Lab3B-uppgifter (delmängd)
|
|
- Birgit Nyström
- för 7 år sedan
- Visningar:
Transkript
1 Lab3B-uppgifter (delmängd) 3B.1 Varpan gotländsk kastsport 3B.2 Metallröret het vätska i rör 3B.4 Futten rymdskeppet illa ute 3B.5 Strömkretsen elektriskt svängningsförlopp 3B.11 Naturen växter, möss och ormar 3B.13 Vindkastet bollkast i sidvind 3B.14 Flödespaketet partikelflöde förbi en cylinder 3B.15 Glödtråden tråd, het på mitten och kall i ändarna 3B.16 Satelliten kretslopp kring jorden och månen 3B.19 Dubbelpendeln här svänger det rejält 3B.22 Diffraktionsmönster av kant, spalt, strå SVÅRA UPPGIFTER ÄR *-märkta
2 3B.1: Varpan I varpaspel kastar man en flat sten och det gäller att träffa en målsticka som är nedsatt i marken tjugo meter bort. Kaströrelsen beskrivs av differentialekvationerna (dx d 2 ) x dt 2 = k dx 2 ( ) dy 2 x + dt dt dt d 2 y dt 2 = 9.81 k y (dx ) dy 2 dt + dt ( ) dy 2 dt där varpastenens luftmotståndskonstant i x- respy-ledär k x =0.020, k y = Stenen kastas medhastigheten 19.0 m/s från 1.50 meters höjd. Varpans nedslagspunkt beror av kastvinkeln α. Ett kast simuleras genom att man anger en kastvinkel och löser differentialekvationerna med Runge-Kuttas metod tills varpan tar mark (t o m hamnar nedanför marknivån y =0). Interpolera fram tidpunkt och x-koordinat för nedslagspunkten. Problemet att bestämma vilken kastvinkel som ger vinnande varpakast med nedslag inom 1 cm från målstickan utgör ett ekvationslösningsproblem. Skriv en effektiv algoritm som beräknar kastvinkeln och rita upp kastbanan. Tänk på att två lösningar finns till varpaproblemet en hög och en låg bana. Diskutera (med hjälp av numeriska experiment) hur de numeriska metoderna och andra eventuella osäkerheter påverkar tillförlitligheten i vinkelresultatet. Interpolera sedan i de ovan erhållna och lagrade kastbanevärdena (vektorerna för t, x, y, ẋ, ẏ) för att åstadkomma en tabell där kasthöjden skrivs ut för varje meter i x-led. För att beräkna tidpunkten då x antar ett visst värde duger linjär interpolation (om det inte är alltför glest mellan värdena). För beräkning av y vid denna tidpunkt är hermiteinterpolation särskilt lämplig eftersom ẏ-värden finns tillgängliga. Rita upp detta resultat också med markering av varpans höjdläge vid varje meter. Gör en störningsräkning för den vinnande kastvinkeln: hur mycket ändras nedslagspunkten om hastigheten (19.0 m/s) och utgångshöjden (1.50 m) var och en ändras 1 procent?
3 3B.2: Metallröret Genom ett tjockväggigt cylindriskt metallrör strömmar en het vätska med den konstanta temperaturen 450 C. Cylinderväggen har innerradien 1.0 cm och ytterradien 2.0 cm. Temperaturfördelningen u(r) i metallen bestäms av differentialekvationen r d2 u dr 2 + du =0 med u = 450 vid r =1 (längdenhet cm). dr Omgivande temperatur är 20 C. Vid r =2är temperaturgradienten du/dr proportionell mot temperaturdifferensen, d v s där gäller du/dr = K (u 20). K är en materialkonstant, det så kallade värmeöverföringstalet mellan metall och luft. Låt metallen i testfallet ha K =1. Gör enligt finitadifferensmetoden en diskretisering av intervallet 1 r 2 indelat i N delintervall. Visa hur randvärdesproblemet kan approximeras av ett matrisproblem. Lös detta först för N =25, fortsätt medsuccessiva fördubblingar av N tills önskadprecision erhålls t ex fyra korrekta siffror i temperaturvärdet vidcylinderns ytterradie. Rita upp temperaturfördelningen i metallen. Man tillåter inte att metallcylinderns utsida får bli varmare än 100.Beräknavilket som är det kritiska K-värdet för metallen för att detta ska uppnås. Undersök även hur känsligt detta kritiska K-värde är för temperaturvariationer i vätskan. Det inträffar nämligen att vätskan i röret råkar stiga till 460 Cistället för att hålla det givna temperaturvärdet 450 C. (Problemet kan lösas analytiskt, gör gärna det för kontroll.)
4 3B.4: Rymdskeppet Futten illa ute Trots att raketmotorn går för fullt förblir Futten hängande orörlig på höjden H över jordytan. Goda råd är dyra! Kaptenen låter rymdskeppet vrida sig nittio grader från det tidigare vertikala läget, och i fortsättningen verkar raketmotorn horisontellt med oförminskad kraft. Störtar Futten eller klarar sig rymdskeppet ut i rymden? Newtons rörelseekvationer uttryckta i polära koordinater lyder: d 2 r dt 2 r ( ) dφ 2 = G cos α g R2 dt r 2 r d2 φ dt 2 +2dr dφ dt dt = G sin α där vinkeln α var noll före vridningen men blir 90 efter kaptenens manöver (vid tiden t =0). R är jordradien, g är tyngdaccelerationen vid jordytan och G är tyngdaccelerationen på höjden H där Futten blev hängande: G = gr 2 /(R + H) 2. Med för vårt problem lämpliga enheter längdenhet jordradie och tidsenhet timme gäller att g =20.0jordradier/tim 2. De nödvändiga startvärdena ges av det faktum att Futten var helt stilla då kaptenen ändrade banriktning. Skriv ett program som medrunge-kuttas metodlöser differentialekvationerna under så lång tid att det står klart om Futten störtar eller försvinner ut i rymden. Futten befinner sig på några jordradiers höjd då kaptenen gör manövern. Undersök först vad som händer om starthöjden H är två jordradier, pröva sedan hur Futtens bana blir vid några andra val av starthöjder. Experimentera dig fram till lagom sluttid och lämpligt tidssteg. Fundera ut en bra algoritm som med god noggrannhet och lämplig form av interpolation bestämmer tidpunkt och positionsangivelse (t p,φ p,r p ) för banans allra lägsta punkt. Uppgiften är nu att meden effektiv algoritm räkna fram gränsfallets H-värde, dv s Futtens starthöjdh gräns som leder till en bana utan att katastrofen blir ett faktum. Bestäm hastigheten som Futten sveper förbi jordytan med i detta fall. Rita bankurvan från begynnelseläget till platsen där raketen just passerar grantopparna. Beräkna bankurvans längd, alltså Futtens tillryggalagda sträcka. Gör tillförlitlighetsbedömning av de erhållna resultaten! Slutligen, om kaptenen vidsin snabba manöver inte lyckas vrida Futten exakt 90 utan vinkeln α slår fel på t ex fem grader, hur mycket påverkar det raketbanan? Gör körningar mednågra olika vinklar (gärna både små och stora avvikelser från 90 - manövern) och studera hur det kritiska H-värdet ändras! Rita de olika bankurvorna.
5 3B.5: Strömkretsen En enkel strömkrets består av en kondensator och en spole. Kondensatorn är uppladdad till spänningen U 0. Spolen innehåller järn och har strömberoende induktans: L = L 0 / ( 1+I 2). Vidtiden t =0sluts kretsen och strömmen bestäms sedan av två samband: Spänningen över induktansen: U = L di dt (1) Strömmen genom kondensatorn: I = C du dt (2) Visa att följande differentialekvation kan härledas ur uttrycken ovan (efter derivering av första uttrycket): d 2 I dt 2 = 2I ( ) di 2 1+I 2 I ( 1+I 2) dt L 0 C Vidtiden t =0gäller I =0 och di/dt = U 0 /L 0. Lösningen I(t) till differentialekvationen är en periodisk funktion som är mer eller mindre sinusliknande beroende av hur U 0 -värdet väljs. Gällande data är L 0 =1H, C =1µF. Några olika värden på U 0 ska prövas, dels spänningen 240 V då järnkärnans inflytande är nästan försumbart, dels två höga spänningsvärden 1200 V och 2400 V då strömkurvan inte blir särskilt sinuslik längre. Före den numeriska behandlingen kan det vara bra att bedöma storleksordningen på svängningstiden. Det är lätt att räkna ut frekvensen och svängningstiden för en krets med konstant C och konstant L = L 0. Använd ode45 för att beräkna och rita strömkurvorna (standardtoleransen i ode45 duger inte, en relativ tolerans som är flera tiopotenser mindre kan vara nödvändig). Som jämförelse ska du även utnyttja en egen RK4 för strömkurveberäkningarna. Fundera ut en bra algoritm för att bestämma strömmens toppvärde I max och för att medmycket godprecision beräkna svängningstiden T. Tillförlitlighetsbedömning av I max och T krävs.
6 3B.11: Naturen växter, möss och ormar Vidbörjan av år noll planteras 100 exemplar av en nyttoväxt på en bördig ö. Beståndet utvecklar sig snabbt med tiden enligt dv/dt = a 1 V a 2 V 2, där V (t) är antalet växter vidtiden t (tidsenheten är år). Konstanterna är a 1 =16och a 2 = Differentialekvationen är analytiskt lösbar (separabel) men kan förstås också lösas numeriskt. Man finner att då t ökar så närmar sig V (t) ett konstant slutvärde, vilket? Låt tidpunkten vara T 1 då antalet växter stigit till 95% av slutvärdet. Ange hur många dagar efter inplanteringen som detta uppnås. Använd RK4 med tidssteget en dag, alltså dt =1/365, för att finna dagen. Men pröva dessutom om RK4 med tidssteget en vecka (och viss interpolation) leder till samma dag. Just den dagen anländer två växtätande djur till ön (man kan väl tänka sig ett par möss). Samspelet mellan växterna och djuren kan beskrivas med följande differentialekvationer, där S(t) betecknar antalet skadedjur: dv/dt = a 1 V a 2 V 2 a 3 VS, ds/dt= b 1 S b 2 V 0.6 S 0.8. I växtekvationen tillkommer termen a 3 VSsom effekt av att skadedjuren dykt upp, konstanten a 3 = Djuren har svårigheter att öka ju fler de är, därav den negativa första termen i ds/dt, konstantenärb 1 =2.0, Djurantalet ökar däremot när de har möjlighet att utnyttja födan; i den positiva andra termen gäller b 2 = Detta differentialekvationssystem har då t går mot oändligheten en konstant stabil lösning. Sätt derivatorna lika med noll och lös det ickelinjära system som ger slutvärdena för V och S. Lös differentialekvationerna numeriskt med lämplig metod fram till tidpunkten T 2 =1.5 (dv s ett och ett halvt år efter växtplanteringen). Har antalet växter och skadedjur hunnit stabilisera sig? Hur många procent (eller promille) avviker deras värden från slutvärdena? Vid denna tid införs rovdjur (ett ormpar) på ön för att hålla de växtätande mössens antal nere och därmed öka mängden av växter. Man får ett differentialekvationssystem där växtekvationen är oförändrad (ormarna äter inte växterna). Skadedjursekvationen blir nu ds/dt = b 1 S b 2 V 0.6 S 0.8 b 3 SR, dr/dt = c 1 R + c 2 S R. Med lämpligt valda värden på konstanterna i modellen gäller även här att V, S och R för stora t-värden närmar sig en konstant stabil lösning. Låt b 3 =1.5, c 1 =2.0 och c 2 = Sätt derivatorna till noll och lös ut slutvärdena för V, S och R. Lös differentialekvationssystemet tills tre år gått sedan växterna planterades, T 3 =3. Hur nära sina slutvärden har de inblandade parterna nått? Hur känslig är denna ekologiska modell för störningar i koefficienterna? Gör några numeriska experiment medsmå (eller kanske stora) förändringar i någon eller några koefficienter och undersök hur resultatet blir!
7 3B.13: Vindkastet En aprildag med varma sydvindar tränar Pelle bollkast på sportplanen. Han kastar i väg bollen österut medutkastvinkeln (i vertikalplanet) 30, hastigheten 25 m/s och höjden 1.4 m. Pelle har fötterna i origo i ett koordinatsystem med horisontella x- och y-axlar, x åt öster, y åt norr (i vindens riktning). Differentialekvationerna för bollbanan blir ẍ = q ẋ, ÿ = q (ẏ a(z)), z = 9.81 q ż, d är q = c ẋ 2 +(ẏ a(z)) 2 +ż 2. Luftmotståndskoefficienten c beror av bollradien och massan och är för Pelles boll c = Vindstyrkan är 7 m/s vid marken och ökar den här aprildagen med höjden enligt: a(z) =7+0.35z. Visa hur differentialekvationerna kan skrivas om på vektorform till ett system av första ordningens differentialekvationer och ange startvektorns komponenter. Använden effektiv algoritm som bestämmer kastbanan tills bollen nått mark och beräknar nedslagsplatsen noggrant någon form av interpolation kan behövas eftersom räkningarna inte ska utföras med ett onödigt kort tidssteg. Bedöm noggrannheten i resultatet. Gör också en störningsräkning för att avgöra hur mycket nedslagsplatsen ändras om vindstyrkan ändras med 1 procent. Rita kastbanan plotkommandot för att rita en kurva i 3D är plot3(x,y,z) där x, y och z är vektorer som innehåller kurvpunkternas koordinater. Pelle vill att bollen trots vinden ska slå ned rakt österut, alltså på x-axeln. Hur ska han vända sig i kastögonblicket för att åstadkomma det? Hans utkastvinkel i vertikalplanet är fortfarande 30. Utvidga programmet med en effektiv algoritm för detta.
8 3B.14: Flödespaketet partikelflöde förbi en cylinder En långsträckt cylinder med radien R =2befinner sig i en inkompressibel vätska som strömmar i positiv x-riktning. Cylinderns axel är vinkelrät mot flödesriktningen. Det hela kan betraktas som ett tvådimensionellt problem i rummet. Läget (x(t), y(t)) för en flödespartikel vid tiden t bestäms av partikelns startposition (x(0), y(0)) och av differentialekvationssystemet dx dt =1 R2 (x 2 y 2 ) (x 2 + y 2 ) 2, dy dt = 2xyR2 (x 2 + y 2 ) 2. Vid t = 0 befinner sig fyra flödespartiklar vid x = 4 med y-positionerna 0.2, 0.6, 1.0 och 1.4. Beräkna och rita deras strömningskurvor fram till tiden t = 12.Notera läget för de fyra partiklarna vid denna tidpunkt. Den understa partikeln har hamnat på efterkälken. Beräkna meden effektiv algoritm hur lång tidsom krävs för att den ska nå fram till samma x-position som den översta har vid t =12. Vi vill nu studera hur ett paket av flödespartiklar deformeras när det strömmar förbi cylindern. Det gäller att lösa differentialekvationssystemet en tidsperiod i taget och rita en ögonblicksbildav partikelpositionerna. Låt startformationen för partikelpaketet vara en regelbunden tjugohörning med centrum i ( 4, 1) och radiellt avstånd till hörnen 0.6. Beräkna arean av varje deformerad polygon. För en sluten polygon finns följande trapetsregelliknande areaformel: A =(x 1 y 2 x 2 y 1 + x 2 y 3 x 3 y x n y 1 x 1 y n )/2. Gör om beräkningarna för en fyrtiohörning. Genomför även en richardsonextrapolation på areavärdena med antagandet att areaformeln har samma noggrannhetsordning som trapetsregeln. Fortsätt eventuellt med en fördubbling av antalet hörn. Vilken slutsats kan dras om partikelpaketets area under strömningen förbi cylindern? Utför även egna experiment medannan startform på partikelpaketet och andra startpositioner i y-led
9 3B.15: Glödtråden Betrakta randvärdesproblemet d 2 u dx 2 = σu4 I 2 R(u), u(0) = 10, u (L/2) = 0. Problemet är att finna temperaturfördelningen u(x) i en strömförande metalltråd medlängden L = 0.40 m, då trådändarna hålls vid den mycket låga temperaturen 10 K. På grund av symmetrin räcker det att betrakta halva trådens längd med randvillkoren ovan. Resistiviteten i tråden är temperaturberoende: R(u) = u ln u. Strålningskonstanten är σ =10 7. Man vill först lösa problemet då strömmen I är fem ampere. Använd finitadifferensmetoden och gör diskretisering i N intervall. Visa hur randvärdesproblemet kan approximeras av ett ickelinjärt ekvationssystem. Lös systemet dels för N =40dels för N =80. Fortsätt att fördubbla om du tycker att noggrannheten är otillräcklig. Rita upp temperaturfördelningen i tråden. Vi vill också finna temperaturfördelningen i tråden då strömstyrkan är betydligt högre, ända upp till 50 A. När strömmen är så stark blir tråden glödhet på mitten men är fortfarande ytterst kall i ändarna. Det kan vara knepigt att hitta fungerande startgissningar. Fundera ut en lämplig algoritm som successivt löser mellanliggande temperaturfördelningsproblem först för strömstyrkor strax över 5 A och därefter lagom strömhöjning. Algoritmen bör därmed klara av att beräkna de knepiga temperaturfördelningskurvorna som höga strömstyrkor ger upphov till.
10 3B.16: Satelliten En satellit rör sig i ett kretslopp kring jorden och månen. De tre kropparna bildar ett plan i rymden och vi lägger ett koordinatsystem i detta rörliga plan: x-axeln är linjen som går genom jorden och månen; origo läggs i dessa kroppars masscentrum, och längdenheten väljs så att avståndet jorden månen är en enhet. µ = 1/82.45 är förhållandet mellan månens och jordens massor; jordens centrum finns i ( µ, 0) och månens centrum i (1 µ, 0). Satellitens massa är försumbar jämfört med de båda andra kropparna och dess läge som funktion av tiden är (x(t), y(t)) i detta koordinatsystem, som ju rör sig allt eftersom månen roterar kring jorden. Differentialekvationssystemet nedan beskriver satellitens rörelse. Parametervärdet c =0är naturligast, ett c-värde skilt från noll innebär att man simulerar viss friktion irymden. ẍ =2ẏ + x λ (x + µ) r 3 1 µ (x λ) r 3 2 cẋ, ÿ = 2ẋ + y λy r 3 1 µy r 3 2 cẏ där λ =1 µ, r1 2 =(x + µ)2 + y 2, r2 2 =(x λ)2 + y 2. Vidtidpunkten t =0befinner sig satelliten i punkten (1.2, 0) och har hastigheten v 0 i negativ y-riktning, dvs ẋ(0) = 0, ẏ(0) = v 0. För att få differentialekvationernas enkla utseende gäller att tidsenheten och längdenheten är listigt valda. Tiden har skalats så att en tidsenhet är sekunder. Längdenheten är som ovan sagts avståndet mellan jordens och månens centrum vilket är km. Jordradien är 6370 km. Behandla fallet c =0. Vi är intresserade av att hitta en periodisk lösning till satellitbanan, så att satelliten efter tiden T återkommer till sitt läge vid t =0med samma hastighetsvektor som då. Man vet att det finns en sådan bana för ett v 0 -värde som ligger strax över 1 och att omloppstiden T blir drygt sex tidsenheter. Använd denna kunskap för att bestämma v 0 och T medtresiffrig precision. Börja medatt beräkna banan för v 0 =1: Lös differentialekvationerna med ode45 fram till en tidpunkt som med god marginal ligger under omloppstiden och rita upp banan. Fortsätt därefter med Runge-Kuttas metod fram till dess att satelliten just korsat x-axeln. Beräkna (medlämplig form av interpolation) t-värdet och ẋ-värdet vid x-axelpassagen. Notera hur mycket den beräknade hastigheten i x-ledavviker från det önskade nollvärdet. Rita hela banan. Satellitbanan har ett rätt intressant utseende i detta koordinatsystem. Gör om beräkningarna för v 0 =1.1, och automatisera därefter sökandet till en effektiv ekvationslösningsalgoritm för att finna den starthastighet v 0 som åstadkommer att ẋ =0efter ett helt varv. Vad blir omloppstiden omräknat i dygn? Diskutera tillförlitligheten i resultatet. Hur nära jordytan passerar satelliten? Ange avståndet i km och tidpunkten i dygn vid de två tillfällen under banan då satelliten är som närmast. Genomför hela simuleringen en gång till men medsatelliten i punkten (1.21, 0) vid t =0. Hur nära jordytan sveper satelliten?
11 3B.19: Dubbelpendeln En viktlös stång medlängden L 1 är medena änden friktionsfritt fästadi origo och har en kula medmassan m 1 i sin andra ände. En stång med längden L 2 är friktionsfritt upphängdi m 1 -kulan och har en kula medmassa m 2 ytterst. Tillsammans utgör systemet en dubbelpendel som kan komma i rejäl svängning. Låt ϕ 1 och ϕ 2 utgöra stängernas vinklar med lodlinjen. Då bestäms pendlarnas rörelse av följande differentialekvationer: (m 1 +m 2 )L 1 ϕ 1 + m 2 L 2 ϕ 2 cos (ϕ 1 ϕ 2 )+m 2 L 2 ϕ 2 2 sin (ϕ 1 ϕ 2 )+g(m 1 +m 2 )sinϕ 1 =0 m 2 L 2 ϕ 2 + m 2 L 1 ϕ 1 cos (ϕ 1 ϕ 2 ) m 2 L 1 ϕ 2 1 sin (ϕ 1 ϕ 2 )+gm 2 sin ϕ 2 =0 där g är tyngdaccelerationen, g =9.81 m/s 2. Dividera med m 2 och inför q = m 1 /m 2 samt c 12 =cos(ϕ 1 ϕ 2 ) och s 12 =sin(ϕ 1 ϕ 2 ). Systemet blir nu: (1 + q)l 1 ϕ 1 + L 2 c 12 ϕ 2 = L 2 ϕ 2 2 s 12 g(1 + q)sinϕ 1 L 1 c 12 ϕ 1 + L 2 ϕ 2 = L 1 ϕ 2 1 s 12 g sin ϕ 2 För att kunna lösa differentialekvationerna numeriskt behöver vi först ha dem på formen ϕ 1 = f 1 (ϕ 1,ϕ 2, ϕ 1, ϕ 2 ) och ϕ 2 = f 2 (ϕ 1,ϕ 2, ϕ 1, ϕ 2 ). Lös därför 2 2-systemet för handså att önskade uttryck för ϕ 1 och ϕ 2 erhålls. Överför därefter differentialekvationerna till ett system av första ordningens ODE så att RK4 eller ode45 kan utnyttjas för att numeriskt erhålla lösningskurvor ϕ 1 (t) och ϕ 2 (t). Studie 1: L 1 =0.6, L 2 =1.2, m 2 =2m 1. Låt dubbelpendeln vid tiden t =0 ha startvinklarna 60 o och 45 o,dvsϕ 1 = π/3 och ϕ 2 = π/4, och då släppas från stillastående. Beräkna och rita upp ϕ 1 (t) och ϕ 2 (t) tills fem sekunder gått. Bestäm också dubbelpendelns x-ochy-koordinater vid varje tidssteg och visa pendelförloppet (se rkpendel.m). Studie 2: L 1 = 1, L 2 = 2, m 2 = m 1. Pendeln släpps från stillastående med startvinklarna 90 o och 60 o. Lösningskurvorna ϕ 1 (t) och ϕ 2 (t) är inte periodiska men heller inte så långt ifrån. Det bör vara möjligt att finna startvinklar sådana att dubbelpendeln får ett periodiskt förlopp. Formulera en algoritm för effektiv lösning av detta problem och visa pendelrörelsen under några perioder.
12 3B.22: Diffraktionsmönster När man låter ljus eller andra elektromagnetiska vågor passera genom en smal spalt eller förbi en skarp kant uppstår diffraktion. På en skärm kan vi se ett diffraktionsmönster som beror av våglängden λ, spaltbredden a och diffraktionsvinkeln θ. För fallet medmycket smal spalt och stort avståndl till skärmen bestäms diffraktionsmönstrets intensitet I vidpositionen ξ på skärmen av ( ) sin α 2 I(ξ) =I 0, där α = πa ξ sin θ πa α λ λ L, ξ << d Intensiteten I 0 är maxvärdet som erhålls när vinkeln θ är noll (och på skärmen: ξ =0). Vi kan låta I 0 ha värdet ett. Detta speciella fall av diffraktion kallas fraunhoferdiffraktion efter den tyske fysikern Joseph von Fraunhofer 1 ( ). Fresneldiffraktion är namnet på en finurlig matematisk algoritm för beräkning av diffraktionsmönster mer generellt. Det kan gälla diffraktion orsakad av en skarp kant eller av en spalt eller av ett långsmalt föremål (nål, grässtrå) som kommer i vägen för ljusvågorna. Teorin för fresneldiffraktion utvecklades av Augustin Jean Fresnel 2 ( ), fransk matematiker och fysiker. Det matematiska redskapet för att åskådliggöra diffraktionmönstret är Cornus spiral, lussekattskurvan i figuren. Den högra delen av spiralen erhålls som lösning r(u) =(x(u), y(u)), u 0 till differentialekvationssystemet Diffraktion orsakad av skarp kant 0.6 Cornus spiral d 2 x du 2 = πudy du, x(0) = 0, x (0) = 1 d 2 y du 2 = πudx du, y(0) = 0, y (0) = 0 (dx ) ds 2 ( ) dy 2 du = +, s(0) = 0. du du q 0 q Intensiteten är prop mot kvadraten på vektorlängden AnvändRK4 för ode-lösningen fram till u max =5(eller något längre). Storheten s betecknar båglängden från origo till punkten (x, y). Rita upp spiralen. Vänstra spiraldelen svarar mot negativa u-värden och fås genom teckenbyte på x- ochy- koordinaterna. Cornus spiral kan även uttryckas med hjälp av de så kallade fresnelintegralerna x(u) = u πt2 0 cos 2 dt och y(u) = u πt2 0 sin 2 dt. Teoretiskt gäller s(u) = u; visa det! Sambandet innebär att man kan kontrollera tillförlitligheten hos ode-lösningen genom att studera avvikelsen mellan beräknad båglängd s och parametern u. Skarp kant Viddiffraktion orsakadav en skarp kant gäller att intensiteten I(ξ) vidpositionen ξ på skärmen beror av båglängdsparametern u på cornuspiralen enligt ξ = Lλ/2 u, I(ξ) =I( Lλ/2 u) =I r(u) q q 1 q Punkten r(u) = (x(u), y(u)) ligger på cornuspiralen, q 0 och q 1 är fixpunkterna (russinens placering i lussekatten): q 0 =( 1 2, 1 2 ) och q 1 =( 1 2, 1 2 ). Storheten I är intensitetsvärdet på skärmen utan diffraktion. Vi kan låta I = history/mathematicians/fresnel.html
13 Den skarpa kanten finns vid u =0; negativt u innebär att kanten är ett hinder för vågorna, medan u>0 betyder fri passage. Geometriskt sett bestäms intensiteten I av vektorn från q 0 till r(u) (se figuren) och I-värdet är proportionellt mot kvadraten på vektorlängden. Visa med hjälp av formeln att intensiteten rakt framför kanten vid ξ = u =0är 1/4. Beräkna och rita upp intensitetskurvan då L =0.15 mochλ = 640 nm. Kurvan har många toppar bestäm de båda första maximipunkternas positioner medstor noggrannhet. När man har kolumnvektorerna x och I får man diffraktionsmönstret med pcolor(x*[1 1], ones(size(x))*[0 1], I*[1 1]), colormap gray, shading flat Smal spalt Även här bestäms intensiteten av en vektor på Cornus spiral. Spaltbredden a har betydelse, olika bredder ger olika diffraktionsmönster. Fresnels algoritm börjar med en transformering av a till båglängdsparametervärde, u a = a/ Lλ/2. Intensitetsbestämmande vektor på spiralen är g(u) =r(u + ua ua 2 ) r(u 2 ). Det innebär att det alltid är konstant båglängd u a längs spiralen från punkten r(u ua 2 ) till punkten r(u + ua 2 ). I(ξ) =I( Lλ/2 u) =c g(u) 2 2, u 0 Medkonstanten c =1/max g(u) 2 2 blir intensitetens maxvärde ett. Av symmetriskäl gäller I( ξ) =I(ξ). Beräkna och rita intensitetskurvor och diffraktionsmönster för spaltbredderna 0.24, 0.48, 0.72 mm och för våglängderna 400, 520, 640 och 770 nm. Skärmavståndet är L = 0.15 m, I(ξ) vid spaltbredd 0.72 mm λ=520 nm (heldragen), λ=770 nm (prickad) λ=520 nm λ=770 nm Hur väl överensstämmer fraunhoferdiffraktionens intensitetskurva med fresneldiffraktionens? Undersök detta för våglängderna 400 och 770 nm vid minsta spaltbredden 0.24 mm.
Lab3B-uppgifter (delmängd)
Lab3B-uppgifter (delmängd) 3B.1 Varpan gotländsk kastsport 3B.2 Metallröret het vätska i rör 3B.4 Futten rymdskeppet illa ute 3B.5 Strömkretsen elektriskt svängningsförlopp 3B.7 Partikeln bana i elektromagnetiskt
Projektuppgifterna med utvidgningar för SF1518/19 ht 2015
KTH, Matematik, Numerisk Analys, Yngve Sundblad Projektuppgifterna med utvidgningar för SF1518/19 ht 2015 Sex projektuppgifter finns i en lättare och en svårare variant (med utvidgning) Genomförd och presenterad
Projektuppgifterna med utvidgningar för SF1518/19 ht 2015
KTH, Matematik, Numerisk Analys, Yngve Sundblad Projektuppgifterna med utvidgningar för SF1518/19 ht 2015 Sju projektuppgifter finns i en lättare och en svårare variant (med utvidgning) Genomförd och presenterad
Projektsamling med Lab6-uppgifter
GE 2011-03-02 Projektsamling med Lab6-uppgifter 6B.1 Varpan gotländsk kastsport 6B.2 Metallröret het vätska i rör 6B.4 Futten rymdskeppet illa ute 6B.5 Strömkretsen elektriskt svängningsförlopp 6B.7 Partikeln
Projektuppgifterna med utvidgningar för SF1518/19 ht 2015
KTH, Matematik, Numerisk Analys, Yngve Sundblad. Projektuppgifterna med utvidgningar för SF1518/19 ht 2015. Åtta projektuppgifter finns i en lättare och en svårare variant (med utvidgning). Genomförd och
Projekten finns i två svårighetsgrader. Svårt projekt ger i regel högre betyg (enligt formel på kurshemsidan).
Lab B Nedan följer en lista på projekt man kan göra i denna kurs. Välj ett projekt och markera vad ni valt genom denna länk att anmäla dig till motsvarande CANVASgrupp: https://kth.instructure.com/courses/1714/groups#tab-969
Projekt-uppgifter. 1 Varpan 2. 9 Flödespaketet partikelflöde förbi en cylinder 14
Projekt-uppgifter Contents 1 Varpan 2 2 Motordrivna inversa pendeln 3 3 Rymdskeppet 4 4 Strömkretsen 5 5 Partikeln i fältet 7 6 Naturen växter, möss och ormar 9 7 Ljudvågor under vattnet och ubåtsjakt
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 3 april 007 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 7 april 007 Efter den här laborationen
Projekt i SF1514/18/19, HT2017
Projekt i SF1514/18/19, HT2017 Projekten skall lösas i grupper om två och redovisas genom en muntlig presentation vid ett av seminarietillfällena 14/11, 16/11 eller 17/11. 1. Varpan gotländsk kastsport
Projektuppgifter med utvidgningar i SF1518/19 ht 2015
KTH, Matematik, Numerisk Analys, Yngve Sundblad. Projektuppgifter med utvidgningar i SF1518/19 ht 2015 Proj1. Varpan gotländsk kampsport Proj2. Metallröret het vätska i rör Proj3. Inversa pendeln uppåtriktad
Projektuppgifter i SF1518/19 ht 2015
KTH, Matematik, Numerisk Analys, Yngve Sundblad Projektuppgifter i SF1518/19 ht 2015 Lättare projektuppgifter LProj1. Varpan gotländsk kampsport LProj2. Metallröret het vätska i rör LProj3. Inversa pendeln
Laboration 4. Numerisk behandling av integraler och begynnelsevärdesproblem
Lennart Edsberg NADA 9 mars 6 D11, M1 Laboration 4 A Numerisk behandling av integraler och begynnelsevärdesproblem Denna laboration ger 1 bonuspoäng. Sista bonusdatum 5 april 6 Efter den här laborationen
Program för sista föreläsningen
Program för sista föreläsningen Tentan Utdelning och uppsamling av labbar Hur projektdelen är upplagd Projekten lättare och svårare Fortsättningskurser Yngve Sundblad Föreläsning 14 sid. 1 SF 1518/19 ht
Projekt-uppgifter. 3 : Motordrivna inversa pendeln 6. 4 : Rymdskeppet Futten illa ute 7. 6 : Käppen som knäcks : Partikeln i fältet 11
Projekt-uppgifter Version Aug. 2012, DN1240 för I2 och DN1212 för Bio3 Innehåll 1 : Varpan 3 2 : Metallröret 4 3 : Motordrivna inversa pendeln 6 4 : Rymdskeppet Futten illa ute 7 5 : Strömkretsen 8 6 :
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Tillämpningsuppgifter i Numeriska metoder
KTH CSC/Nada Gerd Eriksson Tillämpningsuppgifter i Numeriska metoder U1: Kulor på snöre U2: Kollision i mörkret U3: Bouleväskan U4: Tvättlinan U5: Metallröret U6: Partikelbanan U7: Samspel i naturen U8:
Mekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
3B.1: Varpan. x dt 2 = k dx. + dt dt dt. d 2 y dt 2 = 9.81 k y
Lab3B-uppgifter 3B.1 Varpan gotländsk kastsport 3B.2 Metallröret het vätska i rör 3B.3 Inversa pendeln uppåtriktad pendelrörelse 3B.4 Futten rymdskeppet illa ute 3B.5 Strömkretsen elektriskt svängningsförlopp
Lab3B-uppgifter för OPEN1
Lab3B-uppgifter för OPEN1 3B.1 Varpan gotländsk kastsport 3B.2 Metallröret het vätska i rör 3B.3 Inversa pendeln uppåtriktad pendelrörelse 3B.4 Futten rymdskeppet illa ute 3B.5 Strömkretsen elektriskt
Lösningar Heureka 2 Kapitel 3 Rörelse i två dimensioner
Lösningar Heureka Kapitel 3 Rörelse i två dimensioner Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik Heureka:Kapitel 3 3.1) Enligt figuren: nordliga förflyttningen: 100+00-100=00m Östliga förflyttningen:
Svar och anvisningar
170317 BFL10 1 Tenta 170317 Fysik : BFL10 Svar och anvisningar Uppgift 1 a) Den enda kraft som verkar på stenen är tyngdkraften, och den är riktad nedåt. Alltså är accelerationen riktad nedåt. b) Vid kaströrelse
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2
GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,
Projekt-uppgifter. 1 Varpan 2. 9 Flödespaketet partikelflöde förbi en cylinder 14
Projekt-uppgifter Contents 1 Varpan 2 2 Motordrivna inversa pendeln 3 3 Rymdskeppet 4 4 Strömkretsen 5 5 Partikeln i fältet 7 6 Naturen växter, möss och ormar 9 7 Ljudvågor under vattnet 11 8 Vindkastet
3B.1: Varpan. x dt 2 = k dx. + dt dt dt. d 2 y dt 2 = 9.81 k y
Lab3B-uppgifter 3B.1 Varpan gotländsk kastsport 3B.2 Metallröret het vätska i rör 3B.3 Inversa pendeln uppåtriktad pendelrörelse 3B.4 Futten rymdskeppet illa ute 3B.5 Strömkretsen elektriskt svängningsförlopp
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 204 08 28. Beräkna den totala kraft på laddningen q = 7.5 nc i origo som orsakas av laddningarna q 2 = 6 nc i punkten x,y) = 5,0) cm och q 3 = 0 nc i x,y) = 3,4) cm.
6.3 Partikelns kinetik - Härledda lagar Ledningar
6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
1 : Varpan. u = k x uv, v = 9.81 k y vv
1 : Varpan I varpaspel kastar man en flat sten och det gäller att träffa en målsticka som är nedsatt i marken tjugo meter bort. Kaströrelsen beskrivs av differentialekvationerna u = k x uv, v = 9.81 k
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Projekt-uppgifter. 3 : Motordrivna inversa pendeln 5. 4 : Rymdskeppet Futten illa ute 6. 9 : Naturen växter, möss och ormar 14
Projekt-uppgifter Version Aug. 2012, DN1240 för I2 och DN1212 för Bio3 Innehåll 1 : Varpan 2 2 : Metallröret 3 3 : Motordrivna inversa pendeln 5 4 : Rymdskeppet Futten illa ute 6 5 : Strömkretsen 7 6 :
6.2 Partikelns kinetik - Tillämpningar Ledningar
6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste
Laboration 4: Tillämpningsuppgifter
Laboration 4: Tillämpningsuppgifter Gerd Eriksson, André Jaun, Michael Hanke Royal Institute of Technology Department of Numerical Analysis and Computer Science 1 mars 4 Innehåll Anvisningar för labb 4
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2
SF625 Envariabelanalys Lösningsförslag till tentamen 23--24 DEL A. Den :a januari 26 låstes kg av ett visst radioaktivt ämne in i en källare. Ämnet sönderfaller i en takt som är direkt proportionell mot
TFYA16: Tenta Svar och anvisningar
150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket
= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
d dx xy ( ) = y 2 x, som uppfyller villkoret y(1) = 1. x, 0 x<1, y(0) = 0. Bestäm även y( 2)., y(0) = 0 har entydig lösning.
Bestäm den lösning till differentialekvationen Ange även lösningens eistensintervall SF6 Differentialekvationer I MODULUPPGIFTER Första ordningens differentialekvationer med modeller d d y ( ) = y 2, som
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-5-27 DEL A. Bestäm alla punkter på ytan z = x 2 + 4y 2 i vilka tangentplanet är parallellt med planet x + y + z =. 4 p) Lösning. Tangentplanet
Lektion 1. Kurvor i planet och i rummet
Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation
Tentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del 2 (FFM521 och 520) Tid och plats: Tisdagen den 27 augusti 2013 klockan 14.00-18.00. Hjälpmedel: Physics Handbook, Beta samt en egenhändigt handskriven A4 med valfritt innehåll (bägge
Del I: Lösningsförslag till Numerisk analys,
Lösningsförslag till Numerisk analys, 2016-08-22. Del I: (1) Nedan följer ett antal påståenden. Använd nyckelbegreppen därunder och ange det begrepp som är mest lämpligt. Skriv rätt bokstav (a)-(l) i luckan
Samtliga deluppgifter i denna uppgift använder följande differentialekvation. Deluppgift a görs för hand
Numeriska Metoder för SU, HT010. Laboration 4: Ickelinjära ekvationssystem och differentialekvationer Sista redovisningsdag för bonuspoäng: 011-01-04 (L19) Obs! Skriftliga delen skall denna gång vara en
TFEI02: Vågfysik. Tentamen : Lösningsförslag
160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Laboration 6. Ordinära differentialekvationer och glesa system
1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem
Nr 1: Rymdskeppet Futten illa ute Trots att raketmotorn går för fullt förblir Futten hängande orörlig på höjden H över jordytan. Goda råd är dyra! Kap
2D1240 Numeriska metoder gkii A NADA Gerd Eriksson, NADA, KTH Tillämpningsuppgifter, laboration 4 1. Futten μ rymdskeppet illa ute 2. Varpan μ gotländsk kastsport 3. Nalle-Maja μ bamsedotter gungar och
Lösningsförslag till tentamen Tisdagen den 10 januari 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Tisdagen den januari 7 DEL A. En partikel rör sig så att positionen efter starten ges av (x, y, z (t cos t, t sin t, t
Newtons 3:e lag: De par av krafter som uppstår tillsammans är av samma typ, men verkar på olika föremål.
1 KOMIHÅG 8: --------------------------------- Hastighet: Cylinderkomponenter v = r e r + r" e " + z e z Naturliga komponenter v = ve t Acceleration: Cylinderkomponenter a = ( r " r# 2 )e r + ( r # + 2
Projekt-uppgifter. 3 : Motordrivna inversa pendeln 5. 4 : Rymdskeppet Futten illa ute 6. 9 : Naturen växter, möss och ormar 13
Projekt-uppgifter Version Aug. 2012, Kurser i Numeriska metoder Innehåll 1 : Varpan 2 2 : Metallröret 3 3 : Motordrivna inversa pendeln 5 4 : Rymdskeppet Futten illa ute 6 5 : Strömkretsen 7 6 : Partikeln
SF1513 NumProg för Bio3 HT2013 LABORATION 4. Ekvationslösning, interpolation och numerisk integration. Enkel Tredimensionell Design
1 Beatrice Frock KTH Matematik 4 juli 2013 SF1513 NumProg för Bio3 HT2013 LABORATION 4 Ekvationslösning, interpolation och numerisk integration Enkel Tredimensionell Design Efter den här laborationen skall
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Tentamen i El- och vågrörelselära,
Tentamen i El- och vågrörelselära, 23 2 8 Hjälpmedel: Physics Handbook, räknare. Ensfäriskkopparkulamedradie = 5mmharladdningenQ = 2.5 0 3 C. Beräkna det elektriska fältet som funktion av avståndet från
9. Magnetisk energi Magnetisk energi för en isolerad krets
9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1
9. Magnetisk energi [RMC 12] Elektrodynamik, vt 2013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets
Omtentamen i DV & TDV
Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2006-06-05 Skrivtid: 9-15 Hjälpmedel: inga
FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum
Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar
SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt
1. För vilka värden på konstanterna a och b är de tre vektorerna (a,b,b), (b,a,b) och (b,b,a) linjärt beroende.
Institutionen för matematik KTH MOELLTENTAMEN Tentamensskrivning, år månad dag, kl. x. (x + 5).. 5B33, Analytiska metoder och linjär algebra. Uppgifterna 5 svarar mot varsitt moment i den kontinuerliga
Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.
Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x
Kursens olika delar. Föreläsning 0 (Självstudium): INTRODUKTION
1 Föreläsning 0 (Självstudium): INTRODUKTION Kursens olika delar Teorin Tentamen efter kursen och/eller KS1+KS2 Inlämningsuppgifter Lära känna kraven på redovisningar! Problemlösning Tentamen efter kursen
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Stelkroppsmekanik partiklar med fixa positioner relativt varandra
Stelkroppsmekanik partiklar med fixa positioner relativt varandra Rörelse relativt mass centrum Allmänt partikelsystem Stel kropp translation + rotation (cirkelrörelse) För att kunna beskriva och förstå
k 1 B k 2 C ges av dx 1 /dt = k 1 x 1 x 1 (0) = 100 dx 2 /dt = k 1 x 1 k 2 x 2 x 2 (0) = 0 dx 3 /dt = k 2 x 2 x 3 (0) = 0
Radioaktivt sönderfall 2D124 numfcl, Fö 5 Ekvationerna som beskriver hur ett radioaktivt ämne A sönderfaller till ämnet B som i sin tur sönderfaller till C ges av dx 1 /dt = k 1 x 1 x 1 () = 1 dx 2 /dt
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015
SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt
93FY51/ STN1 Elektromagnetism Tenta : svar och anvisningar
17317 93FY51 1 93FY51/ TN1 Elektromagnetism Tenta 17317: svar och anvisningar Uppgift 1 a) Av symmetrin följer att: och därmed: Q = D d D(r) = D(r)ˆr E(r) = E(r)ˆr Vi väljer ytan till en sfär med radie
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 216-6-7 DEL A 1. Låt S vara ellipsoiden som ges av ekvationen x 2 + 2y 2 + 3z 2 = 5. (a) Bestäm en normalvektor till S i en punkt (x, y, z ) på S.
Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00
Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta
Tentamen i Beräkningsvetenskap II, 5.0 hp,
Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap II, 5.0 hp, 2012-03-09 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden
Kurs 2D1213, Laboration 2: Att lösa ordinära differentialekvationer med finita differensmetoden Michael Hanke October 19, 2006 1 Beskrivning och mål Matematiska modeller i vetenskap och ingenjörsvetenskap
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
TFYA16: Tenta Svar och anvisningar
180111 TFYA16 1 TFYA16: Tenta 180111 Svar och anvisningar Uppgift 1 a) Svar: 89 cm x = 0 t 3 dt = [ t 3 9 ] 0 = 8 m 89 cm 9 b) Om vi betecknar tågets (T) hastighet relativt marken med v T J, så kan vi
.4-6, 8, , 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse
.4-6, 8, 12.5-6, 12.10, 13} Kinematik Kinetik Kraftmoment Vektorbeskrivning Planetrörelse Exempel på roterande koordinatsystem planpolära eller cylindriska koordinater Storhet Beteckning Enhet Fysikalisk
Ordinarie tentamen i Mekanik 2 (FFM521)
Ordinarie tentamen i Mekanik 2 (FFM521) Tid och plats: Fredagen den 1 juni 2018 klockan 08.30-12.30 Johanneberg. Hjälpmedel: Matte Beta och miniräknare. Examinator: Stellan Östlund Jour: Stellan Östlund,
Problemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
Kulstötning. Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu
Kulstötning Israt Jahan Martin Celander Andreas Svensson Jonathan Koitsalu Abstract I detta projekt undersöktes en kulstötning med starthöjden meter och en längd på,5 meter med hjälp av matematiska modeller.
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Fuglesangs skiftnyckel och Möten i rymden. Jan-Erik Björk och Jan Boman
Fuglesangs skiftnyckel och Möten i rymden Jan-Erik Björk och Jan Boman Det sägs att Christer Fuglesang tappade en skiftnyckel under sin rymdpromenad nyligen. Enligt Keplers första lag kom skiftnyckeln
SF1625 Envariabelanalys
Föreläsning 17 Institutionen för matematik KTH 6 december 2017 Anmälan till tentamen För att skriva tentamen (2018-01-08) behöver ni anmäla er (Mina sidor, deadline 18:e december). Idag Kap 7. Tillämpningar
SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
NFYA02: Svar och lösningar till tentamen 140115 Del A Till dessa uppgifter behöver endast svar anges.
1 NFYA: Svar och lösningar till tentamen 14115 Del A Till dessa uppgifter behöver endast svar anges. Uppgift 1 a) Vi utnyttjar att: l Cx dx = C 3 l3 = M, och ser att C = 3M/l 3. Dimensionen blir alltså
Integraler av vektorfält Mats Persson
Föreläsning 1/8 Integraler av vektorfält Mats Persson 1 Linjeintegraler Exempel: En partikel rör sig längs en kurva r(τ) under inverkan av en kraft F(r). i vill då beräkna arbetet som kraften utövar på
ALTERNATIVA KOORDINATSYSTEM -Cylindriska koordinatsystem. De polära koordinaterna r och " kan beskriva rörelsen i ett xyplan,
KOMIHÅG 8: --------------------------------- Rörelsemängd: p = mv, Kinematiska storheter: r ( t), v ( t), a ( t) Kinematiska samband med begynnelsevillkor 1 Föreläsning 9: ALTERNATIVA KOORDINATSYSTEM -Cylindriska
Definitioner: hastighet : v = dr dt = r fart : v = v
KOMIHÅG 8: --------------------------------- Jämvikten kan rubbas: stjälpning, glidning Flexibla system- jämvikt bara i jämviktslägen ---------------------------------- Föreläsning 9: PARTIKELKINEMATIK
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner
Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt
= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).
Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen torsdag 19 augusti 21, 14. - 19. Inga hjälpmedel är tillåtna. Svar och
ENDIMENSIONELL ANALYS A3/B kl INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. lim
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS A3/B2 26 3 7 kl. 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna a) x+4 x 3 +4x dx.5)
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 19 januari 2013 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.
Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0
Laboration 1 Mekanik baskurs
Laboration 1 Mekanik baskurs Utförs av: Henrik Bergman Mubarak Ali Uppsala 2015 01 19 Introduktion Gravitationen är en självklarhet i vår vardag, de är den som håller oss kvar på jorden. Gravitationen
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor
Tillämpningar av integraler: Area, skivformeln för volymberäkning, båglängd, rotationsarea, integraler och summor Areaberäkningar En av huvudtillämpningar av integraler är areaberäkning. Nedan följer ett
Lösningar Heureka 2 Kapitel 7 Harmonisk svängningsrörelse
Lösningar Heureka Kapitel 7 Harmonisk svängningsrörelse Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 7 7.1 a) Av figuren framgår att amplituden är 0,30 m. b) Skuggan utför en
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
Tillämpad biomekanik, 5 poäng Övningsuppgifter
, plan kinematik och kinetik 1. Konstruktionen i figuren används för att överföra rotationsrörelse för stången till en rätlinjig rörelse för hjulet. a) Bestäm stångens vinkelhastighet ϕ& som funktion av
Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)
Skriftlig tentamen i Elektromagnetisk fältteori för π (ETEF01 och F (ETE055 1 Tid och plats: 6 oktober, 016, kl. 14.00 19.00, lokal: Gasquesalen. Kursansvarig lärare: Anders Karlsson, tel. 40 89 och 07-5958.
Tentamen ellära 92FY21 och 27
Tentamen ellära 92FY21 och 27 2014-06-04 kl. 8 13 Svaren anges på separat papper. Fullständiga lösningar med alla steg motiverade och beteckningar utsatta ska redovisas för att få full poäng. Poängen för