SF1901 Sannolikhetsteori och statistik I
|
|
- Magnus Falk
- för 8 år sedan
- Visningar:
Transkript
1 SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 9 26 november / 29
2 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för att ta fram skattningar (Kap. 11.5) 2 / 29
3 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för att ta fram skattningar (Kap. 11.5) 3 / 29
4 Statistisk inferens: data kunskap Inference is the problem of turning data into knowledge, where knowledge often is expressed in terms of entities that are not present in the data per se but are present in models that one uses to interpret the data. Committee on the Analysis of Massive Data: Frontiers in Massive Data Analysis. The National Academies Press, Washington D.C., 2013, sid / 29
5 Exempel: opinionsundersökning Ett antal personer, säg 1000 st, väljes på måfå ur en stor population (t.ex. Sveriges befolkning). En fråga (rörande t.ex. monarkins vara eller icke vara eller medlemskap i Nato), som skall besvaras med ja eller nej, ställs med resultatet att x = 350 personer svarar ja. Vi vill uppskatta andelen ja -svarare p i hela populationen. 5 / 29
6 Exempel: the German tank problem During World War II, British and U.S. statisticians working for military intelligence were keenly interested in estimating German war production (especially the production of Panzerkampfwagen V, Panther), but could hardly ask the German factories to send them reports. Instead, they based their estimates on the manufacturing serial numbers of captured equipment (especially the tank gearboxes). These numbers ({1, 2, 3,... }) were consecutive and did not vary (as this was rational in terms of maintenance and spare parts). These serial numbers provided a sample that was very small, but reliable. Utmaningen består i att skatta det totala antalet tyska stridsvagnar av denna typ. 6 / 29
7 Inferensproblemet Vi antar att vi har tillgång till uppmätta värden x 1, x 2,..., x n. Denna mätdata kan ses som utfall av s.v. X 1, X 2,..., X n, vilkas fördelning (diskret eller kontinuerlig) beror av en ev. flerdimensionell okänd parameter θ. Mängden av möjliga parametrar, parameterrummet, betecknas Ω θ. Vi vill skatta θ med hjälp av mätdatan. 7 / 29
8 Exempel: opinionsundersökning (forts.) Statistisk modell: det uppmätta antalet ja -sägare x = 350 kan ses som ett utfall (observation) av där p är okänt. X Hyp( , 1000, p), Då n/n = 1000/ kan vi med gott samvete bortse från det faktum att vi väljer personer utan återläggning och approximera hypergeometriska fördelningen med en binomialfördelning, dvs. anta att x = 350 är en observation av X Bin(1000, p). Befolkningsmängd i Sverige den 30 nov 2014 enligt SCB. 8 / 29
9 Exempel: the German tank problem (forts.) Statistisk modell: varje upphittat serienummer x i, i = 1,..., n, ses, något förenklat, som ett utfall av en s.v. X i med likformig fördelning över mängden {1,..., θ}, där θ är det okända antalet pansarvagnar. De olika X i :na kan anses vara oberoende. 9 / 29
10 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för att ta fram skattningar (Kap. 11.5) 10 / 29
11 Punktskattning Vi vill skatta den okända parametern θ med hjälp av en funktion av data. Följande definition är viktig. Definition En punktskattning av en parameter θ är en funktion θ som för varje uppsättning mätdata x 1, x 2,..., x n ordnar ett värde i Ω θ. Detta värde betecknas θ obs = θ (x 1, x 2,..., x n ). Då mätdata ses som utfall av s.v. X 1, X 2,..., X n är θ obs ett utfall observation av stickprovsvariabeln θ (X 1, X 2,..., X n ). Den senare betecknas ofta θ för enkelhets skull. 11 / 29
12 Punktskattning (forts.) Det gäller alltså att θ obs är en observation av den s.v. θ (X 1, X 2,..., X n ) = θ. Om ny mätdata samlas in ses denna som ett nytt utfall av X 1, X 2,..., X n, vilket i sin tur leder till ett nytt utfall θ obs av θ. Skattningens osäkerhet beror på hur θ varierar kring θ, och att bestämma fördelningen för θ är sålunda en viktig (och ibland svår) uppgift. 12 / 29
13 Väntevärdesriktighet Det är givetvis önskvärt att fördelningen för θ inte har något systematiskt fel. Detta kan formaliseras med hjälp av följande definition. Definition En punktskattning sägs vara väntevärdesriktig om E(θ ) = θ oavsett värdet på den okända parametern θ Ω θ. 13 / 29
14 Konsistens Ju fler mätningar (information) vi har tillgång till, desto bättre kan vi förvänta oss att den okända parametern kan skattas. För n mätdata betecknar vi nu stickprovsvariabeln med θ n. Fördelningen för θ n bör sålunda koncentreras mer och mer kring θ när n ökar. Detta kan formaliseras med hjälp av följande definition. Definition Om för varje θ Ω θ och för varje givet (litet) ε > 0, P( θ n θ ε) 0 då stickprovsstorleken n, sägs punktskattningen vara konsistent. 14 / 29
15 Intermezzo: Markovs olikhet I samband med konsistensundersökningar är följande enkla olikhet användbar. Sats (Markovs olikhet) Låt X vara en icke-negativ s.v. Då gäller för varje fixt ε > 0, P(X ε) 1 E(X ). ε Markovs olikhet implicerar direkt Tjebysjovs olikhet (som finns i boken och formelsamlingen). Genom att tillämpa Markovs olikhet på X p, för p 0, får man även P(X ε) = P(X p ε p ) 1 ε p E(X p ). 15 / 29
16 Opinionsundersökning (forts.) Då vi vill skatta en andel p är punktskattningen rimlig. p obs = p (x) = x n = = Denna skattning är väntevärdesriktig, ty ( ) X E(p ) = E(p (X )) = E = E(X ) = 1000p 1000 = p. 16 / 29
17 Opinionsundersökning (forts.) För ett godtyckligt n ges skattningens varians av ( ) X V(pn) = V = 1 np(1 p) V(X ) = n n2 n 2 = p(1 p). n Detta medför att skattningen även är konsistent, ty Markovs olikhet ger för varje fixt ε > 0, P( p n p ε) 1 ε 2 E( p n p 2 ) = 1 ε 2 V(p n) = där högerledet går mot noll då n. p(1 p) nε 2, Alltså, ju fler personer vi frågar, desto mer koncentrerad blir skattningen kring den okända andelen p! 17 / 29
18 Medelkvadratfel Ett annat sätt att beskriva hur koncentrerad θ är kring θ är följande. Definition Medelkvadratfelet (MSE, Mean Square Error) för en punktskattning är MSE = E({θ θ} 2 ). Man visar enkelt (övning!) att MSE = V(θ ) + {E(θ ) θ} 2. Termen E(θ ) θ kallas systematiskt fel eller bias och är noll om skattningen är väntevärdesriktig. I det senare fallet är alltså MSE = V(θ ). 18 / 29
19 Effektivitet Definition Om två olika skattningar θ och ˆθ är väntevärdesriktiga och det gäller att V(θ ) V(ˆθ ) för alla θ Ω θ (med sträng olikhet för något θ) sägs θ vara effektivare on ˆθ. En väntevärdesriktig skattning med liten varians är helt enkelt bättre! 19 / 29
20 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för att ta fram skattningar (Kap. 11.5) 20 / 29
21 Skattning av väntevärde och varians Låt mätdata x 1, x 2,..., x n vara observationer av oberoende s.v. X 1, X 2,..., X n från någon fördelning med väntevärde µ och varians σ 2, dvs. för alla i gäller att E(X i ) = µ, V(X i ) = σ 2. Antag att vi vill skatta µ och σ 2 med hjälp av mätdata x 1, x 2,..., x n. Lämpliga skattningar visar sig vara stickprovsmedelvärdet resp. stickprovsvariansen µ obs = x = 1 n (σ 2 ) obs = 1 n 1 n x i, i=1 n (x i x) 2 not. = s 2. i=1 21 / 29
22 Skattning av väntevärde och varians (forts.) Normeringen 1/(n 1) istället för 1/n i s 2 gör stickprovsvariansen väntevärdesriktig. Ovan skattningar visar sig ha goda egenskaper: Sats Stickprovsmedelvärdet x och stickprovsvariansen s 2 är väntevärdesriktiga och konsistenta skattningar av µ resp. σ 2. Notera att dessa skattningar inte kräver kännedom om den gemensamma fördelningen för X i :na! 22 / 29
23 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för att ta fram skattningar (Kap. 11.5) 23 / 29
24 Maximum-likelihood-metoden Hittills har vi konstruerat skattningar ad hoc. Maximum-likelihood-metoden (ML-metoden) ger ett systematiskt tillvägagångssätt. Idé: välj det parametervärde som ger högst sannolikhet för den givna mätdatan! Definition Funktionen L(θ) = { p X1,...,X n (x 1,..., x n ; θ) f X1,...,X n (x 1,..., x n ; θ) kallas likelihood-funktionen (L-funktionen). (diskreta fallet), (kontinuerliga fallet), Funktionen ln L(θ) kallas log-likelihood-funktionen. 24 / 29
25 Maximum-likelihood-metoden (forts.) Notera att L(θ) beror på den observerade mätdatan. I det diskreta fallet är sålunda L(θ) precis sannolikheten att just mätdatan x 1, x 2,..., x n erhållas om θ vore modellparameter. Det kontinuerliga fallet kan tolkas analogt. Som skattning väljer vi sedan det parametervärde som maximerar L(θ). Definition Det värde θ obs för vilket L(θ) antar sitt största värde inom Ω θ kallas maximum-likelihood-skattningen (ML-skattningen) av θ. Ofta är det enklare att maximera log-likelihood-funktionen, vilken har samma maximum. 25 / 29
26 R. A. Fisher Figur: R. A. Fisher ( ), a genius who almost single-handedly created the foundations for modern statistical science (A. Hald), the greatest biologist since Darwin (R. Dawkins). 26 / 29
27 Opinionsundersökning (forts.) Beräkna ML-skattningen av p! [ svar: p obs = x n = 350 ] 1000 = / 29
28 Opinionsundersökning (forts.) 0 log likelihood function log L(p) p Figur: Plot av log-likelihood-funktionen. 28 / 29
29 Nästa föreläsning Mer om punktskattningar, konfidensintervall. 29 / 29
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 9 25 november 2016 1 / 32 Idag Inferensproblemet Punktskattningar (Kap. 11.3) Skattning av väntevärde och varians (Kap. 11.4) Metoder för
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade
SF1901: Sannolikhetslära och statistik. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat
SF1901: Sannolikhetslära och statistik Föreläsning 7. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat Jan Grandell & Timo Koski 22.09.2008 Jan Grandell & Timo Koski () Matematisk
Föreläsning 9: Hypotesprövning
Föreläsning 9: Hypotesprövning Matematisk statistik David Bolin Chalmers University of Technology Maj 5, 2014 Statistik Stickprov Ett stickprov av storlek n är n oberoende observationer av en slumpvariabel
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
SF1901: Sannolikhetslära och statistik. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat
SF1901: Sannolikhetslära och statistik Föreläsning 8. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat Jan Grandell & Timo Koski 10.02.2011 Jan Grandell & Timo Koski () Matematisk
Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik 1MS026 vt 2014
Föreläsning 1. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper@math.uu.se Tillämpad statistik 1MS026 vt 2014 Varför tillämpad statistik? Användningsområden i medicin, naturvetenskap
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen
Uppgift 2 0 0.10 1 0.25 2 0.40 3 0.20 4 0.05
Uppgift 1 En grönsaksgrossist har utvecklat ett test för att kontrollera kvaliteten hos tomater. Efter att ha inspekterat ett urval från ett parti tomater, accepteras eller förkastas partiet. Med detta
Föreläsning 14: Försöksplanering
Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
Något om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Statistiska metoder för säkerhetsanalys
F12: Tillförlitlighet och säkerhetsindex Cornell Styrka Säkerhetsindex Ett säkerhetsindex, b: Är ett mått på ett systems tillförlitlighet. Är ett grövre mått än felsannolikheten P f. Används när P f inte
SF1901: Sannolikhetslära och statistik. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat. Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: statistiska inferensproblem, maximum likelihood, minsta kvadrat Jan Grandell & Timo Koski 15.02.2016 Jan Grandell & Timo Koski Matematisk
Datorövning 2 Diskret fördelning och betingning
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Statistiska synpunkter på politiska opinionsundersökningar
Demokratidagen, SCB, 2012-09-27 Statistiska synpunkter på politiska opinionsundersökningar Jan Wretman 1 Bakgrund Allmänheten har inflytande genom allmänna val vart fjärde år. Vad anser allmänheten för
Föreläsning 12: Repetition
Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem Problem 1 (6p) En undersökning utfördes med målet att besvara frågan Hur stor andel av den vuxna befolkningen i Sverige äger ett skjutvapen?.
INLÄMNINGSUPPGIFT 2 (Del 2, MATEMATISK STATISTIK) Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000
INLÄMNINGSUPPGIFT 2 (Del 2, MATEMATISK STATISTIK) Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 Lärare: Armin Halilovic armin@syd.kth.se www.syd.kth.se/armin tel 08 790 4810 Inlämningsuppgift 2 består
4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
k x om 0 x 1, f X (x) = 0 annars. Om Du inte klarar (i)-delen, så får konstanten k ingå i svaret. (5 p)
Avd. Matematisk statistik TENTAMEN I SF1901 SANNOLIKHETSLÄRA OCH STATISTIK MÅNDAGEN DEN 17 AUGUSTI 2009 KL 08.00 13.00. Examinator: Gunnar Englund, tel. 790 74 16. Tillåtna hjälpmedel: Formel- och tabellsamling
SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.
SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor?
Mätning av effekter Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Denna studie ger vägledning om de grundläggande parametrarna för 3-fas effektmätning.
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15
Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.
732G71 Statistik B. Föreläsning 2. Bertil Wegmann. November 13, 2015. IDA, Linköpings universitet
732G71 Statistik B Föreläsning 2 Bertil Wegmann IDA, Linköpings universitet November 13, 2015 Bertil Wegmann (IDA, LiU) 732G71, Statistik B November 13, 2015 1 / 26 Kap. 4.1-4.5, multipel linjär regressionsanalys
David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet
Grundläggande biostatistik. Jenny Selander jenny.selander@ki.se 524 800 29
Grundläggande biostatistik Jenny Selander jenny.selander@ki.se 524 800 29 Jenny Selander, Kvant. metoder, FHV T1 december 20111 Dagens föreläsning Beskrivande statistik kap 1 Samplingsfördelning kap 3
Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
Kvalster. Korrelation och regression: lineära modeller för bivariata samband. Spridningsdiagram. Bivariata samband
Kvalster och regression: lineära modeller för bivariata samband Matematik och statistik för biologer, 10 hp En viss sorts kvalster (Demodex folliculorum) trivs bra i människors hårsäckar. Enligt en studie
Summor av slumpvariabler
1/22 Summor av slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 8/2 2013 2/22 Dagens föreläsning Väntevärde och varians Vanliga kontinuerliga fördelningar Parkeringsplatsproblemet
F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15
1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla
ARIMA del 2. Patrik Zetterberg. 19 december 2012
Föreläsning 8 ARIMA del 2 Patrik Zetterberg 19 december 2012 1 / 28 Undersöker funktionerna ρ k och ρ kk Hittills har vi bara sett hur autokorrelationen och partiella autokorrelationen ser ut matematiskt
Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen
Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,
Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin
Nedlagd studietid och olika kurskarakterisika en anspråkslös analys baserad på kursvärderingsdata. Fan Yang Wallentin Inledning I denna miniundersökning analyseras hur studietiden är relaterad till attityder
Tentamen i Tillämpad matematisk statistik LMA521 för EPI och MI den 14 dec 2011
Tentamen i Tillämpad matematisk statistik LMA5 för EPI och MI den dec Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg 3, minst 3 poäng för och minst poäng för 5. Eaminator:
5B1816 Tillämpad mat. prog. ickelinjära problem. Optimalitetsvillkor för problem med ickelinjära bivillkor
5B1816 Tillämpad mat. prog. ickelinjära problem Föreläsning 3 Optimalitetsvillkor för problem med ickelinjära bivillkor A. Forsgren, KTH 1 Föreläsning 3 5B1816 2005/2006 Optimalitetsvillkor för ickelinjära
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 I Punktskattningar I Egenskaper I Väntevärdesriktig I E ektiv I Konsistent
parametriska test Mätning Ordinalskala: Nominalskala:
Icke- parametriska test Icke- parametriska test En avgörande skillnad mellan icke-parametriska och s.k. parametriska test, som t.ex. t-test, är att de icke-parametriska testen kräver färre antaganden Icke-parametriska
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
CAEBBK01 Drag och tryckarmering
Drag och tryckarmering Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING 3 1.1 ANVÄNDNINGSOMRÅDEN 3 1.2 TEKNISK BESKRIVNING 3 1.3 ARMERINGENS INLÄGGNING 4 1.4 ARBETSKURVA BETONG 4 2 INSTRUKTIONER
SF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
Samverkande Expertnät
1 Samverkande Expertnät 2 3 1 2 3 Parallella nätverk Sammanvägning av svaren Två olika fördelar Utjämna egenheter hos nätverken Låt nätverken specialisera sig Egenskaper hos ett enkelt nätverk Överträning
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01
Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering
Invisible Friend 2013-02-18 Senast uppdaterad 2013-02-19
Invisible Friend 2013-02-18 Senast uppdaterad 2013-02-19 Jenny Axene och Christina Pihl driver företaget Invisible Friend som skänker dockor till barn som sitter fängslade för att dom är födda där, barn
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Avd. Matematisk statistik
Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund
Lunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS0: MATEMATISK STATISTIK AK FÖR V EXEMPEL PÅ DUGGAUPPGIFTER, AVSNITT SANNOLIKHETSTEORI UPPGIFTER Kortare uppgifter. På en arbetsplats skadas
SEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
5. Motion om policy för besvarande av post yttrande Dnr 2015/465-109
SAMMANTRÄDESPROTOKOLL Kommunfullmäktige 13 (42) 2016-03-21 Kf 5. Motion om policy för besvarande av post yttrande Dnr 2015/465-109 Mariann Gustafsson (V) har 19 oktober 2015 väckt en motion om policy för
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski
SF1901: Sannolikhetslära och statistik Föreläsning 10. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 18.02.2016 Jan Grandell & Timo Koski Matematisk statistik 18.02.2016
SF1901: Övningshäfte
SF1901: Övningshäfte 1 oktober 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på tentamen.
Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna
Kundservicerapport Luleå kommun 2015
LULEÅ KOMMUN SKRIVELSE Dnr 1 (5) 2016-01-21 Maria Norgren Kundservicerapport Luleå kommun 2015 Kommunstyrelsen har den 12 augusti 2013 fastställt riktlinjer för kundservice Luleå Direkt. Luleå kommun ska
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 11 Johan Lindström 13 november 2018 Johan Lindström - johanl@maths.lth.se FMSF45/MASB03 F11 1/25 Repetition Stickprov & Skattning Maximum likelihood
För övrigt fullständig överensstämmelse kvalitativt sett för båda proverna. Alla lab som analyserat P-CCP ak på prov 18/D rapporterar ett starkt
2011-18 Förväntat svar/utfall för P-RF (ej isotypspec) var bestämt utifrån nefelometrisk metod. På prov 18/C med förväntat negativt utslag fick ett annat lab som också använder nefelometri dock ett svagt
Föreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder
TAMS65 - Föreläsning 2 Parameterskattningar - olika metoder Martin Singull Matematisk statistik Matematiska institutionen Innehåll Fö2 Punktskattningar Egenskaper Väntevärdesriktig Effektiv Konsistent
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Vetenskapliga begrepp. Studieobjekt, metod, resultat, bidrag
Vetenskapliga begrepp Studieobjekt, metod, resultat, bidrag Studieobjekt Det man väljer att studera i sin forskning Nära sammankopplat med syftet Kan vara (fysiska) ting och objekt: Datorspel, Affärssystem,
Sommar och solkraft. Nykarleby Kraftverk Ab Tony Eklund 7.7.2016
Sommar och solkraft Nykarleby Kraftverk Ab Tony Eklund 7.7.2016 Solkraften Priset på solpaneler har gått kraftigt ned och håller nu på att planas ut 2010 250 W panel 500 2 /W 2015 250 W panel 150 0,6 /W
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?
LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken
Regression med kvalitativa variabler. Jesper Rydén
Regression med kvalitativa variabler Jesper Rydén 1 2 UPPSALA UNIVERSITET Matematiska institutionen Jesper Rydén Matematisk statistik 1MS026 Tillämpad statistik vt 2013 REGRESSION MED KVALITATIVA VARIABLER
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Idag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen
Boll-lek om normer. Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö. Innehåll
1 Boll-lek om normer Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö Innehåll Materialet bygger på en övning där eleverna, genom en lek med bollar, får utmana sin förmåga att kommunicera
5 Kontinuerliga stokastiska variabler
5 Kontinuerliga stokastiska variabler Ex: X är livslängden av en glödlampa. Utfallsrummet är S = x : x 0}. X kan anta överuppräkneligt oändligt många olika värden. X är en kontinuerlig stokastisk variabel.
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Snabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Det är bra om även distriktsstyrelsen gör en presentation av sig själva på samma sätt som de andra.
Modul: Föreningspresentation Ett stort blädderblocksblad delas upp i fyra rutor. Deltagarna, som under detta pass är indelade föreningsvis, får i uppgift att rita följande saker i de fyra rutorna: Föreningsstyrelsen
Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3
Kunskapskraven åk k 3 - matematik 20 Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3 Eleven kan lösa enkla problem i elevnära situationer genom att välja och använda någon strategi med
Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon. English Version
Kurskod: TAMS11 Provkod: TENB 22 April 2014, 14:00am-18:00noon Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer
SF1901: Sannolikhetslära och statistik. Statistik: Intervallskattning (konfidensintervall)
SF1901: Sannolikhetslära och statistik Föreläsning 9. Statistik: Intervallskattning (konfidensintervall) Jan Grandell & Timo Koski 21.02.2012 Jan Grandell & Timo Koski () Matematisk statistik 21.02.2012
TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11
Utveckla arbetsmiljö och verksamhet genom samverkan
DEL 1: Utveckla arbetsmiljö och verksamhet genom samverkan Modulen inleds med det övergripande målet för modul 6 och en innehållsförteckning över utbildningens olika delar. Börja med att sätta ramarna
SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.
SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse
Begreppet delaktighet inom rättspsykiatrisk vård
Begreppet delaktighet inom rättspsykiatrisk vård Mikael Selvin ¹, Kjerstin Almqvist ², Lars Kjellin ¹, Agneta Schröder ¹ 1) University Health Care Research Center, Faculty of Medicine and Health, Örebro
Vi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som