses den mängd värme per massenhet som krävs för att värma upp ämnet. För ämnen i fast eller flytande form beror den specifika värmekapacitetet inte nämnvärt på ifall upphettningen sker vid konstant volym eller tryck. För gaser däremot måste skillnad göras på den specifika värmekapaciteten vid konstant volym c V och vid konstant tryck c P. Ofta används den molära värmekapaciteten för gaser (vid konstant tryck C p och vid konstant volym C v) som fås genom att multiplicera de specifika värmekapaciteterna c V och c p med gasens molmassa M CC V = MMcc V, (1) CC P = MMcc P. (2) Enligt termodynamiken svarar differensen av idealgasers molära värmekapacitet mot den allmänna gaskonstanten R CC P CC V = RR. (3) Förhållandet mellan de specifika värmekapaciteterna γ CC P CC V = cc p cc v = γγ (4) är också konstant och kallas adiabatkonstanten. Adiabatkonstanten är samma för alla tvåatomiga gaser och kan användas för att beräkna gasens specifika värmekapaciteter. Idealgasers adiabatkonstant kan enligt termodynamiken bestämmas genom att använda sig av gasmolekylernas frihetsgrad. Enatomiga gaser har tre frihetsgrader, molekylerna kan alltså röra sig i tre riktningar (translatorisk kinetisk energi). Tvåatomiga gaser kan uttöver detta ha rotationsenergi i två riktningar vinkelrätt mot dess egen axel. I en tvåatomig gas kan även bindningen mellan atomerna oscillera vilket kan binda rörelse- eller potentialenergi till oscillationsrörelsen. Detta oscillationstillstånd blir dock först betydande vid höga temperaturer, vid rumstemperatur kan därför tvåatomiga gaser antas ha fem frihetsgrader. [1] Adiabatkonstanten kan m. h. a. frihetsgradernas antal f bestämmas ur ekvationen [2] γγ = 1 + 2 ff. (5) 1.1 Rüchardts metod I Rüchardts metod bildar den adiabatiskt kompressionsbara gasen en gasfjäder som sätts att oscillera. Fjäderkonstanten för den dämpat oscillerande gasfjädern bestäms m. h. a. svängningens period och längden på fjädern. Genom förhållandet mellan fjäderkonstanten och idealgasens adiabatiska kompression kan sedan den adiabatkonstanten bestämmas. Vi betraktar krafterna som verkar på kolven (massa m): nedåt verkar tyngdkraften mg och uppåt den kraft som orsakas av trycket F = PA, där P är trycket i systemet och A är kolvens area. Enligt Newtonin II är 1

mmmm = PPPP mmmm. (6) Då kolven är i jämvikt, fås trycket som motsvarar jämviktstillståndet P o = mg/a. Låt det momentana trycket i cylindern vara P = P o + P. Insättning av detta i ekvation (6), ger mmmm = AA PP. (7) Vi kan välja att cylinderns volym vid jämvikt är V o och kolven är då i positionen x = 0. Då är gasens momentana volym V = V o + V eller V = V o + Ax. För en gas som komprimeras adiabatiskt gäller PPVV γγ = konstant, (8) där V är systemets volym. Genom att differentiera ekvationen med avseende på båda variablerna fås VV γγ dddd + γγγγvv γγ 1 dddd = 0. (9) Vi löser ut tryckets avvikelse från jämviktsvärdet dp och använder oss av att VV = xx AA då förändringen i volym är litet. Detta ger att dddd = γγγγγγγγ VV. (10) Genom insättning av detta i ekvation (7) fås för avvikelsen från jämviktsäget differentialekvationen ddtt 2 = γγγγaa2 xx. (11) VV mm dd2 xx Ovanstående ekvation (11) har samma form som ekvationen för en harmoniska oscillator med fjäderkonstanten k kk = γγγγaa2. (10) VV Oscillationen kan anses vara harmonisk, för perioden T gäller då att TT = 2ππ mm kk, (11) där m är oscillatorns massa. Perioden för oscillatorn kan bestämmas genom att substituera ekvation (10) i ekvation (11) TT = 2ππ mmmm γγγγaa 2 (12) och då ekvationen löses med avseende på volymen V fås VV = γγγγaa2 TT 2. (13) 4ππ 2 mm 2

Gasfjäderns totala volym V har formen AA(h + h 0 ), där h är kolvens höjd från ett definierat nollställe och h 0 tar i beaktan den dåligt kända volymen under nollnivån. Då uttrycket för den totala volymen substitueras i ekvation (13) och den erhållna ekvationen löses med avseende på kolvens höjd: h = γγγγγγ 4ππ 2 mm TT2 h 0. (14) 2 Målsättningar Efter att ha utfört laboratoriearbetet - kan studeranden förklara vad som menas med en adiabatisk process - förstår studeranden varför olika gasers värden på adiabatkonstanten skiljer sig från varandra - har studeranden övat på framställandet av mätresultaten grafiskt och anpassandet av en rak linje till mätdata 3 Apparatur Ett system bestående av en kolv och en cylinder samt en trycksensor används vid mätningen och illustreras i figur 1. Trycksensorn är kopplad till datainsamlaren som i sin tur är ansluten till datorn. Med hjälp av datorn kan systemets tryck undersökas som funktion av tiden. Mätningarna utförs för två olika gaser: luft och helium. Assistenten hjälper till med att fylla apparaturen med helium. Den utförda mätningen förutsätter att apparaturens friktion är mycket liten. Friktionen som motverkar kolvens rörelse i den använda apparaturen har minskats genom att tumma på kolvens täthet. Då mätningen utförs måste därför kolvens läckage tas i beaktan, vilket i praktiken betyder att höjden på kolven måste antecknas så snabbt som möjligt efter varje mätning. Dessutom skall den använda trycksensorns mätfrekvens vara hög. Massan för kolven i apparaturen är 35,28 g ± 0,03 g. Figur 1. Apparaturen som används för att bestämma adiabatkonstanten består av ett kolv-cylindersystem vars tryck mäts med en trycksensor. 3

4 Förhandsuppgifter Bekanta dig med teorin som hör till arbetet i valfri fysiklärobok t.ex. [2 4], läs igenom arbetsinstruktionen och besvara frågorna nedan på svarsblanketten. 1. Hurudan är en adiabatisk process? 2. Hur beror en harmonisk oscillators period av amplituden? 3. Tillämpa ekvation (5) till att beräkna de teoretiska adiabatkonstanterna för helium och luft. 4. I arbetet mäts och ritas kolvens höjd h som funktion av kvadraten på perioden T 2, samt anpassas linjens ekvation ( yy = kkkk + bb ). Vad är linjens riktingskoefficient k enligt ekvation (14)? Ge ekvationen för k och lös ur denna adiabatkonstanten γγ. 5. Uppskatta felet för adiabatkonstanten γ med totaldifferentialen på ekvationen som du erhöll i föregående punkt. Av variablerna bör du beakta riktningskoefficienten k, kolvens massa m, kolvens diameter d samt trycket i systemet P. (TIPS: I detta fall är det lättare att beräkna det relativa felet.) 5 Mätningar Mätningen utförs genom att låta systemet avvika från sitt jämviktsläge så att det börjar oscillera. Systemets tryck mäts medan det oscillerar och mätningen upprepas för olika höjder på kolven. Kolvens läckage under spänning bör tas i beaktan genom att anteckna kolvens höjd h direkt efter att mätningen utförts så att det faktiska jämviktsläget kan hittas. För varje mätt oscillation bestäms oscillationens period T. Antalet svängningar under ett visst tidsintervall antecknas för detta ändamål. 5.1 Förberedelser för apparaturen 1. Koppla trycksensorn till kolv-cylindersystemets ena skarv (se figur 1). 2. Stäng den öppna skarven genom att trycka fast kompressionsventilen och kontrollera att kompressionsventilen som leder till trycksensorn är öppen. 3. Koppla trycksensorn till LabQuest Mini datainsamlaren och anslut datainsamlaren till datorns USBport. 4. Öppna filen Adiabaattivakion maaritys.cmbl på datorn skrivbord. 5.2 Mätning av luftens adiabatkonstant 1. Anteckna kolven massa och diamater på svarsblanketten. Uppskatta dess fel. 2. Gör en hypotes och anteckna denna inklusive motivering på svarsblanketten: Hur varierar systemets tryck då kolven sätts att oscillera? Gör en skiss på svarsblanketten över tryckets tidsberoende. Motivera ditt svar. 3. Testa din hypotes: Skriv ner dina observationer och skissera förändringen i trycket på svarsblanketten. Om din hypotes inte var korrekt, fundera på varför den var fel och skriv ner möjliga orsaker. 4. Ta loss slangen från trycksensorn och placera kolven på en höjd av ungefär 9 cm. Koppla ledningen tillbaka fast i trycksensorn. 5. Starta mätningen genom att klicka på Collect -ikonen som finns på den övre balken. 4

6. Tryck lätt nedåt på kolvens mitt (t.ex. en millimeter) och släpp sedan kolven. Då oscillationen upphört kan du avsluta mätningen. 7. Avläs och anteckna på vilken höjd h som kolven stannar på. 8. Spara mätserien (ctrl+l) om data ser bra ut. 9. Upprepa punkterna 4 8 med olika höjder mellan 1 och 9 cm på kolven. För att kunna justera kolvens höjd måste du släpa ut luft ur cylindern genom en valfri skarv. Om du vill kan du flytta tidigare mätserier utom synhåll. 10. Mät och skriv upp systemets tryck med tillhörande fel vid jämviktsläge. Du kan använda någon av de tidigare mätning med tillräckligt många mätpunkter vid jämviktstillståndet för ändamålet. 5.2.1 Bestämmandet av perioden 1. Undersök det område i en mätseries graf som beskriver oscillationen för kolven. Måla området mellan den första toppen och den sista tydliga toppen. (Ta inte med oscillationens begynnelsepunkt, utan endast hela perioder). 2. Läs av tidskillnaden Δt mellan topparna från grafens undre kant och beräkna antalet oscillationer n i grafen under det ifrågavarande tidsintervallet. Skillnaderna mellan perioderna är mycket små, så perioderna måste avläsas med flera gällande siffrors noggrannhet. Skriv upp de erhållna värdena på svarsblanketten. 3. Upprepa punkterna 1 2 för resten av mätserierna. 5.3 Mätning av heliums adiabatkonstant 1. Fyll apparaturen med helium med assistentens hjälp och försätt kolven i oscillerande rörelse. 2. Gör mätningarna och bestämmandet av perioden på samma sätt som vid föregående mätning. 3. Mät och skriv upp systemets tryck och tillhörande fel. 6 Behandling av resultaten 1. Rita höjden h som en funktion av perioden i kvadrat T 2. Enligt ekvation (14) skall mätpunkterna ligga på en rak linje. Anpassa raka linjer till mätpunkterna och bestäm vinkelkoefficienterna för dessa. Bestäm felmarginalen för vinkelkoefficientet från mätningarna med gasfjädern av luft. 2. Skriv ut graferna som du ritat och bifoga dessa till svarsblanketten. 3. Bestäm adiabatkonstanten för båda gaserna m. h.a. vinkelkoefficienterna och anteckna resultaten på svarsblanketten. 4. Gör dessutom en feluppskattning för luftens adiabatkonstant och motivera denna. 7 Tankeställare 1. Varför kan den i arbetet använda kolvens oscillation ses som en adiabatisk process? 2. Jämför värdena på adiabatkonstanten som du erhållit med de teoretiska värdena. Om dessa inte överenstämmer, fundera på varför. 3. Uppskatta de systematiska felen i mätningen som inte kunde tas i beaktan i den beräknade felmarginalen. 5

Källor [1] D.C. Giancoli, Physics for Scientists & Engineers with Modern Physics 4 th edition, International edition, Pearson Education, Inc, 2009. [2] Jouko Arponen ja Juha Honkonen, Statistinen fysiikka, 3. korj. painos, Limes ry, 2010. [3] Hugh Young, Roger Freedman, A. Lewis Ford: University Physics with Modern Physics. International Edition. 13. upplagan. Pearson Education, 2011. [4] Halliday, Resnick, Walker, Fundamentals of Physics Extended, Extended 9 th edition, International Student Version, Wiley & Sons, Inc., 2011. 6