Vågor och Optik. Mekaniska vågor (Kap. 15) Mekaniska vågor (Kap. 15)
|
|
- Ebba Lind
- för 8 år sedan
- Visningar:
Transkript
1 Mekaniska vågor (Kap. 15) Vågor och Optik Mekaniska vågor (Kap. 15) D Alemberts allmäna lösning i 1D En mekanisk våg är en störning i ett medium som fortplantar sig. 1 $ 1 '$ 1 ' =& )& + ) = 0 x v t % x v t (% x v t ( om q * x ct r * x + ct Materia är uppbggd av atomer. Mellan atomerna verkar krafter. En enkel boll-och-fjäder modell. blir 1 = x v t q 1 + = x v t r Periodiska vågor: speciellt harmoniska (=sinus-) vågor Pulser! Kvasiperiodiska vågor därmed Brus Man kan definiera en vågfunktion: (x,t) Vågfunktion måste uppflla vågekvationen:! ( x, t ) 1! ( x, t ) =!x v!t 4 =0 qr! med (q,r) = g(q) + f (r) eller (x,t) = g(x ct) + f (x + ct) Som visar att den allmänna lösningen av vågekvationen kan uttrckas som! en linjärkombination av var en!godtcklig vågfunktion med utbredningsriktning +x respektive -x. OBS: vissa naturliga fsikaliska villkor existerar såsom funktionens kontinuitet m.m.
2 Vågor på en sträng: det endimensionella fallet t = mv = v t vt = v v transversell_impuls = t = v v t transversell_ rörelsemängd = (µvt)v v v t = (µvt)v v = µ våghastigheten på en sträng Lutning =!/!x!x a Härledning av vågekvationen för vågor på en sträng Våg viloläget! a Strängspänning vågutbredning x Newtons andra lag för små vinklar, konstant och positionsoberoende strängspänning (), enbart transversella rörelser ger: $ x ' 1 & ) = µ*x % x ( t 1 $ lim *x+0 *x x ' 1 & ) = % x ( x, x = µ t x = 1 c t där c - µ Allmänt hänger utbredningshastigheten ihop med mediets elastiska egenskaper.! (x,t)/!t v =! (x,t)/!x = återställningskraften i mediet tröghet i återställning till viloläget viloläget Våg Vågor transporterar energi (strängen) vågutbredning Energi överförs till strängen i vågens rörelseriktning. Vågornas intensitet (3 dim.) ör 3-dim. vågor definieras: Intensitet = medeleffekt per tenhet I= P medel /A Intensitet I 1 Intensitet I <I 1 Den momentana energiöverföring i en viss punkt på strängen är lika med den effekten P: P(x,t )= (x,t )v (x,t )= r (x,t ) (x,t ) x t Speciellt för sinusvågor ger derivering och insättning: (x,t) = Asin(t kx) P(x,t) = r ka sin (t kx) = cµa sin (t kx) $(x,t) = kasin(t kx) $x $(x,t) = Asin(t kx) $t P max = P medel = cµa och P = c de dx = cu ger _ energidensiteten U max = U medel = µa Allmänt definierar man för 3-dim. vågor (T.ex. plana ljudvågor att Intensitet = medeleffekt per tenhet OBS: Vågor transporterar energi dock ej materia I = P medel area Sfäriska vågor: I = P medel 4r punktkälla
3 Interferens och superposition A B! Två sammanfogade delar med olika linjär densitet, och µ. Spännkraft. µ P 1 0 x Vågens utbredning beskrivs med tre vågfunktioner: en infallande våg in, en transmitterad våg trans och en reflekterad våg refl : Inkommande: in (x,t) = A sin( in t - k in x) t 1 Vågen reflekteras i mittpunkten med 180 o fasskift. Situationen motsvarar reflektion med lös ände som i tidigare figur. Alltså inget fasskift. t Utgående: refl (x,t) = B sin( refl t + k refl x) trans (x,t) = C sin( trans t - k trans x) OBS tecknet i fasen! Hur bestämmer man de utgående amplituderna utifrån den ursprungliga vågfunktionen in? Randvillkor 1 (strängen kontinuerlig): Vi väljer x=0 i sammanfogningspunkten. Det första randvillkoret ger då att: in (0,t) + refl (0,t) = trans (0,t) (4) dvs. A sin( in t) + B sin( refl t) = C sin( trans t) (5) Eftersom detta ska gälla vid alla tidpunkter måste gälla: in = refl = trans = (frekvensen konstant!) (6) det betder: A + B = C (7) Randvillkor (derivatan kontinuerlig):! in (0,t)/!x +! refl (0,t)/!x =! trans (0,t)/!x (8) Våghastigheten i strängens två delar, 1 och, är olika pga. olika densitet µ: v 1 = / (10) resp. v = /µ (11) De olika vågorna har samma frekvens, se (6). Dock ändras våglängd och vågtal mellan områdena 1 och : Vågtalet bestäms av vinkelfrekvens och våghastighet: k = /v (1) k in =k refl =k 1 och k trans =k k 1 = /v 1 = / (13) resp. k = /v = µ / (14) Derivera (1), () och (3) samt sätt in i (8): -k in A + k refl B = -k trans C (9)
4 Vi kan nu utrcka (definiera) reflektions- och transmissionskoefficienterna R resp. T: R = B/A och T = C/A Vi ska definiera reflektivitet R resp. transmittivitet T som den andelen av effekten som reflekteras resp. transmitteras. (7) och (9) ger k 1 (-A + B) = -k (A + B) det ger: R = B/A = (k 1 k ) / (k 1 + k ) R P refl Vi definierar P in Z 1 Z µ c T P trans P in Som allmänt kallas för karakteristisk impedans. (7) och (9) ger också k 1 (-A + (C-A)) = -k C det ger: T = C/A = k 1 /(k 1 + k ) Reflektions- och transmissionskoefficienterna beror alltså bara på vågtalen. Eftersom spännkraften är konstant och lika över hela strängen kan vi uttrcka amplitudkoefficienterna i de linjära densiteten: r = µ + µ t = + µ R = B A = B & $ A' T = µ c C A = µ c C& $ A' = r = Z 1 ) Z & $ Z 1 + Z ' = µ c t = 4 Z 1Z Z 1 + Z ( ) Stående vågor kan uppstå i begränsade medier Den inkommande vågen och den reflekterade vågen interfererar. 1 (x,t) = A sin(t + kx) (rör sig åt vänster) (x,t) = -A sin(t - kx) (rör sig åt höger, fasskiftad 180 o ) (x,t) = A [sin(t + kx) - sin(t - kx)] Normalmoder Normalmoder är alla möjliga stående sinusvågor som kan uppstå i ett begränsat medium. Maximal våglängd: $ max = L Normalmoder uppträder med våglängderna: $ n = L/n n = 1,,3, Lägsta frekvensen (fundamentalfrekvens eller grundton och motsvarar max. våglängd):: f 1 = v/l (v = /µ) Övriga stående vågfrekvenser kallas övertoner (eng. higher harmonics) f n = n v/l n = 1,,3, Y Applet Skrivas om (med trigonometriska summaformler): (x,t) = A sin (kx) cos(t) (stående våg på en sträng fixerad i x=0) Observera att detta bildar en ourierserie, dvs. en godtcklig vågfunktion i mediet kan alltså beskrivas genom en linjärkombination av normalmoder.
5 Stående vågor i stränginstrument Vektorrepresentation av vågor Klangfärgen av ett musikinstrument bestäms av intensitetsfördelningen av normalmoderna (ourierserie): Också kallat för ljudspektrum Ergo: När man knäppar på en gitarrsträng dominerar de tre första övertonerna! (x + i) r sin! r z % r cos! Re x Re Både realdelen och imaginärdelen kan användas för att beskriva en harmonisk våg. Med Eulers formler: e i! = cos! + i sin! och kan vi skriva: z = x + i = r(cos! + i sin!) = r e i! En harmonisk våg kan därför skrivas: e -i! = cos! & i sin! (x,t) = Re [A e i(t-kx-') ] Vanligen används realdelen, vilket alltså motsvarar: (x,t) = A cos (t kx ') Komplex representation: z ~ = x + i Om pilen i Arganddiagrammet sätts att rotera med konstant hastighet kommer denna att representera en harmonisk våg. En sådan roterande vektor kallas fasvektor. A sin t r % A cos t Re Vektorrepresentation av vågor asvektorer och vågaddition Roterande pil i Argand-kallas fasvektor (eng. phasor). Vågekvationen: Sammanfattning, del 1! ( x, t) 1! ( x, t) = Med vågutbredningens hastighet v = %f! x v! t Addera vågor som vektorer. A A Harmoniska vågfunktioner: (x,t) = A sin (t-kx) (x,t) = A sin (t+kx) (rör sig i +x-riktningen) (rör sig i -x-riktningen) ( ( 1 A 1 ör dessa gäller principen för linjär superposition. Våghastigheten beror av strängens spänning och linjära densitet: v = /µ asvektorer motsvarar inte fsikaliska vektorer men de kan adderas som vektorer. De skrivs: A $ A är amplituden och $ är fasen (som är relativ och anges i förhållande till en referensvåg). Vågfunktion för stående våg: Normalmoder på en sträng (våglängd, frekvens) vid gränssnittet mellan olika strängar: Vågor transporterar energi men inte materia: (x,t) = A sin (kx) cos(t) $ n = L/n R = ( & µ ) / ( + µ ) * = / ( + µ ) f n = n v/l och P max = µ ) P medel = 0.5 µ ) Intensitet = medeleffekt per tenhet
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och
Läs merVågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport
Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 32 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Läs merMekaniska Vågor för KandFy
Department of Phsics and Astronom Mekaniska Vågor för KandF Föreläsningsanteckningar med kompletteringar till och sammanfattningar av Hecht: Optics Jan-Erik Rubensson/03-0-6 Postal address Deliver address
Läs merTFYA58, Fysik, 8 hp, 3 delar
1. Vågrörelselära (mekaniska vågor, optik, diffraktion ) 7x2 tim föreläsning 6x2tim lektion 2. Experimentell problemlösning TFYA58, Fysik, 8 hp, 3 delar Ht 1 Ht 2 2x1 tim föreläsning 2 st Richardslabbar
Läs mer1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Läs mer1.3 Uppkomsten av mekanisk vågrörelse
1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip
Läs merVågfysik. Superpositionsprincipen
Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor
Läs merMekaniska vågor. Emma Björk
Mekaniska vågor Emma Björk Olika typer av vågfenomen finns överallt! Mekaniska vågor Ljudvågor Havsvågor Seismiska vågor Vågor på sträng Elektromagnetiska vågor Ljus Radiovågor Mikrovågor IR UV Röntgenstrålning
Läs merHur elektromagnetiska vågor uppstår. Elektromagnetiska vågor (Kap. 32) Det elektromagnetiska spektrumet
Elektromagnetiska vågor (Kap. 32) Hur elektromagnetiska vågor uppstår Laddning i vila:symmetriskt radiellt fält, Konstant hastighet: osymmetriskt radiellt fält samt ett magnetfält. Konstant acceleration:
Läs merVågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.
Vågrörelselära Christian Karlsson Uppdaterad: 161003 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [14] 1 Elasticitet (bl.a. fjädrar)
Läs merFysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
Läs merVågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi /
Vågrörelselära Har jag använt någon bild som jag inte får Uppdaterad: 171017 använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Elasticitet (bl.a. fjädrar) [15] Superposition
Läs merAC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date
AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)
Läs merFöreläsning 12. Tidsharmoniska fält, komplexa fält (Kap ) Plana vågor (Kap ) i Griffiths
1 Föreläsning 12 9.1-9.3.2 i Griffiths Tidsharmoniska fält, komplexa fält (Kap. 9.1.2) Tidsharmoniska fält (dvs. fält som varierar sinus- eller cosinusformigt i tiden) har stora tillämpningsområden i de
Läs merRe(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Läs merKapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
Läs mer2. Mekaniska vågrörelser i en dimension
2. Mekaniska vågrörelser i en dimension Reflexion Även om alla vågrörelser kan beskrivas med begreppen och, för de flesta naturligt förekommande vågorna, de matematiska uttrycken introducerade i kapitel
Läs merMer om EM vågors polarisation. Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation?
Mer om EM vågors polarisation Vad händer om man lägger ihop två vågor med horisontell och vertikal polarisation? Svänger x Svänger y 2π Superposition av x och y polariserade EM vågor (Ritar bara positivt
Läs merVåglära och Optik Martin Andersson mading1977@gmail.com
Våglära och Optik Martin Andersson mading1977@gmail.com A - Våglära (Kapitel 19-21) Innehåll: I - Beskrivning, Egenskaper hos vibrationer och vågor II - Mekaniska vågor ljud I - Beskrivning, egenskaper
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Läs merλ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Läs merett uttryck för en våg som beskrivs av Jonesvektorn: 2
Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består
Läs merTentamen i Vågor och Optik 5hp den 19. augusti 2016
Uppsala Universitet Institution för ysik och Astronomi Laurent Duda krivtid kl. 8-13 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten) för godkänd (3:a)
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 16-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Läs mer1. Allmänt vågrörelser mekaniska vågrörelser
1. Allmänt vågrörelser mekaniska vågrörelser Definition En mekanisk vågrörelse utgörs av en regelbundet upprepad (periodisk) störning i en del av ett medium (material) som fortplantas (utbreder sig) genom
Läs merSvängningar och frekvenser
Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att
Läs merSamtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
Läs merProblem Vågrörelselära & Kvantfysik, FK november Givet:
Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet
Läs merLösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik
Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel
Läs merVågfysik. Vilka typer av vågor finns det? Fortskridande vågor. Mekaniska vågor Elektromagnetiska vågor Materievågor
Vågysik Fortskridande ågor Knight, Kap. 0 Vilka typer a ågor inns det? Mekaniska ågor Elektromagnetiska ågor Materieågor 1 Vad är en åg? En ortskridande åg är en lokal störning som utbreder sig på ett
Läs mer1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Läs merKOMIHÅG 18: Ekvation för fri dämpad svängning: x + 2"# n. x j,
KOMIHÅG 18: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = # n x j, 1 med konstanterna! n = k m och!" n = c m. ------------------------------------------------------
Läs mer2. Ljud. 2.1 Ljudets uppkomst
2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser
Läs merKapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor
Kapitel: 3 lektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge M-vågor genskaper hos M-vågor nergitransport i M-vågor Det elektromagnetiska spektrat Maxwell s ekvationer Kan
Läs mer1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.
10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15
Läs merIFM Department of Physics, Chemistry and Biology. Ljudlaboration. Namn. Personnummer Datum Godkänd. Peter Andersson Per Sandström
IFM Department of Physics, Chemistry and Biology Ljudlaboration Namn Personnummer Datum Godkänd Peter Andersson Per Sandström 1 Introduktion Den här laborationen kommer att behandla några fenomen inom
Läs merUpp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg.
1. Bengt ska just demonstrera stående vågor för sin bror genom att skaka en slinkyfjäder. Han lägger fjädern på golvet och ber sin bror hålla i andra änden. Sen spänner han fjädern genom att backa lite
Läs mer3. Mekaniska vågor i 2 (eller 3) dimensioner
3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar
Läs merMA2001 Envariabelanalys
MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje
Läs merKapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)
Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Läs merFYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var
Läs merx(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:
Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 6 feb 16 (prövningstillfälle ) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs mer= = i K = 0, K =
ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar
Läs merEnvariabelanalys: Vera Koponen. Envariabelanalys, vt Uppsala Universitet. Vera Koponen Föreläsning 5-6
Envariabelanalys: Föreläsning 5-6 Vera Koponen Uppsala Universitet Envariabelanalys, vt 2011 Derivata: allmänt Antag att f (x) är en funktion. Derivata: allmänt Antag att f (x) är en funktion. Derivatan
Läs merinterferens och diffraktion
Kapitel 1. Vågrörelselära: interferens och diffraktion [Understanding physics: 12.7-12.9, 12.11-12.12, 12.15] Som en inledning till den moderna fysiken skall vi studera hur två vågrörelser påverkar varandra.
Läs mer1.7. Tolkning av våg partikeldualiteten
1.7. Tolkning av våg partikeldualiteten [Understanding Physics: 13.7-13.11] En egenskap som är gemensam för både vågor och partiklar är förmågan att överföra energi. I vartdera fallet kan man representera
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 01-1-10 DEL A 1. Låt funktionen f ha definitionsmängden D f =]0, [ och ges av f(x) = e x 1 x. (a) Finn f:s invers f 1. ( p) (b) Finn inversens värdemängd
Läs mer10. Kretsar med långsamt varierande ström
1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera
Läs merFYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 7 poäng, FyL2 Tisdagen den 19 juni 2007 kl 9-15 Hjälpmedel: Handbok, kopior av avsnitt om Fouirertransformer och Fourieranalys
Läs merNamn Klass Personnummer (ej fyra sista)
Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga
Läs merFöreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Läs merVågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
Läs merProv i vågrörelselära vt06 Lösningsförslag
Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela
Läs merGauss Linsformel (härledning)
α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a
Läs merFöreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Läs merE-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?
Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/
Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att
Läs merTentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!
014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar
Läs merObservera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n1, 19 DECEMBER 2003 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Läs merRepetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016
Repetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016 Harmonisk svängning En svängning fram och tillbaka kring ett jämviktsläge, där den resulterande kraften på den svängande
Läs merTFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s
140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger
Läs merTentamen SF e Januari 2016
Tentamen SF6 8e Januari 6 Hjälpmedel: Papper, penna. poäng per uppgift totalt poäng. Betg E är garanterat vid 6 poäng, betg D vid poäng, betg vid C poäng, betg B vid 8 poäng och betg A vid poäng. För de
Läs merFöreläsning 17: Jämviktsläge för flexibla system
1 KOMIHÅG 16: --------------------------------- Ellipsbanans storaxel och mekaniska energin E = " mgm 2a ------------------------------------------------------ Föreläsning 17: Jämviktsläge för flexibla
Läs merKOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n
KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------
Läs merTentamen i matematik. f(x) = ln(ln(x)),
Lösningsförslag Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA52G Matematisk Analys MA23G Matematisk analys för ingenjörer Tentamensdag: 203-05- kl 4.30-9.30 Hjälpmedel : Inga hjälpmedel utöver
Läs mer= y(0) för vilka lim y(t) är ändligt.
Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa
Läs merTentamen i Mekanik SG1102, m. k OPEN. Problemtentamen
014-06-04 Tentamen i Mekanik SG110, m. k OPEN. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen En boll skjuts ut genom ett hål med en hastighet v så att den
Läs merFYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
Läs merTentamen i Vågor och Optik 5hp F, Q, kandfys, gylärfys-programm, den 15. mars 2010
Uppsala Universitet Fysiska Institutionen Laurent Duda Tentamen i Vågor och Optik 5hp Skrivtid kl. 14-19 Hjälpmedel: Räknedosa, Physics Handbook eller motsvarande (även Mathematical Handbook är tillåten)
Läs mer= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm
Bok Vågrörelse Fysik 3 Fysik 3, Vågrörelse Mekanisk vågrörelse Ljud Ljus Harmonisk kraft Ex [ F] [ k ] N / m [ x] Fjäder F -kx F -kx [ F] k fjäderkonstanten [ k ] [ x] - kraften riktad mot jämviktsläget
Läs merHur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!
Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel
Läs merFysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.
GÖTEBORGS UNIVERSITET Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25 Delkurs 4 KVANTMEKANIK: GRUNDER, TILLÄMPNINGAR
Läs merM0038M Differentialkalkyl, Lekt 17, H15
M0038M Differentialkalkyl, Lekt 17, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 38 Repetition Lekt 16 Uppskatta (8.2) 1/3 genom att använda differentialer. Svara på bråkform.
Läs merKapitel 4. Materievågor
Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Kapitel 4. Materievågor 1 Kvantfysikens grunder, 2017 Kapitel 4. Materievågor Överblick Överblick Kring 1925 började många viktiga kvantkoncept ha sett
Läs mer8. Euklidiska rum 94 8 EUKLIDISKA RUM
94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.
Läs merNATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar NATIONELLT
Läs merLuft. film n. I 2 Luft
Tentamen i Vågrörelselära(FK49) Datum: Måndag, 14 Juni, 21, Tid: 9: - 15: Tillåten Hjälp: Physics handbook eller dylikt och miniräknare Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen
Läs merProblemtentamen. = (3,4,5)P, r 1. = (0,2,1)a F 2. = (0,0,0)a F 3. = (2,"3,4)P, r 2
2015-MM-DD Övningstentamen i Mekanik SG1130, grundkurs B1. OBS: Inga hjälpmede förutom rit- och skrivdon får användas! KTH Mekanik 1. Problemtentamen Ett kraftsystem består av tre krafter som angriper
Läs merSF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som
Läs merTFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
Läs merVågrörelselära och optik
Denna vecka 1 Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 2 Harmonisk Svängning Experiment Ett experiment som hjälper oss att hitta en matematisk beskrivning av harmonisk svängning: https://www.youtube.com/watch?v=p9uhmjbzn-c
Läs merThe nature and propagation of light
Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens
Läs merPåtvingad svängning SDOF
F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften
Läs merLösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:
Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.
Läs merTillämpad vågrörelselära FAF260. Svängningar genererar vågor - Om en svängande partikel är kopplad till andra partiklar uppkommer vågor
FF60 Tillämpad vågrörelselära FF60 Karaktäristiskt för periodiska svängningar är att det finns en återförande kraft riktad mot jämviktsläget y 0 F F F k y F m a 4 Svängningar genererar vågor - Om en svängande
Läs mer1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).
. (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion
Läs mery = sin 2 (x y + 1) på formen µ(x, y) = (xy) k, där k Z. Bestäm den lösning till ekvationen som uppfyler begynnelsevillkoret y(1) = 1.
UPPSALA UNIVERSITET Matematiska institutionen Pepe Winkler tel. 08-47 32 89 Prov i matematik Civilingenjörsprogrammen Ordinära differentialekvationer, 2 poäng 2005-2-4 Skrivtid: 5.00 20.00. Hjälpmedel:
Läs merx +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.
Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4
Läs merMatematik 5 svar. Kapitel Test Blandade uppgifter Kapitel a) dy
Matematik 5 svar Kapitel 3... 1 Test 3... 26 Blandade uppgifter... 29 Kapitel 3 3101. a) y (x) = 2x y(x) = x 2 + C b) y (x) = x 2 x + 1 y(x) = x3 x2 + x + C 3 2 c) y x 2 + 2 = 0 y = x 2 2 y(x) = x3 2x
Läs merCrash Course Envarre2- Differentialekvationer
Crash Course Envarre2- Differentialekvationer Mattehjälpen Maj 2018 Contents 1 Introduktion 2 2 Integrerande faktor 2 3 Separabla diffekvationer 3 4 Linjära diffekvationer 4 4.1 Homogena lösningar till
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel
Läs merTATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning
TATA42: Föreläsning 8 Linjära differentialekvationer av högre ordning Johan Thim 23 april 2018 1 Differentialoperatorer För att underlätta notation och visa på underliggande struktur introducerar vi begreppet
Läs merTenta Elektrisk mätteknik och vågfysik (FFY616) 2013-12-19
Tenta Elektrisk mätteknik och vågfysik (FFY616) 013-1-19 Tid och lokal: Torsdag 19 december kl. 14:00-18:00 i byggnad V. Examinator: Elsebeth Schröder (tel 031 77 844). Hjälpmedel: Chalmers-godkänd räknare,
Läs merDERIVATA. = lim. x n 2 h h n. 2
DERIVATA Läs avsnitten 6.-6.5. Lös övningarna 6.cd, 6.2, 6.3bdf, 6.4abc, 6.5bcd, 6.6bcd, 6.7, 6.9 oc 6.. Läsanvisningar Allmänt gäller som vanligt att bevisen inte ingår i kursen, men det är mycket nyttigt
Läs merHandledning laboration 1
: Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen
Läs merFormelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1
Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:
Läs merFK Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00
FK5019 - Elektromagnetism och vågor, Fysikum, Stockholms Universitet Tentamensskrivning, måndag 21 mars 2016, kl 9:00-14:00 Läs noggrant igenom hela tentan först Tentan består av 5 olika uppgifter med
Läs mer