Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
|
|
- David Dahlberg
- för 9 år sedan
- Visningar:
Transkript
1 TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator: Fredrik Berntsson Maximalt antal poäng: 18 poäng. För godkänt krävs 8 poäng. Jourhavandelärare Fredrik Berntsson (telefon ) Besök av jourhavande lärare sker ungefär och Resultat meddelas via epost senast tisdag 1:a April. Lösningsförslag finns på kurshemsidan efter tentans slut. Visning av tentamen sker på Examinators kontor onsdag den 1:a April, klockan (Hus B, Ing , Plan-3, A-korr). Lycka till!
2 Redovisning Lös först uppgifterna i Matlab. Då du har en färdig lösning skriv då ner vad du gjort på papper. Redovisa även eventuella resultat du fick då körde dina Matlab kommadon. (2p) 1: Följande MATLAB script är tänkt att ersätta en matris A med dess transponat utan att använda en temporär matris. [n,n] = size(a); for i = 1:n for j = i:n A(i,j) = A(j,i); A(j,i) = A(i,j); Förklara vad som går fel och gör de förändrningar som behövs för att få förväntat resultat. (3p) 2: Vi vill studera funktionen f(x) = 1.2 cos(x 2 )/2+x+2x 2, på intervallet 1 x 1, och undersöka var dess minimum inträffar. a) Skapa en vektor x som innehåller N = 100 jämt utspridda tal på intervallet [ 1, 1]. Beräkna även en vektor f med motsvarande funktionsvärden och utnyttja dessa vektorer för att plotta funktionen på aktuellt intervall. b) Använd Matlab kommandot min för att hitta det minsta värdet i vektorn f. Detta approximerar funktionens minsta värde på intervallet. Hitta även det x-värde där funktionen antar sitt minsta värde. c) Markera punkten (x min,f min ) du hittat i b) uppgiften i den graf du ritat upp i a) uppgiften med ett rött +. (3p) 3: Normen av en vektor beräknas enligt formeln x 2 = x 2 1 +x x2 n, där n är vektorns längd. a) Skriv en Matlab funktion MinNorm med en vektor x som inparameter och resultatet av normberäkningen som utparameter. b) Skapa de två vektorerna x = (0,2, 3,6) T och y = ( 1,2,6) T i Matlab och använd funktionen MinNorm för att beräkna deras normer. Tips I Matlab finns en inbyggd funktion norm som utför precis denna beräkning. Du kan använda den för att kontrollera att du gjort rätt men får inte utnyttja den för att lösa uppgiften. 2
3 (3p) 4: Vi vill beräkna summan S = k=0 1 1+k 2, approximativt på datorn. Vi avbryter summeringen då nästa term är liten i förhållande till den beräknade partialsumman, dvs t k /S k < tol, där S k är en partialsumma, t k är term k, och tol= 10 6 är en tolerans. Skriv ett Matlab script som beräknar summan med angivet avbrotts kriterium. Redovisa det beräknade värdet på summan och det program du använder. (3p) 5: Vi vill anpassa ett andragrads polynom, så bra som möjligt till följande tabell: y = p(x) = c 1 +c 2 x+c 3 x 2, x y a) Formulera ovanståe som ett överbestämt ekvations system, Ac = b, där c = (c 1,c 2,c 3 ) T, och lös detta med minsta kvadrat metoden. b) Efter att vi beräknat coefficienterna c i polynomet vill vi plotta resultatet. Skriv ett script som plottar det polynom som som har coefficienter c 1, c 2, och c 3, på intervallet 1 < x < 4. Rita även ut de punker (x,y) som gavs i tabellen med +. (4p) 6: I ett tärningsspel slår vi tre tärningar i följd. Får vi en sexa får vi slå tärningen en extra gång. Målet är att få så hög total summa som möjligt. Exempelvis slår vi tärningen tre gånger och får 3, 6, och 5. Vi får då ett extra kast som ger ytterligare en 6:a och vi slår därför ännu en gång och får 2. Denna spelopmgång ger därför totalt = 22 poäng. a) Skriv en funktion SpelOmgang som använder slumptalsgeneratorn randi, eller rand, för att utföra en spelomgång. Totalsumman skall vara utparameter. b) Använd funktionen SpelOmgang för att simulera N = 1000 spelomgångar. Beräkna genomsnittlig poäng för en omgång av tärningsspelet. 3
4 Lösningsförslag till Övningstentan för : Problemet är att vi skriver över elementet A(i,j)=A(j,i);. Vi måste spara undan det i en tillfällig variabel först. Ändra alltså till. [n,n] = size(a); for i = 1:n for j = i:n tmp = A(i,j); A(i,j) = A(j,i); A(j,i) = tmp; 2: a) Vi skapar vektorn, beräknar funktionsvärden, och plottar med kommandona >> N=100; x=-1+2*(0:n-1)/(n-1); >> f=1.2-cos(x.^2)/2+x+x.^2; >> plot(x,f) b) Vi hittar minimim med kommandot 3: a) Funktionen blir b) Vi får >> [m,k]=min(f);disp(m),disp(x(k)) >> hold on,plot( x(k),f(k), r+ );,hold off function [S]=MinNorm( x ) S=0; for i=1:length(x) S=S+x(i)^2; ; S=sqrt(S); >> MinNorm([0,2,-3,6] ) 7 >> MinNorm([-1,2,6] ) : Då det inte är klart hur många termer som skall tas med så skriver vi en while sats: S=1;k=1; term=1; tol=10^-6; while term/s>tol term=1/(1+k^2); k=k+1; 4
5 S=S+term; ; disp(s) vilket get S= : a) Vi får ett överbestämt ekvationssystem som skapas med kommandona >> x = [ ] ; y=[ ] ; >> A = [ x.^0 x x.^2 ]; b=y; c=a\b; Vi får c = ( , ) T. b) Beräkna nu polynomet för ett antal x-värden och plotta detta tillsammans med punkterna med kommandot >> xx=-1:0.1:4; pp=c(1)+c(2)*xx+c(3)*xx.^2; >> plot( xx,pp, b,x,y, r+ ); 6: a) Funktionen SpelOmgang kan exempelvis skrivas som function [S]=SpelOmgang() N=3; % Antalet återståe kast. S=0; % Summan hittils. while N>0 Kast=randi(6); N=N-1; % Slå tärningen. Minska N. S=S+Kast; if Kast==6, % Öka antalet kast om vi fick sexa. N=N+1; b) Simulera 1000 omgångar med N=1000;S=zeros(N,1); for i=1:n, S(i)=SpelOmgang(); mean(s) Tänk på att då simuleringen är slumpmässig får man olika svar varje gång. 5
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI
TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 22 Mars, 2016 Provkod: TEN1 Hjälpmedel:
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan
MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 3. Avbrott och Funktioner 1 Repetionssatsen while Uppgift 1.1 Skriv ett program som skriver ut det minsta tal av formen 3 n som är större än 5000.
Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Kontrollskrivning i Linjär algebra 2014 10 30, 14 18.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Programexempel: tärningsspel
Programexempel: tärningsspel Skriv ett program som låter en användare spela detta tärningsspel: Spelaren gör första tärningsslaget och får samma poäng som tärningen visar. Sedan fortsätter spelet enligt
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Laboration 1. I. Matlabs fönster, hjälp, variabler och enkla beräkningar. Introduktion
Matlab i Tillämpad linjär algebra II HT 2014 Introduktion Laboration 1 Efter den här laborationen ska du kunna använda Matlabs olika fönster och hjälpfunktioner. Du ska kunna skapa, manipulera och använda
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion
Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:
TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
Linjära system av differentialekvationer
CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor
MMA132: Laboration 1 Introduktion till MATLAB
MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer
Gemensam problemlösning. Per Berggren och Maria Lindroth 2013-03-12
Gemensam problemlösning 2013-03-12 Strategispel Hur ska du spela för att vinna dessa strategispel? Nim Tactical Att arbeta som en matematiker Först vill matematiker ha ett intressant problem. Matematiker
TT091A, TVJ22A, NVJA02 By, Pu, Ti. 50 poäng
Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 By, Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-01-11
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.
SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. Starta Matlab genom att
NATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Tentamen i Tillämpad matematisk statistik LMA521 för EPI och MI den 14 dec 2011
Tentamen i Tillämpad matematisk statistik LMA5 för EPI och MI den dec Tentamen består av åtta uppgifter om totalt 5 poäng. Det krävs minst poäng för betyg 3, minst 3 poäng för och minst poäng för 5. Eaminator:
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 1998. Tidsbunden del
Nationellt kursprov i Matematik kurs B ht 1998 sida 1 (av 7) Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen
Lokal kursplan för Ängkärrskolan år 9 Rev. 2009-09-22. -Positionssystemet. -Multiplikation och division. (utan miniräknare).
Lokal kursplan för Ängkärrskolan år 9 Rev. 009-09- Matematik år 9 MOMENT MÅL KRITERIER/EXEMPELl Taluppfattning, aritmetik Repetition av: Skriv med siffror tolv -Positionssystemet. hundradelar. 0,, 0,7
Datorövning 2 Diskret fördelning och betingning
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen
10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel
Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007
Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
Lösningar och kommentarer till uppgifter i 3.2
Lösningar och kommentarer till uppgifter i 3.2 Så har vi då nått fram till sista avsnittet före tentamen. Uppgifterna i detta avsnitt är ganska trevliga, därför att de ofta har en, åtminstone påhittad,
Snabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Linjära system av differentialekvationer
CTH/GU STUDIO 6 MVE6 - /6 Matematiska vetenskaper Inledning Linjära system av differentialekvationer Vi har i studioövning sett på allmäna system av differentialekvationer med begynnelsevillkor u (t) =
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26
TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera
Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014
Enkätresultat för elever i år 2 i Nösnäsgymnasiet 2 i Stenungsund våren 2014 Antal elever: 47 Antal svarande: 40 Svarsfrekvens: 85% Klasser: 12BAa, 12BAb, 12LL Skolenkäten Skolenkäten går ut en gång per
Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Introduktion till Komplexa tal
October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014. Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13
Enkätresultat för elever i år 2 i Mega Musik gymnasium hösten 2014 Antal elever: 47 Antal svarande: 46 Svarsfrekvens: 98% Klasser: MM13 Skolenkäten Skolenkäten går ut en gång per termin till de skolor
Handbok Ämnesprov 2016 Lärarinmatning I Dexter Åk 3. Uppdaterad: 2016-02-15/HL Version: 2016.1. IST AB
Handbok Ämnesprov 2016 Lärarinmatning I Dexter Åk 3 Uppdaterad: 2016-02-15/HL Version: 2016.1 1 Innehåll REGISTRERING AV ÄMNESPROV... 3 Ämnesprovsgrupper... 3 MATEMATIK... 4 Fälten i resultatsinmatningen...
Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014
Enkätresultat för elever i år 2 i Praktiska Skövde i Praktiska Sverige AB hösten 2014 Antal elever: 18 Antal svarande: 13 Svarsfrekvens: 72% Klasser: År 2 Skolenkäten Skolenkäten går ut en gång per termin
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Introduktion till MATLAB
29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna
SF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
3.1 Linjens ekvation med riktningskoefficient. y = kx + l.
Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1
Ickelinjära ekvationer
Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod
2 februari 2016 Sida 1 / 23
TAIU07 Föreläsning 4 Repetitonssatsen while. Avbrott med break. Exempel: En Talföljd och en enkel simulering. Egna funktioner. Skalärprodukt. Lösning av Triangulära Ekvationssystem. Programmeringstips.
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till
Flervariabelanalys E2, Vecka 2 Ht08
Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5
Kryssproblem (redovisningsuppgifter).
Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys, 5 hp STS, X 2010-03-19 Kryssproblem (redovisningsuppgifter). Till var och en av de åtta lektionerna hör ett par problem, som kallas
Matematikboken. alfa. Lennart Undvall Christina Melin Jenny Ollén
Matematikboken alfa Lennart Undvall Christina Melin Jenny Ollén Matematikboken Alfa ISBN 978-91-47-10193-1 Författare: Lennart Undvall, Christina Melin och Jenny Ollén 2011 författarna och Liber AB Illustrationer:
ANVÄNDARHANDLEDNING FÖR
ANVÄNDARHANDLEDNING FÖR TILLSÄTTARE/LAGLEDARE OCH DOMARE Cleverservice ett smart sätt att hantera matcher, domartillsättningar, samt utbetalningar av arvoden 2015 ANVÄNDARHANDLEDNING - CLEVERSERVICE Cleverservice
Summan av två heltalskvadrater
306 Summan av två heltalskvadrater Hans Riesel K T H Problemställning. Vissa tal kan skrivas som summan av två heltalskvadrater, andra inte! Så är t.ex. 13 = 2 2 + 3 2, 9 = 0 2 + 3 2 medan n = 11 inte
Övningshäfte Algebra, ekvationssystem och geometri
Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem Problem 1 (6p) En undersökning utfördes med målet att besvara frågan Hur stor andel av den vuxna befolkningen i Sverige äger ett skjutvapen?.
TIMREDOVISNINGSSYSTEM
TIMREDOVISNINGSSYSTEM Företagsekonomiska Institutionen Inledning med begreppsförklaring Huvudmeny Budgethantering Planering Rapportering Signering Utskrifter/Rapporter Byt lösenord Logga ut 1 Inledning
2005-01-31. Hävarmen. Peter Kock
2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.
TENTAMEN I REGLERTEKNIK Y (TSRT12)
TENTAMEN I REGLERTEKNIK Y (TSRT12) SAL: U1, U3, U4 TID: 10 juni 2011, klockan 14-19 KURS: TSRT12 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANTAL SIDOR: 12 ANSVARIG LÄRARE: David Törnqvist, 013-281882,
Inlämningsuppgift 4 NUM131
Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter
De två första korten Tidig position
De två första korten Tidig position Hold em är ett positionsspel, och förmodligen mer än någon annan form av poker. Det beror på att knappen anger spelarnas turordning under satsningsrundorna. (Enda undantaget
Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas.
Bedömningsanvisningar Del I vt 2010 Skolverket har den 2010-12-07 beslutat att provet i matematik A för vt 2010 inte ska återanvändas. Innehåll Inledning... 4 Bedömningsanvisningar... 4 Allmänna bedömningsanvisningar...
Tillämpad UNIX. Laborations-PM Christian von Schultz, 2009. 1 Programpaket och processhantering
Tillämpad UNIX Laborations-PM Christian von Schultz, 2009 1 Programpaket och processhantering 1. Ladda ner survivor.tar.gz från kurshemsidan och packa upp den. Uppackningskommando: 2. Du har just packat
Föreläsning 5: Rekursion
Föreläsning 5: Rekursion Vi har tidigare sett att man kan dela upp problem i mindre bitar med hjälp av underprogram, vilket är ett utmärkt sätt att lösa problem. Detta är ganska lätt att rita upp för sig
Datorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM
Matematiska institutionen Optimeringslära TENTAMEN TAOP61/TEN 1 OPTIMERING AV REALISTISKA SAMMANSATTA SYSTEM Datum: 23 april 2014 Tid: 14.00-19.00 Hjälpmedel: Miniräknare Kurslitteratur: Kaj Holmberg:
Tentamen i Programmering grundkurs och Programmering C
1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen
Funktioner och grafritning i Matlab
CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.
a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
Funktioner forts. F3: Funktioner (kap. 5) Parametrar. findgear.m forts
F3: Funktioner (kap. 5) Funktionsfil, funktionsanrop in- och utparametrar, anropsin- och anropsutparametrar lokala, globala och persistenta variabler lokala funktioner return variabelt antal parameterar,
Introduktion till Matlab
CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt
Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
729G04 - Hemuppgift, Diskret matematik
79G04 - Hemuppgift, Diskret matematik 5 oktober 015 Dessa uppgifter är en del av examinationen i kursen 79G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt.
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Statistik, sannolikhet, algebra och funktioner, 3 hp. Studenter i lärarprogrammet F-3 III
Grundläggande matematik II 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Statistik, sannolikhet, algebra och funktioner, 3 hp Studenter i lärarprogrammet F-3 III TentamensKod: Tentamensdatum:
TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.
Enkätresultat för vårdnadshavare till elever i Centralskolan Söder 4-9 i Grästorp hösten 2012. Antal svar: 50
Enkätresultat för vårdnadshavare till elever i Centralskolan Söder 4-9 i Grästorp hösten 2012 Antal svar: 50 Skolenkäten Skolenkäten går ut en gång per termin till de skolor som ska tillsynas följande
SEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
Matematisk programvara. Föreläsning 7 Matlab. Användning av Matlab. Matlab
Matematisk programvara Förberedelse inför laboration 5. Matlab, Maple, Mathematica Flyttal Matlab som miniräknare Vektorer Grafik Funktioner Matriser, ekvationssystem Föreläsning 7 Matlab Datorer kan räkna,
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna
Volymer av n dimensionella klot
252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)
Datorövning 3: Icke-parametriska test
Datorövning 3: Icke-parametriska test Under denna datorövning ska ni lära er hur man använder Minitab för att utföra icke-parametriska test. De test ni går igenom under denna kurs är Wilcoxsons rangsummetest,
Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01
Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering