2 februari 2016 Sida 1 / 23

Storlek: px
Starta visningen från sidan:

Download "2 februari 2016 Sida 1 / 23"

Transkript

1 TAIU07 Föreläsning 4 Repetitonssatsen while. Avbrott med break. Exempel: En Talföljd och en enkel simulering. Egna funktioner. Skalärprodukt. Lösning av Triangulära Ekvationssystem. Programmeringstips. 2 februari 2016 Sida 1 / 23

2 Repetitionssatser Kommandot while exekverar en satsgrupp så länge som ett logiskt villkor är sant. Den generella formen är: while <logiskt villkor> <satsgrupp> Det är viktigt att en while sats kan avbrytas. Falskt Villkor Sant Kommandon 2 februari 2016 Sida 2 / 23

3 Exempel Fibonacci talen ges av F 1 = 0, F 2 = 1, och F n = F n 1 + F n 2. Vilket är det största talet F k som forfarande är mindre än 100? I Matlab skriver vi: F(1)=0;F(2)=1;n=2; while ( F(n)< 100 ) n=n+1; F(n)=F(n-1)+F(n-2); n-1,f(n-1) Repetitionssatsen avbryts när n = 13 så det största talet blir F 12 = februari 2016 Sida 3 / 23

4 Exempel Exponentialfunktionen kan beräknas genom Taylor serien, e x = 1+x+ x2 2 + x Skriv ett program som beräknar e x för ett givet värde x. Avbryt summeringen då nästa term inte längre påverkar resultatet. Om S är en vektor med logiska värden så ger all(s) sant om samtliga elemement i S har värdet sant; och falskt annars. Uttrycket any(s) ger värdet sant om något element i S har värdet sant. Använd all() för att förändra programmet så att det kan beräkna e x för alla värden i en vektor x. 2 februari 2016 Sida 4 / 23

5 Att avbryta en repetitionssats Kommandot break avbryter en while eller for sats direkt. Exempel I ett spel försöker vi slå en tärning högst 10 gånger i följd. Målet är att få samma resultat två gånger i rad. Skriv ett Matlab program som simulerar en sådan spelomgång. För varje lyckad omgång skriver vi ut antalet kast som krävdes. Övningar Rita först upp ett flödesschema som beskriver hur simuleringen skall genomföras. Skriv sedan lämpliga Matlab kommandon. 2 februari 2016 Sida 5 / 23

6 Exempel En talföld {x k } k=0 genereras ifrån ett positivt heltal x 0 enligt följande regler: 1. Om x k udda så fås nästa tal som x k+1 = 3x k Om x k är jämnt fås x k+1 = x k /2. Om vi startar med talet 6 får vi talföljden: Övning Vi antar att att alla sådana talföljder slutar med 1. Skriv ett program som verifierar detta för startvärden mellan 1 and 100. Hitta dessutom det startvärde som ger den längsta talföljden. 2 februari 2016 Sida 6 / 23

7 Funktioner i MATLAB En funktion har ett antal inagrument och beräknar ett antal utargument. Exempel Funktionen zeros har som inparameter två heltal N och M. Utparameter är en matris av dimension N M med nollor. >> Z = zeros( N, M ); 2 februari 2016 Sida 7 / 23

8 Funktioner skapas genom att man samlar kommandon på en fil, exemelvis min_funktion.m. Dessutom skall man skriva ett funktionshuvud. % % Inledande kommentar % function [ut1,ut2]=min_funktion( in1,in2,in3 ) <beräkna ut1,ut2 givet in1,in2,in3> En funktion kan ha godtyckligt antal in-, respektive ut-parametrar. Den inledande kommentaren skrivs ut om man skriver >> help min_funktion 2 februari 2016 Sida 8 / 23

9 Exempel På filen funk.m har vi skrivt function [f]=funk(x,y) y=2*x+y; f=x^2+2*y; Vad händer om vi skriver följande kommandon >> x=1;y=2; >> x=funk( x, y ); >> disp(x),disp(y) 2 februari 2016 Sida 9 / 23

10 Exempel På filen serie.m har vi skrivt function [S]=serie(N) S=0; for k=1:n,s=s+1/k^2;, Skriver vi följande kommandon >> S=serie( 100 ); >> disp(s) >> disp(k) Undefined function or variable k. Variabler är lokala. Skapas, eller ändras, en variabel i en funktion är det en lokal kopia som ändras. Då funktionen avslutas är det ast utparametrar som sparas. 2 februari 2016 Sida 10 / 23

11 Exempel Skalärprodukten mellan två vektorer x och y kan beräknas med formeln n x y = x i y i. Skriv en funktion som beräknar skalärprodukten. Funktionen skall användas enligt i=1 >> S = ScalarProd( x, y ); 2 februari 2016 Sida 11 / 23

12 På filen ScalarProd.m skriver vi: % ScalarProd: Beräkna skalärprodukt mellan två v % y. Anropas enligt: % % >> S = ScalarProd( x, y ); % function [S]=ScalarProd( x, y ) n=length(x); S=0; for i=1:n S=S+x(i)*y(i); ; Kommentar Då x y = x T y kan vi skriva funktionen enklare. Det finns även en fördefinierad funktion dot(). 2 februari 2016 Sida 12 / 23

13 Rekursiva funktioner En funktion som anropar sig själv kallas rekursiv. Vid varje funktionsanrop skapas nya lokala kopior av variabler. Exempel Fakulteten är definerad genom att n! = n (n 1)!, 0! = 1. Skriv en MATLAB funktion som beräknar n! för ett givet heltal n. 2 februari 2016 Sida 13 / 23

14 På filen Fakultet.m skriver vi function [F]=Fakultet(N) if N==0, F=1; else F=N*Fakultet(N-1); ; Vad händer om vi skriver >> Fakultet( 4 ); 2 februari 2016 Sida 14 / 23

15 Tillämpning: Triangulära ekvationssystem Exempel Ett undertriangulärt ekvationssystem Lx = b har följande struktur l x 1 b 1 l 21 l x 2 l 31 l 32 l 33 0 x 3 = b 2 b 3. l 41 l 42 l 43 l 44 x 4 b 4 Frågor När är ett undertriangulärt ekvationssystem lösbart? Hur skall lösningen beräknas. 2 februari 2016 Sida 15 / 23

16 Lemma Ett undertriangulärt ekvationssystem Lx = b har en unik lösning om alla diagonalelement l ii, i = 1,...,n är nollskiljda. Uppgift Skriv en funktion IsNonSingular som undersöker om alla diagonal elemement i matrisen L är noll-skiljda. Funktionen skall kunna användas som L=[1 0 0 ; ; ]; if IsNonSingular( L ) disp( Finns unik lösning ) 2 februari 2016 Sida 16 / 23

17 Lemma Ett undertriangulärt ekvationssystem Lx = b kan lösas med frammåtsubstitution. Ekvationssystemet Lx = b löses en obekant i taget. Givet att vi beräknat x 1, x 2,...,x i 1 fås nästa obekant genom x i = b i k 1 j=1 l ij x j /l ii. Uppgift Skriv en Matlab funktion TriangleSolv som löser ett godtyckligt undertriangulärt ekvationssystem. 2 februari 2016 Sida 17 / 23

18 På filen TriangleSolv.m skriver vi function [x]=trianglesolv( L, b ) [n,m]=size(l); % Kontrollera matris storlek x=zeros(n,1); for i=1:n % Beräkna lösningskomponenten x(i) x(i)=b(i); for j=1:i-1 x(i)=x(i)-l(i,j)*x(j); x(i)=x(i)/l(i,i); Vi kan nu använda våra funktioner! 2 februari 2016 Sida 18 / 23

19 I Matlab L=[1 0 0 ; ; ]; b=[3-1 2] ; if IsNonSingular( L ) x = TriangleSolv( L, b ); b2=l*x; disp( b2 ) else disp( Ej säkert lösbart ); Detta ger utskriften Vi kar alltså fått rätt lösning! 2 februari 2016 Sida 19 / 23

20 Programmeringstips Exempel Vi vill beräkna en approximation av derivatan f (2) då f(x) = 1+x med formeln f (2) f(2+h) f(x h), h > 0. 2h Beräkna felet som funktion av h för h = 1/n, n = 10, 20,..., 100. Plotta sedan resultatet med loglog. Lösning Gör följande steg 1. Skapa en vektor h med alla h-värden. Skapa en vektor Df med nollor. 2. En for-loop där Df(i) beräknas som derivata approximationen för steglängd h(i). 3. Beräkna en vektor med fel. Plotta i log-skala. 2 februari 2016 Sida 20 / 23

21 I Matlab skriver vi n=10:10:100; % Får n=( ) h=1./n; % Får h=(1/10 1/ /100 ) Df = zeros(size(h)); for i=1:length(h) % Beräkna Df(i) med steg h(i) Df(i)=( f(2+h(i)) - f(2-h(i)) )/2/h(i); e=abs(df - 1/2/sqrt(3) ); loglog( h, e, b+- ) Vi väljer först h vektorn. I for-loopen använder vi ett värde h i i taget. Undvik for-loopar där loop-variabeln inte kan ses som ett index eller heltalig räknevariabel. Använd variabelnamn som är naturliga för uppgiften h, Df, etc. 2 februari 2016 Sida 21 / 23

22 Felet vid derivata beräkning som funktion av h uppritat i log-skala Taylor-utveckling visar att detta approximation har ett fel e(h) Ch 2. Då log(e(h)) = log(c)+2 log(h) fås en rät linje med riktningskoefficient 2. 2 februari 2016 Sida 22 / 23

23 För att få lättlästa program bör man vara konsekvent med hur variabler namnges Regler - Index variabler för loopar: i, j, k. - Vektorlängd, Matrisstorlek, Antal: n, m, N, M - Reella tal: t, x, y, z, u, v - Matriser: A, B, C,... - Vektorer: x, y, b,... - Funktionsvärden: f, g, q, w,... Undvik att använda l, o, O, 0 ty svåra att se skillnad på. Långa förklarande namn blir tydliga men jobbiga att skriva. 2 februari 2016 Sida 23 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 20 november 2015 Sida 1 / 30

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 20 november 2015 Sida 1 / 30 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 20 november 2015 Sida 1 / 30 Föreläsning 5 Funktioner. Programstruktur. Rekursiva funktioner. Exempel: Skalärprodukt.

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 3. Avbrott och Funktioner 1 Repetionssatsen while Uppgift 1.1 Skriv ett program som skriver ut det minsta tal av formen 3 n som är större än 5000.

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 8 december 2015 Sida 1 / 22

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 8 december 2015 Sida 1 / 22 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 8 december 2015 Sida 1 / 22 Föreläsning 8 God programmeringsstil. Sammansatta datatyper: Poster. Cell-matriser.

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 14:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 4. Funktioner 1 Egna Funktioner Uppgift 1.1 En funktion f(x) ges av uttrycket 0, x 0, f(x)= sin(x), 0 < x π 2, 1, x > π 2 a) Skriv en Matlab funktion

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 3. Repetitionssatser och Programmering 1 Introduktion Denna övning syftar till att träna programmering med repetitionssatser och villkorssatser. Undvik

Läs mer

Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter.

Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter. TAIU07 Föreläsning 3 Logik och Jämförelser. Styrsatser: Villkorssatsen if och repetitonssatsen for. Scriptfiler. Kommentarer. Tillämpningar: Ett enkelt filter. 27 januari 2016 Sida 1 / 21 Logiska variabler

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB 29 augusti 2017 Introduktion till MATLAB 1 Inledning MATLAB är ett interaktivt program för numeriska beräkningar med matriser. Med enkla kommandon kan man till exempel utföra matrismultiplikation, beräkna

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 14:e Mars, 2017 Provkod: TEN1 Hjälpmedel:

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 19:e Mars, 2019 Provkod: TEN1 Hjälpmedel:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 20 Mars, 2015 Provkod: TEN1 Hjälpmedel:

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 21:a April klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 9 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 9 november 2015 Sida 1 / 28 Föreläsning 3 Linjära ekvationssystem. Invers. Rotationsmatriser. Tillämpning:

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 13:e januari klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 8-12, 11 Juni, 2015 Provkod: TEN1 Hjälpmedel:

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 13:e Mars, 2018 Provkod: TEN1 Hjälpmedel:

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: 14-18, 22 Mars, 2016 Provkod: TEN1 Hjälpmedel:

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26

TAIU07 Matematiska beräkningar med MATLAB för MI. Fredrik Berntsson, Linköpings Universitet. 15 januari 2016 Sida 1 / 26 TAIU07 Matematiska beräkningar med MATLAB för MI Fredrik Berntsson, Linköpings Universitet 15 januari 2016 Sida 1 / 26 TAIU07 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet i att

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 2. Linjär Algebra, Villkor och Logik 1 Linjär Algebra Programsystemet Matlab utvecklades ursprungligen för att underlätta beräkningar från linjär

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32)

Dagens program. Programmeringsteknik och Matlab. Administrativt. Viktiga datum. Kort introduktion till matlab. Övningsgrupp 2 (Sal Q22/E32) Programmeringsteknik och Matlab Övning Dagens program Övningsgrupp 2 (Sal Q22/E2) Johannes Hjorth hjorth@nada.kth.se Rum 458 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d2

Läs mer

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter

Inledande matematik för I1. MVE011 läsperiod Matlab vecka 2 övningsuppgifter Inledande matematik för I1 MVE011 läsperiod 1 010 Matlab vecka övningsuppgifter Linjära ekvationssystem Matlab har många kraftfulla redskap för att hantera matriser och därmed också linjära ekvationssystem.

Läs mer

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26

Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 TAIU07 Föreläsning 2 Index. Vektorer och Elementvisa operationer. Summor och Medelvärden. Grafik i två eller tre dimensioner. Ytor. 20 januari 2016 Sida 1 / 26 Matriselement och Index För att manipulera

Läs mer

TSBB14 Laboration: Intro till Matlab 1D

TSBB14 Laboration: Intro till Matlab 1D TSBB14 Laboration: Intro till Matlab 1D Utvecklad av Maria Magnusson med mycket hjälp av Lasse Alfredssons material i kursen Introduktionskurs i Matlab, TSKS08 Avdelningen för Datorseende, Institutionen

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 27 oktober 2015 Sida 1 / 31 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 27 oktober 2015 Sida 1 / 31 TANA17 Kursmål och Innehåll Målet med kursen är att Ge grundläggande färdighet

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Tid: 18:e augusti klockan 8.00-12.00 Redovisning Lös först uppgifterna i Matlab.

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc.

MATLAB the Matrix Laboratory. Introduktion till MATLAB. Martin Nilsson. Enkel användning: Variabler i MATLAB. utvecklat av MathWorks, Inc. Introduktion till MATLAB Martin Nilsson Avdelningen för teknisk databehandling Institutionen för informationsteknologi Uppsala universitet MATLAB the Matrix Laboratory utvecklat av MathWorks, Inc. Matematisk

Läs mer

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi.

Innehåll. Vad är MATLAB? Grunderna i MATLAB. Informationsteknologi. Informationsteknologi. Grunderna i MATLAB eva@it.uu.se Innehåll Vad är MATLAB? Användningsområden MATLAB-miljön Variabler i MATLAB Funktioner i MATLAB Eempel och smakprov: Grafik Beräkningar Bilder GUI Vad är MATLAB? Utvecklat

Läs mer

15 februari 2016 Sida 1 / 32

15 februari 2016 Sida 1 / 32 TAIU07 Föreläsning 5 Linjära ekvationssystem. Minsta kvadrat problem. Tillämpning: Cirkelpassning. Geometriska objekt. Translationer. Rotationer. Funktioner som inargument. Tillämpning: Derivata. 15 februari

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. Starta Matlab genom att

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 1. Vektorer och Matriser 1 Inledning I denna övning skall du träna på att använda Matlab för enklare beräkningar och grafik. För att lösa uppgifterna

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

4.3. Programmering i MATLAB

4.3. Programmering i MATLAB 4.3. Programmering i MATLAB MATLAB används ofta interaktivt, dvs ett kommando som man skriver, kommer genast att utföras, och resultatet visas. Men MATLAB kan också utföra kommandon som lagrats i filer,

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Datorlektion 6. Text och filer 1 Textsträngar Uppgift 1.1 Skapa en sträng som innehåller texten: kommer du snart?. Använd length för att kontrollera hur många

Läs mer

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I/KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I/KF, 5. hp, 215-3-17 Skrivtid: 14 17 (OBS! Tre timmars skrivtid!) Hjälpmedel: Bifogat

Läs mer

Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while

Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while Från labben if, for och while Programmering if, for, while, Beräkningsvetenskap I/KF n Det finns tre grundläggande strukturer i programmering, s k kontrollstrukturer Alternativ, if if logiskt uttryck if

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 2 november 2015 Sida 1 / 23 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 2 november 2015 Sida 1 / 23 Föreläsning 2 Index. Kolon-notation. Vektoroperationer. Summor och medelvärden.

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 4 december 2015 Sida 1 / 26

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 4 december 2015 Sida 1 / 26 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 4 december 2015 Sida 1 / 26 Föreläsning 7 Textsträngar. Formatterade utskrifter. Filhantering. Seminarieuppgiften.

Läs mer

Beräkningsverktyg HT07

Beräkningsverktyg HT07 Beräkningsverktyg HT07 Föreläsning 1, Kapitel 1 6 1.Introduktion till MATLAB 2.Tal och matematiska funktioner 3.Datatyper och variabler 4.Vektorer och matriser 5.Grafik och plottar 6.Programmering Introduktion

Läs mer

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

TANA81: Simuleringar med Matlab

TANA81: Simuleringar med Matlab TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

Kort om programmering i Python

Kort om programmering i Python CTH/GU mmgl50-2018 Matematiska vetenskaper Kort om programmering i Python 1 Inledning Redan i första laborationen gjorde ni ett litet program. Ni skrev en script eller skriptfil som beräknade summan 5

Läs mer

Funktioner forts. F3: Funktioner (kap. 5) Parametrar. findgear.m forts

Funktioner forts. F3: Funktioner (kap. 5) Parametrar. findgear.m forts F3: Funktioner (kap. 5) Funktionsfil, funktionsanrop in- och utparametrar, anropsin- och anropsutparametrar lokala, globala och persistenta variabler lokala funktioner return variabelt antal parameterar,

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3

Börja programmera. Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner. Läs inte avsnitt 4.2.3 Börja programmera Kapitel 4 i kompendiet Jämförande uttryck Villkorssatser Loopar (slingor) Funktioner Läs inte avsnitt 4.2.3 2010-09-23 Datorlära, fysikexperiment - del 4 1 Jämförande uttryck 2010-09-23

Läs mer

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI

Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI TEKNISKA HÖGSKOLAN I LINKÖPING Matematiska institutionen Beräkningsmatematik/Fredrik Berntsson Tentamen TAIU07 Matematiska beräkningar med MATLAB för MI Tid: Provkod: TEN1 Hjälpmedel: Inga. Examinator:

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi.

Exempel att testa. Stora problem och m-filer. Grundläggande programmering 4. Informationsteknologi. Informationsteknologi. Grundläggande programmering 4 stefan@it.uu.se - Huvudprogram och underprogram - Egna funktioner - Olika typer av fel - Lite om effektiv programmering Exempel att testa Programmen för några vardagsproblem

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Matlabföreläsningen. Lite mer och lite mindre!

Matlabföreläsningen. Lite mer och lite mindre! Inmatning: Här är lite exempel på inmatning i Matlab: >> pi 3.1416 >> format long >> ans 3.141592653589793 Matlabföreläsningen Lite mer och lite mindre! >> format %återställer format (%- tecknet gör att

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation.

Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation. TAIU07 Föreläsning 6 Tillämpning: Bildinterpolation. Ekvationslösning. Integraler. Tillämpning: En båt. Räkning med polynom. Projekt. Tentamensinformation. 22 februari 2016 Sida 1 / 28 Interpolation i

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Instruktion för laboration 1

Instruktion för laboration 1 STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för matematisk statistik MD, ANL, TB (rev. JM, OE) SANNOLIKHETSTEORI I Instruktion för laboration 1 De skriftliga laborationsrapporterna skall vara

Läs mer

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem

NUMPROG, 2D1212, vt Föreläsning 9, Numme-delen. Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem NUMPROG, 2D1212, vt 2005 Föreläsning 9, Numme-delen Stabilitet vid numerisk behandling av diffekvationer Linjära och icke-linjära ekvationssystem Då steglängden h är tillräckligt liten erhålles en noggrann

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

1, 2, 3, 4, 5, 6,...

1, 2, 3, 4, 5, 6,... Dagens nyhet handlar om talföljder, ändliga och oändliga. Talföljden 1,, 3, 4, 5, 6,... är det första vi, som barn, lär oss om matematik över huvud taget. Så småningom lär vi oss att denna talföljd inte

Läs mer

Allmänt om Mathematica

Allmänt om Mathematica Allmänt om Mathematica Utvecklades av Wolfram Research (Stephen Wolfram) på 80-talet Programmet finns bl.a. till Windows, Mac OS X, Linux. Finns (åtminstone) installerat i ASA B121 (Stansen), i matematik

Läs mer

Föreläsning 3-4 Innehåll

Föreläsning 3-4 Innehåll Föreläsning 3-4 Innehåll Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer Datavetenskap (LTH) Föreläsning 3-4 HT 2017 1 / 36 Diskutera Vad gör programmet programmet? Föreslå

Läs mer

Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik

Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Vetenskapsdagen 2016 SciLab för laborativa inslag i matematik eller fysik Fredrik Berntsson (fredrik.berntsson@liu.se) 5 oktober 2016 Frame 1 / 23 Bakgrund och Syfte Inom kursen Fysik3 finns material som

Läs mer

Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while

Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while. Från labben: if, for och while Programmering Beräkningsvetenskap I/KF n Det finns tre grundläggande strukturer i programmering, s k kontrollstrukturer Alternativ, if if logiskt uttryck if logiskt uttryck 1 elseif logiskt uttryck 2 :

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Sanningar om programmering

Sanningar om programmering Block 3: Programmering, del 1 Beräkningsvetenskap I Sanningar om programmering n Ett program är ett antal kommandon och särskilda strukturer lagrade i en eller flera filer n Att utveckla och skriva program

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom hela PM:et. Gå sedan igenom

Läs mer

Textsträngar från/till skärm eller fil

Textsträngar från/till skärm eller fil Textsträngar från/till skärm eller fil Textsträngar [Kapitel 8.1] In- och utmatning till skärm [Kapitel 8.2] Rekursion Gränssnitt Felhantering In- och utmatning till fil Histogram 2010-10-25 Datorlära,

Läs mer

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2: FÖRGRENINGSPROCESSER MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Syftet med denna laboration är att du skall bli mer

Läs mer

Variabler och konstanter

Variabler och konstanter Variabler och konstanter Deklareras automatisk när man stoppar in data i dem. X = 7 Y = A Z = Kalle Definieras av att de har: ett namn (X) en datatyp (Integer) ett värde (t.ex. 7) Lagras i datorns minne!

Läs mer

Introduktion till MATLAB, med utgångspunkt från Ada

Introduktion till MATLAB, med utgångspunkt från Ada Introduktion till, med utgångspunkt från Desktop-miljö som innefattar editor, kommandofönster, graffönster och mycket mer. Interpreteras Snabbt att testa kommandon Terminal + emacs + gnatmake Kompileras

Läs mer

Lösningar till linjära problem med MATLAB

Lösningar till linjära problem med MATLAB 5B1146 - Geometri och algebra Mikrolelektronik, TH ista ösningar till linjära problem med MATAB Av: oel Nilsson, alikzus@home.se atrik osonen, pkosonen@kth.se 26-12-4 roblem 1 Man ska bestämma ett tredjegradspolynom:

Läs mer

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion

Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson Plot och rekursion Tekniska Högskolan i Linköping Institutionen för Datavetenskap (IDA) Torbjörn Jonsson 2010-11-19 Plot och rekursion I denna laboration skall du lära dig lite om hur plot i MatLab fungerar samt använda

Läs mer

MATLAB Matrix laboratory

MATLAB Matrix laboratory MATLAB Matrix laboratory Utvecklat av MathWorks Inc Introduktion till MATLAB Stefan@it.uu.se Utvecklat av MathWorks, Inc Första versionen klar i slutet av 70-talet Matematisk labmiljö för Numeriska beräkningar

Läs mer

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv

Datorlära 6. Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv Datorlära 6 Arbeta med strängar Inmatning med tangentbordet Bygga ett program med inmatning, funktioner, osv 1 Arbeta med Strängar Strängar skapas med text inom citattecken, enkla eller dubbla.!>> str=

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

Programmering i Matlab

Programmering i Matlab CTH/GU 2/22 Matematiska vetenskaper Inledning Programmering i Matlab Redan i den första introduktionen var det ett par enkla programmeringsexempel. Ni skrev ett script eller skriptfil som beräknade summan

Läs mer

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A

Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Tentamen i Beräkningsvetenskap I (nya versionen), 5.0 hp, 2008-2-9 Skrivtid: 4 00 7 00 (OBS! Tre timmars skrivtid!) Hjälpmedel:

Läs mer

Matlabövning 1 Funktioner och grafer i Matlab

Matlabövning 1 Funktioner och grafer i Matlab Matlabövning 1 Funktioner och grafer i Matlab I den här övningen ska vi titta på hur man konstruerar funktioner i Matlab och hur man kan rita funktionsgrafer. Läs först igenom PM:et. Gå sedan igenom exemplen

Läs mer

Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER

Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Föreläsning 8 SLUMPTAL, SIMULERING + INTRODUKTION TILL VEKTORER Från laboration 3 till 4 I laboration 3 har du implementerat klasser implementerat metoder i klasserna I laboration 4 kommer du att implementera

Läs mer

Studio 6: Dubbelintegral.

Studio 6: Dubbelintegral. Studio 6: Dubbelintegral. Analys och Linjär Algebra, del C, K1/Kf1/Bt1, vt09 20 februari 2009 1 Repetition av enkelintegral I ALA B skrev du en MATLAB-funktion minintegral som beräknar integralen av en

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU MVE5-7/8 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man kan lösa system av icke-linjära ekvationer. Därefter skall vi se på optimering utan bivillkor. Vi skall

Läs mer

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v

Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2

Läs mer

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt.

3 Man kan derivera i Matlab genom att approximera derivator med differenskvoter. Funktionen cosinus deriveras för x-värdena på följande sätt. Kontrolluppgifter 1 Gör en funktion som anropas med där är den siffra i som står på plats 10 k Funktionen skall fungera även för negativa Glöm inte dokumentationen! Kontrollera genom att skriva!"#$ &%

Läs mer