Tentamen i Tillämpad matematisk statistik LMA521 för EPI och MI den 14 dec 2011
|
|
- Frida Håkansson
- för 9 år sedan
- Visningar:
Transkript
1 Tentamen i Tillämpad matematisk statistik LMA5 för EPI och MI den dec Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg 3, minst 3 poäng för och minst poäng för 5. Eaminator: Ulla Blomqvist, ankn 5886 Hjälpmedel: Chalmersgodkänd miniräknare, Matematisk statistik, Ulla Dahlbom och Håkan Blomqvists formelsamling. Formelsamlingen och boken får inte innehålla egna anteckningar. Lycka till! Uppgift : Anta att vi har två urnor, U och U. Urna U innehåller vita och 3 svarta kulor medan urna U innehåller vita och 6 svarta kulor. En symmetrisk tärning kastas. Om man får upp ett udda antal ögon så flyttas en slumpmässigt vald kula från urna U till urna U. Om man får upp ett jämnt antal ögon så flyttas en slumpmässigt vald kula från urna U till urna U. Vad är sannolikheten att man efter kast har vita kulor i urna U? Uppgift : Ur ett parti med CD-skivor packat i lådor väljer man slumpmässigt ut lådor för kontroll. a) Hur stor är sannolikheten att man i de utvalda lådorna hittar några repiga CDskivor om hela partiet består av lådor, varav innehåller repiga CD-skivor? b) Anta att man upprepar denna kontroll varje gång ett sådant parti köps in. Anta också att kvaliteten är samma varje gång d.v.s. av lådor innehåller repiga CD-skivor. Under en månad genomförs 5 sådana kontroller. Vad är sannolikheten att man vid minst ett tillfälle finner repiga CD-skivor? Uppgift 3: En dator uppgraderas med ett nytt operativsystem. Ändringen av tiden, i sekunder, att koppla upp sig mot Internet kan beskrivas av nedanstående frekvensfunktion: f() = c e c < a) Bestäm konstanten c. b) Bestäm fördelningsfunktionen c) Vad är sannolikheten att uppkopplingstiden med hjälp av den nya systemet förändras med minst en halv sekund? (8 poäng)
2 Uppgift : Anta att du spelar ett spel där du kan vinna eller förlora kr varje gång med sannolikheten.5 för vardera alternativet. Anta att du spelar detta spel gånger. Vad är sannolikheten att du vinner minst kr totalt? Uppgift 5: Ett återkommande problem är att returfjädern i fartreglaget på låglyftande truckar går av. Vid inspektion av fjädrar som gått av har det visat sig att dessa har saknat fett. Man beslöt vid ett tillfälle att genomföra ett faktorförsök för att undersöka vilka faktorer som var kritiska för livslängden. Önskvärt vore om man kunde få fram en fjäder med tillfredsställande livslängd, även utan infettning. De faktorer respektive nivåer som användes var: + A: Bockningsradie 3 mm 6 mm B: Material Vanlig fjädertråd Rostfri tråd C: Smörjmedel Ej infettat Infettat Som resultatvariabel valdes antal cykler till brott i tusental. Provet avbröts vid 3 miljoner cykler, vilket motsvarar minst 5 års normaldrift. Följande resultat erhölls: fjäder fjäder fjäder fjäder fjäder Medel- Standard- A B C nr nr nr 3 nr nr 5 värde avvikelse Följande effekter beräknades l A = 86.5 l B = 85.5 l AB = 6.5 l ABC = a) Använd ovanstående för att bestämma de resterande effekterna. b) Beräkna ett 99%-igt referensintervall för effekterna. c) Ange en matematisk modell för ovanstående situation där enbart signifikanta effekter ingår. (8 poäng) Uppgift 6: Anta att du skall genomföra ett 5- -faktorförsök. a) Hur många faktorer kommer att undersökas? b) Hur många försök krävs? c) Hur många generatorer används? d) Hur många definierande relationer finns? ( poäng)
3 Uppgift 7: Anta att man vill bestämma en lämplig provtagningsplan som går genom punkterna (p =., L(p ) =.95) och (p =.5, L(p ) =.) på OC-kurvan. a) Bestäm en enkel provtagningsplan som uppfyller detta villkor genom att använda det bifogade binomialfördelningsnomogrammet. b) Bestäm en dubbel provtagningsplan som uppfyller detta villkor. Uppgift 8: För en process som är under statistisk kontroll är p = 3%. Man tar dagligen enheter för kontroll och använder ett p-diagram med 3-sigma-gränser. a) Vad är genomsnittligt antal inprickade punkter i kontrolldiagrammet fram till ett falsklarm, ARL? b) Vad är sannolikheten att en plötslig ändring till p = 6% upptäcks ) vid första provgruppen efter ändringen? ) vid någon av de tre första provgrupperna efter ändringen?
4 Lösningar till Tillämpad matematisk statistik den /- Uppgift : Det finns olika situationer som kan uppstå när man kastar tärningen: (udda, udda) (udda, jämn) (jämn, udda) (jämn, jämn) Vart och ett av fallen inträffar med sannolikheten Situation : (udda, udda) I denna situation flyttas en kula från uran U efter både första och andra kastet. Det betyder att kulorna som flyttas båda måste vara svarta. P(svart efter kast svart efter kast ) = 3 = Situation : (udda, jämn) I denna situation flyttas en kula från uran U efter första kastet och en kula från urna U efter andra kastet. Nu kan situationer uppkomma: (svart, svart) eller (vit, vit) P(svart efter kast svart efter kast ) + P(vit efter kast vit efter kast ) = = = Situation 3: (jämn, udda) I denna situation flyttas en kula från uran U efter första kastet och en kula från urna U efter andra kastet. Även här kan situationer uppkomma: (svart, svart) eller (vit, vit) P(svart efter kast svart efter kast ) + P(vit efter kast vit efter kast ) = = = 8 8 Situation : (jämn, jämn) I denna situation flyttas en kula från uran U efter både första och andra kastet. Det betyder att kulorna som flyttas båda måste vara svarta. P(svart efter kast svart efter kast ) = 6 5 = P( vita i urna U efter kast) = ( ) =
5 Uppgift ξ = antal lådor med repiga CD-skivor i urvalet ξ = Hyp(N, Np, n) = Hyp(,, ) a) P(ξ > ) = P(ξ = ) = 8 = = 3 = 3 b) η = antal tillfällen man finner repiga CD-skivor i urvalet η = Bin(n, p) = Bin(5, 3 ) P(η > ) = P(η = ) = = Uppgift 3: e a) f ()d = c d + c e d = c + c = 6 = c + c ( ) = c ñ c = b) : F() = f (t)dt = < < : t F() = f(t)dt = dt +.5 ( t )dt =.5 =.5 ( + ) =.75( + ) : F() = 6t f (t)dt = dt +.5 ( t)dt +.5 e dt = 6t t e e = =.5( + ) +.5( + ) =.5e fortsättning uppgift 3b på nästa sida
6 fortsättning uppgift 3b Fördelningsfunktionen: F() =.75(.5e + ) + för för < < för c) P(.5 < ξ) + P(ξ <.5) = P(ξ <.5) + P(ξ <.5) = = [.5e + ] =.5 + [.75( + ) ] =. 5 =.5 e º.579 Uppgift : ξ i = vinsten efter ett spel ξ = P(ξ = ) E(ξ) = = Var(ξ) = ( ) = η = total vinst efter spel där η = ξ + ξ ξ E(η) = E(ξ) = Var(η) = Var(ξ) = = n 3. använd normalapproimation (centrala gränsvärdessatsen) P(η > ) = P(η < ) = P(Z < ) = P(Z <.3).655 =.375 Uppgift 5: a) l C = = l AC = = l BC = =.5
7 b) σ är okänd använd t-fördelningen med = 3 df Eftersom N = > 3 kan man välja om man vill göra beräkningen eakt eller om man vill använda centrala gränsvärdessatsen och använda normalfördelningen. s = [(5 ) p 6 + ( 5 ) ] = ± t s p N ± ± 8.59 c) Faktorerna B och C ger signifikanta effekter ŷ l B l C = l M + B + C 85.5 ŷ = B C där l M = = Uppgift 6: a) 5 faktorer, A, B, C, D och E b) 8 försök c) generatorer, t.e. D = AB och E = AC d) 3 definierande relationer. Av ovanstående generatorer erhålls I = ABD I = ACE I 3 = I I = ABD ACE = BCDE Uppgift 7: a) Från binomialfördelningsnomogrammet fås ungefär n = c= 3 p.5 b) = = 5 Välj provtagningsplan 5 där n = n p. Tabellen ger c = c = och n p = n ÿ. =.77 ñ n = 77 En lämplig dubbel provtagningsplan blir n = 77 n = 5 c = c = r =r = 5
8 Uppgift 8: Kontrolldiagrammets styrgränser blir p ( p).3.97 S ö = p + 3 = =. 56 p ( p).3.97 S u = p 3 =.3 3 =. a) ARL = L(p) L(p) = P(. < pˆ <.56) = P(pˆ <.56) P(pˆ <.) = = P(Z < ) P(Z < ) = P(Z < 3.5) P(Z < 3.5) = = P(Z < 3.) ( P(Z < 3.)) = P(Z < 3.) = ÿ.9987 =.997 ARL = = b) p-värdet ändras till.6 P(. < pˆ <.56) = P(pˆ <.56) P(pˆ <.) = = P(Z < ) P(Z < ) = P(Z <.3) P(Z <.7) = = P(Z <.3). =.633 =.3669 ) P(upptäckt i första provgruppen efter ändring) =.633 ) P(upptäckt i någon av de tre första provgrupperna efter ändring) = P(upptäckt i första provgruppen) + P(upptäckt i andra provgruppen) + P(upptäckt i tredje provgruppen) = = ÿ ÿ.3669 ÿ.633 =.956
Tentamen MVE265 Matematisk statistik för V, 2013-01-19
Tentamen MVE6 Matematisk statistik V, 03-0-9 Tentamen består av åtta uppgifter om totalt 0 poäng. Det krävs minst 0 poäng betyg 3, minst 30 poäng 4 och minst 40. Examinator: Ulla Blomqvist Hjälpmedel:
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
INLÄMNINGSUPPGIFT 2 (Del 2, MATEMATISK STATISTIK) Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000
INLÄMNINGSUPPGIFT 2 (Del 2, MATEMATISK STATISTIK) Kurs: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 Lärare: Armin Halilovic armin@syd.kth.se www.syd.kth.se/armin tel 08 790 4810 Inlämningsuppgift 2 består
Tentamen i Matematisk statistik, LKT325, 2010-08-26
Tentamen i Matematisk statistik, LKT35, 010-08-6 Uppgift 1: Beräkna sannolikheten P(A B) om P(A C B) = 0.3 och P(B C ) = 0.6 Uppgift : Sannolikheten för att behöva kassera en balk p.g.a. dålig hållfasthet
TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11
Lunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS0: MATEMATISK STATISTIK AK FÖR V EXEMPEL PÅ DUGGAUPPGIFTER, AVSNITT SANNOLIKHETSTEORI UPPGIFTER Kortare uppgifter. På en arbetsplats skadas
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.
Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Hjälpmedel: Valfri räknare, egenhändigt handskriven formelsamling (4 A4-sidor på 2 blad) och till skrivningen medhörande tabeller. Fredagen
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade
NATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
Handbok Ämnesprov 2016 Lärarinmatning I Dexter Åk 3. Uppdaterad: 2016-02-15/HL Version: 2016.1. IST AB
Handbok Ämnesprov 2016 Lärarinmatning I Dexter Åk 3 Uppdaterad: 2016-02-15/HL Version: 2016.1 1 Innehåll REGISTRERING AV ÄMNESPROV... 3 Ämnesprovsgrupper... 3 MATEMATIK... 4 Fälten i resultatsinmatningen...
Procent - procentenheter
Procent - procentenheter Uppgift nr 1 Hur skriver man i matematiken tecknet för procent och vad betyder ordet procent? Uppgift nr 2 Av 100 mopeder på en parkering är 16 vita. Hur många procent av mopederna
Föreläsning 9: Hypotesprövning
Föreläsning 9: Hypotesprövning Matematisk statistik David Bolin Chalmers University of Technology Maj 5, 2014 Statistik Stickprov Ett stickprov av storlek n är n oberoende observationer av en slumpvariabel
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001. Beräkna medelvärdet, standardavvikelsen, medianen och tredje kvartilen?
Lösningar till Tentamen i Matematisk Statistik, 5p 22 mars, 2001 1. Månadslönerna för 10 lärare vid en viss skola är 1 17 700 19 800 19 900 20 200 20 800 16 100 17 000 23 500 19 700 21 100 Beräkna medelvärdet,
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Måndag 30 mars 2015 Skrivtid: 8:15-10:00
KONTROLLSKRIVNING 1 version A Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Måndag 30 mars 2015 Skrivtid: 8:15-10:00 Tillåtna hjälpmedel: Miniräknare av vilken typ som helst. Förbjudna
Exempel på tentamensuppgifter i LMA100, del 1
Exempel på tentamensuppgifter i LMA100, del 1 Diskret matematik 1. Givet är de 7 bokstäverna i ordet APPARAT. Hur många olika ord (= bokstavspermutationer) kan man bilda av dem med (a) 7 bokstäver (b)
Väga paket och jämföra priser
strävorna 2AC 3AC Väga paket och jämföra priser begrepp rutinuppgifter tal geometri Avsikt och matematikinnehåll Den huvudsakliga avsikten med denna aktivitet är att ge elever möjlighet att utveckla grundläggande
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del
Nationellt kursprov i Matematik kurs B ht 1998 sida 1 (av 7) Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:
a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
729G04 - Hemuppgift, Diskret matematik
79G04 - Hemuppgift, Diskret matematik 5 oktober 015 Dessa uppgifter är en del av examinationen i kursen 79G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt.
Föreläsning 14: Försöksplanering
Föreläsning 14: Försöksplanering Matematisk statistik Chalmers University of Technology Oktober 14, 2015 Modellbeskrivning Vi har gjort mätningar av en responsvariabel Y för fixerade värden på förklarande
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Diskussionsfrågor till version 1 och 2
Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de
Tentamen i SG1102 Mekanik, mindre kurs
Tentamen i SG1102 Mekanik, mindre kurs 2014-03-20 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer och motivera lösningarna väl. Enda tillåtna hjälpmedel är papper, penna, linjal
Subtraktion - Analys och bedömning av elevarbeten
Analys och bedömning av elevarbete 1 Eleven anpassar sitt val av metoder efter de ingående talen genom att använda flera olika metoder för beräkningar; räknar uppåt när talen ligger nära varandra, räknar
Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Sveriges Trafikskolors Riksförbund Film om körkort för nysvenskar Speakertext - Svensk
Sveriges Trafikskolors Riksförbund Film om körkort för nysvenskar Speakertext - Svensk Vägen till svenskt körkort Funderar du på att skaffa svenskt körkort för personbil? I den här filmen får du reda på
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Idag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator:
Snapphanalegen. Firekángabogena. Spelregler. (4 spelare)
Snapphanalegen Firekángabogena Spelregler 1 800 (4 spelare) 800 är ett spel med anor från 1400-talet. Spelet ställer stora krav på spelarnas skicklighet. Fyra deltagare spelar ihop parvis. Spelet cirkulerar
SEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
myabilia En introduktion 2016-08-31
myabilia En introduktion 2016-08-31 Vad är myabilia? En webbtjänst för dig som använder Handi5, HandiKalender eller MEMOplanner Medium Handi5 HandiKalender MEMOplanner Medium Vad kan man göra med myabilia?
Tränarguide del 1. Mattelek. www.mv-nordic.se
Tränarguide del 1 Mattelek www.mv-nordic.se 1 ATT TRÄNA MED MATTELEK Mattelek är ett adaptivt träningsprogram för att träna centrala matematiska färdigheter såsom antalsuppfattning, den inre mentala tallinjen
PRÖVNINGSANVISNINGAR
Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.
Tentamen i matematisk statistik
Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst
Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer.
1 Matematik som verktyg Antag att vi har en funktion som är en rät linje, y = 1 3x. Eftersom relationen mellan x och y är linjär räcker det med att vi hittar två punkter (två talpar) på linjen för att
Mål Blå kurs Röd kurs
Bråk Mål När eleverna har arbetat med det här kapitlet ska de kunna läsa och skriva bråk veta vad som menas med täljare och nämnare känna till och kunna använda begreppen bråkform och blandad form kunna
Datorövning 2 Diskret fördelning och betingning
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 april 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.
SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem Problem 1 (6p) En undersökning utfördes med målet att besvara frågan Hur stor andel av den vuxna befolkningen i Sverige äger ett skjutvapen?.
DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
Kundservicerapport Luleå kommun 2015
LULEÅ KOMMUN SKRIVELSE Dnr 1 (5) 2016-01-21 Maria Norgren Kundservicerapport Luleå kommun 2015 Kommunstyrelsen har den 12 augusti 2013 fastställt riktlinjer för kundservice Luleå Direkt. Luleå kommun ska
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Uppgift 2 0 0.10 1 0.25 2 0.40 3 0.20 4 0.05
Uppgift 1 En grönsaksgrossist har utvecklat ett test för att kontrollera kvaliteten hos tomater. Efter att ha inspekterat ett urval från ett parti tomater, accepteras eller förkastas partiet. Med detta
Uppgifterna om barnets personnummer och namn fyller du under Person Barn i funktionsträdet.
Föräldraledighet 1 Föräldraledighet (Villkorsavtal 8 kap samt 6 kap) Lokalt Kollektivavtal: http://medarbetarportalen.gu.se/personalfragor/ledigheter/foraldraledighet/ Se även Regler i Egenrapporterings
Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).
Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7
Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
Får nyanlända samma chans i den svenska skolan?
Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet
FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska
Skriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska
Snabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
VÄRDERINGSÖVNINGAR. Vad är Svenskt?
VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån
BLUSTAR WEB DATOR Röstbrevlåda och aktiviteter på anknytningar för anställda på KI med KI ID, från en dator.
2016 BLUSTAR WEB DATOR Röstbrevlåda och aktiviteter på anknytningar för anställda på KI med KI ID, från en dator. Innehåll Beskrivning... 2 Vad är Blustar Web?... 2 Logga in på Blustar Web... 2 Logga in...
Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna
4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Sektionen för Beteendemedicinsk smärtbehandling
Sektionen för Beteendemedicinsk smärtbehandling Karolinska Universitetssjukhuset Solna Smärtcentrum Sektionen för Beteendemedicinsk smärtbehandling tar emot patienter med långvarig och svårbehandlad smärta
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 25 augusti 2004, Kl 08.15-13.15
Karlstads universitet Institutionen för informationsteknologi vdelningen för statistik Tentamen i Statistik, ST 10 och ST 13 (9 poäng) Onsdag 5 augusti 004, Kl 08.15-13.15 Tillåtna hjälpmedel: ifogad formelsamling
Tentamen. Makroekonomi NA0133. Juni 2016 Skrivtid 3 timmar.
Jag har svarat på följande fyra frågor: 1 2 3 4 5 6 Min kod: Institutionen för ekonomi Rob Hart Tentamen Makroekonomi NA0133 Juni 2016 Skrivtid 3 timmar. Regler Svara på 4 frågor. (Vid svar på fler än
Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
Två rapporter om bedömning och betyg
UTBILDNINGSFÖRVALTNINGEN KVALITETSAVDELNINGEN TJÄNSTEUTLÅTANDE DNR 08-400/3803 SID 1 (9) 2008-09-15 Handläggare: Inger Willner Telefon: 508 33 678 Till Utbildningsnämnden 2008-10-23 Två rapporter om bedömning
Laborationspecifikation
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistisk Statistik för tekniska datavetare 5 poäng Per Arnqvist 2007-05-03 Laborationspecifikation Redovisning Ni får gärna jobba parvis och
SF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
MultiBoot. Användarhandbok
MultiBoot Användarhandbok Copyright 2007 Hewlett-Packard Development Company, L.P. Informationen häri kan ändras utan föregående meddelande. De enda garantierna för produkter och tjänster från HP presenteras
Något om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
FRÅN A TILL Ö LäraMera Ab / www.laramera.se och Allemansdata Ab / www.allemansdata.se FRÅN A TILL Ö
I programmet finns 11 olika aktiviteter för att träna varje bokstav och på att känna igen ord. För varje bokstav kan olika övningsblad skrivas ut: Inledningsvis väljer du vilken bokstav du vill öva på.
Lokal pedagogisk planering i matematik för årskurs 8
Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens
4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
Solida hantverkaren. Solid försäkringar. solidab.se 10% i medlems rabatt. Från. 75kr. i månaden. i samarbete med
Solida hantverkaren Solid försäkringar solidab.se 10% i medlems rabatt Från 75kr i månaden i samarbete med Försäkringen Solida Hantverkaren, en förmånlig företagsförsäkring! Solida Hantverkaren är vår
Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.
Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Efter varje uppgift anges maximala antalet poäng som du kan få för din lösning. T ex betyder (2/1) att uppgiften kan ge 2 g-poäng och
Datorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
Virkade tofflor. Storlek 35 37 & 38 40. By: Pratamedrut. pratamedrut.se/blog/virkade tofflor 1
Virkade tofflor Storlek 35 37 & 38 40 By: Pratamedrut pratamedrut.se/blog/virkade tofflor 1 Innehåll Lite tips sid 3 Material sid 3 Maskor och förkortningar sid 3 Tillvägagångssätt Sulor sid 4 Skor, nedre
Avgifter i skolan. Informationsblad
Informationsblad 1 (8) Avgifter i skolan Här kan du läsa om hur Skolinspektionen bedömer avgifter i skolan i samband med tillsynen. Informationsbladet redogör för Skolinspektionens praxis. Här kan du även
Tentamen i Programmering grundkurs och Programmering C
1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen
ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen
ELEV- HANDLEDNING (Ansökan via webben) www.orebro.se/gymnasieantagningen Gymnasieantagningen i Örebro län På Gymnasieantagningens hemsida www.orebro.se/gymnasieantagningen hittar du information om vad
Vehicle Security System VSS3 - Vehicle original remote
Vehicle Security System VSS3 - Vehicle original remote Bilens originalfjärrkontroll Inställningsguide - Swedish Bästa kund Den här guiden innehåller den information och de procedurer som krävs för att
Upplägg och genomförande - kurs D
Upplägg och genomförande - kurs D Provet består av fyra delprov: Läsa A och B Höra Skriva Tala Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel
Regler för onlinespel Bingo
Regler för onlinespel Bingo 2012-11-05 Innehållsförteckning 1 INLEDNING 3 1.1 TILLÄMPLIGA VILLKOR 3 1.2 ALLMÄNT OM BINGO 3 1.3 GILTIGHETSTID FÖR REGLER FÖR ONLINESPEL BINGO 3 1.4 DEFINITIONER 3 1.4.1 GEMENSAMMA
Projektet har liksom Wången många år på nacken. Redan på 1950-talet bedrevs här forskning på brukshästarnas hovar.
Projektet har liksom Wången många år på nacken. Redan på 1950-talet bedrevs här forskning på brukshästarnas hovar. 1 En kort presentation av föredragshållaren som här försöker ursäkta varför han aldrig
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III TentamensKod: Tentamensdatum:
Administrera utskick på utbildningstillfälle
Administrera utskick på utbildningstillfälle Man kan administrera utskick för ett utbildningstillfälle på följand tre sätt: Via knappen Skapa utskick till markerade i under fliken Deltagare Vi länken Skicka
Riktlinjer - Rekryteringsprocesser inom Föreningen Ekonomerna skall vara genomtänkta och välplanerade i syfte att säkerhetsställa professionalism.
REKRYTERINGSPOLICY Upprättad 2016-06-27 Bakgrund och Syfte Föreningen Ekonomernas verksamhet bygger på ideellt engagemang och innehar flertalet projekt där såväl projektledare som projektgrupp tillsätts
De två första korten Tidig position
De två första korten Tidig position Hold em är ett positionsspel, och förmodligen mer än någon annan form av poker. Det beror på att knappen anger spelarnas turordning under satsningsrundorna. (Enda undantaget
Sandeplanskolan. Kunskap, arbetsro och trivsel. Likabehandlingsplan 2011-06-01
Sandeplanskolan Kunskap, arbetsro och trivsel Likabehandlingsplan 2011-06-01 På Sandeplanskolan vill vi ge våra elever bästa möjliga utbildning och omsorg. Ingen på skolan ska utsättas för mobbning, diskriminering,
Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4
Partnerskapsförord giftorättsgods görs till enskild egendom 1, 2 Parter 3 Namn Telefon Adress Namn Telefon Adress Partnerskapsförordets innehåll: 4 Vi skall ingå registrerat partnerskap har ingått registrerat
10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel
Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007