Datorlaboration :: 1 Problembeskrivning ::

Storlek: px
Starta visningen från sidan:

Download "Datorlaboration :: 1 Problembeskrivning ::"

Transkript

1 Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg via mail: 1 Problembeskrivning :: Hyrbilsföretaget RentaCar har 10 hyrstationer i X-city med en hyrbilsflotta om sammanlagt 1000 bilar. Varje station, som betecknas med S 1,..., S 10, har plats för 100 bilar vardera och kunderna kan hyra på vilken station som helst och lämna till baka bilen på vilken annan station som helst och denna möjlighet är ett av RentaCars stora fördelar gentemot andra konkurrerande hyrbilsföretag. Samtidigt har detta blivit ett problem eftersom återlämningen av bilarna har visat sig ansamlas på vissa av stationerna så att dessa tenderar att få ett överskott av bilar medan andra stationer tenderar att få ett minskat antal bilar. Detta är problematiskt eftersom de stationer med ett överskott av bilar medför extra parkeringskostnader alternativt kostnader för att köra dem till en station där det finns plats. RentalCar vill nu finna en lösning på problemet. Man tror att genom att fördela bilarna på ett annat sätt så att olika stationerna tar hand om olika många bilar så skulle man kunna få en jämnare beläggning av bilar och därmed kunna optimera kostnaderna för bilförvaring och minska bilförflyttningskostnaderna. Som ett led i detta har företaget noggrannt studerat kundernas avhämtning och återlämningsstrutur och kommit fram till följande tabell. Stationer för återlämning S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10 S S S S Uthyrningsstationer S S S S S S Tabell 1: En rad i denna tabell visar hur många procent av de bilar uthyrda från stationen som återlämnas på de övriga stationerna. T.ex. den sista raden anger hur många procent av de bilar som hyrdes ut från station S 10 som återlämnas på de övriga stationerna. Från tabell 1 så kan man utläsa hur många bilar som blir återlämnade till en viss station. T.ex bilar som lämnas in till station S 7, betecknat med S i 7 kan fås från kolonn 7: S i 7 = 0.03 S o S o S o S o S o S o S o S o S o S o 10 (1) Här betecknas antalet bilar som lämnas ut vid t.ex. station S 1 med S o 1 och station 7 får då 3 procent av detta antal bilar återlämnade hos sig vilket blir 0.03 S o 1. De olika kolonnerna i tabellen hjälper oss alltså att beräkna hur många bilar som blir återlämnade till en viss station och hur många som kommer från de olika stationerna. Vi får således ett flöde av bilar mellan stationerna och tänker vi oss att detta sker varje dag så ser vi att vi kan göra denna räkning från dag till dag och vi kan då beräkna vad som händer med fördelningen av RentaCars bilar från dag till dag och 1

2 visualisera konsekvenserna om vi inte flyttar bilar mellan stationerna. Vissa stationer kanske helt blir utan bilar och andra stationer blir möjligen överfulla. one Ställ upp alla 10 ekvationer för alla stationer motsvarande ekvation (1) som ett ekvationssystem. Skriv sedan detta system på matrisform där vi kallar den matris som uppstår för M. two Beräkna vad som händer efter en dag, en vecka, en månad (30 dagar) och ett år för RentaCar s stationer som dag noll har 100 bilar var. three Beräkna vad som händer efter en dag, en vecka, en månad och ett år om RentaCar dag noll har alla sina bilar på station 1. Försök se ett mönster. Hur ser fördelningen ut i båda två ovanstående fall. Hur fördelningarna ut efter ett år? 2 En förenklad situation :: exempel Exempel 1. Om vi tittar på en enklare situation där RentaCar bara har tre stationer så har vi i detta fall tabell 2: S 1 S 2 S 3 S S S Tabell 2: Tabell som visar hur kunderna hyr och återlämnar bilar i det förenklade fallet Vi ställer upp ekvationerna för denna situation S i 1 = 0.74 S o S o S o 3 S i 2 = 0.21 S o S o S o 3 S i 3 = 0.05 S o S o S o 3 Ställer vi upp detta som matrisekvation så får vi S i = S o där S i = Si 1 S i 2 och S o = So 1 S o S3 i 2 S3 o } {{ } =M Notera att matrisen M har kolonner vars element summeras ihop till 1. Detta ska vi ha eftersom procentsatserna i varje rad i tabell 2 summeras till 100%. M blir således i någon mening transponatet till matrisen som tabellen ger (dividerat med 100). Låt oss nu se vad som händer om dag noll varje station har 100 bilar var. Efter n dagar har man fördelning av bilar mellan stationerna som ges av vektorn S n definierad av S n = M n S 0 där S 0 är fördelningen av bilar som vi har dag noll, innan vi börjar experimentet. Varje multiplikation med matrisen M svarar mot en uthyrningsdag i vårt resonemang. Om 100 S 0 = Så får vi (mha mathematica) 97. S 1 = 101., S 7 = , S 30 =, S 365 = 2

3 Notera att vi får samma svar för en månad och för ett år. Det verkar alltså som om bilfördelningen är stabil efter en månad. Vi kollar vad som händer om vi använder en annan startfördelning. Låt S 0 = Då får vi S 1 = , S 7 = , S 30 =, S 365 = Vi får alltså samma slutvektor även från denna startpunkt. Vi borde nog gissa att detta är den fördelning som RentaCar söker efter. Om vi sätter S 0 = så får vi S 1 = vilket betyder att fördelningen av bilar håller sig konstant från dag till dag... 3 Ett litet egenvärdesproblem I exemplet så såg vi att vi genom att upprepa multiplikationen med M så kunde vi få fram en stabil fördelning av bilarna. Men det finns också ett annat sätt. Med en stabil fördelning av bilarna hos de olika stationerna så menar vi en fördelning som ger att varje station får lika många bilar återlämnade som de har hyrt ut. För matrisekvationen innebär det att vi söker en fördelningsvektor S som uppfyller 1 MS = S (2) Detta är en matrisekvation som vi borde kunna lösa. Vi subtraherar fördelningsvektorn från båda led och bryter ut fördelningsvektorn, vilket leder till MS S = 0 (M I)S = 0 Fördelningsvektorn är alltså en vektor i nollrummet till matrisen M I. 1 Ekvation (2) är en egenvärdesekvation med egenvärdet λ = 1. Egenvärdesproblem kommer vi jobba med ordentligt i kapitel 5 och 7 3

4 Exempel 2. Vi fortsättermed situationen i exempel 1 och försöker använda Mathematica för att lösa ekvation (2). Vi utgår från att vi lyckats mata in matrisen M i Mathematica och konstruerar då matrisen A = M I genom kommandot A=M-IdentityMatrix[3] Mathematica svarar då med matrisen Enligt vad vi sa i ovan ska vi nu beräkna nollrummet till denna matris. Detta är enkelt med Mathematicas kommando NullSpace[A] vilket ger oss resultatet ( ) som i detta fall ser ut som en vector. Men detta beror att jag gjort en inställning 2 om att mathematica ska välja TraditionalForm som output format. Denna inställning har tyvärr den missvisande nackdelen att man inte ser att vad man får ut från NullSpace i själva verket är en lista med vektorer. Har man inställningen StandardForm så får man i stället följande output { { , , } } som visar att vi har en lista (eftersom vi har dubbla krullparanteser. Den inre parantesuttrycken är den enda vektorn i denna lista) med en enda vektor. Men detta är bara en liten detalj. Vektorn i denna lista får vi fram (och jag döper den till u) genom u=nullspace[a][[1]] Denna vektor spänner alltså upp nollrummet till A och Mathematica har sett till att vektorn har längden 1, vilket vi kan verifiera genom att beräkna längden, eller normen som det också kallas genom Norm[u] och här svarar Mathematica med 1. Det här är dock inte vad vi vill. Vi vill ju få en vektor som hjälper oss att tala hur fördelningen bilar ska vara mellan stationerna. Detta skulle vara klart om vår vektor u på något sätt angav hur stor procent av RentaCars totala antal bilar ska vara på de olika stationerna. En sådan vektor ska därför ha egenskapen att vektorns element summeras och blir ett (precis som kolonnerna i matrisen M). Detta kan man åstadkomma genom att dividera vektorns komponenter med summan av komponenterna. Om vi har vektorn v = (a, b, c) och multiplicerar denna vektor med k = 1 a+b+c så får vi vektorn kv = (ka, kb, kc) och summan av dessa tre komponenter blir 1: ka + kb + kc = k(a + b + c) = 1 (a + b + c) = 1 a + b + c Idén är nu att göra om vår vektor u genom att dividera den med summan av u s komponenter och då behöver vi först räkna ut summan av komponenterna, vilket kan göras med Mathematicakommandot Total: Vi dividerar alltså u med denna summa: v=u/total[u] 2 Mathematicas inställningar finner man under Mathematica > preferences. Man väljer sedan fliken Evaluation och i denna meny har man val för format type of new output cells där man bör välja TraditionalForm om man vill få matriserna utskrivna som matriser och inte som en lista... Det gäller bara att vara medveten om detta eftersom man annars lätt kan missförstå outputen som antyds i detta exempel. 4

5 och nu svarar Mathematica med { , , } Utför vi kommandot Total[v] så får vi svaret 1 och då har vi fått vår vektor som anger andelen av det total bilantalet som ska vara på de olika stationerna. Eftersom vi i vårt fall har totalt 300 bilar så får vi vektorn 300*v som blir {,, } (92, 101, 107) som är precis vad vi kom fram till förut! Det fina är att vi nu kan experimentera och kolla vad fördelningen blir om vi har ett annat antal bilar. Om vi totalt har 1000 bilar kan vi få fram fördelningen genom att använda 1000 istället för 300 i räkningarna ovan. Man får då 1000 v = {306, 362, 335, 392, 358, 246} (306, 336, 358) Observera dock att avrundningen är lite udda för att garantera att den resulterande heltalsvektorns komponenter summeras till Detta exempel visar i princip hur man kan lösa labbens sista uppgift: sista Lös systemet (2) i fallet med de 10 stationerna och beräkna en sådan fördelningsvektor v som i exemplet. Använd den sedan för att få fram fördelningen av bilar på de olika stationerna i fallet då RentaCar har 1000 bilar och för det fallet då RentaCar köper in ytterligare 1000 bilar. 4 Teori: markovkedjor och sannolikhetsmatriser Vi såg i exemplen ovan att matrisen M hade egenskapen att elementen i varje kolonn summeras ihop och blir 1. En sådan kolonn är en sannolikhetsvektor och matrisen kallas för en stokastisk matris. Labborationen är ett exempel på en s.k. Markovkedja. Om detta kan man läsa i Lays kapitel 4.9. (och i Kapitel 11.6 i Anton och Rorres 3 ) Speciellt så finns där Theorem 18, (sid. 259). Denna sats säger något om det vi såg i exemplet att S 365 blev lika med fördelningsvektorn som vi beräknade genom ekvation (2). Det kanske inte är alldeles nödvändigt att läsa och förstå all denna teori men Idén om Markovkedjor är en första inblick i en viktig del inom tillämpad matematik och matematisk statistik som handlar om Stokastiska Processer och som är väldigt användbar för att modellera olika verkliga system. 5 Hur ska Laborationen redovisas? Laborationen redovisas genom att skicka filen med till Kom ihåg att i filen ska ert namn och personnummer finnas. Döp dessutom matematikafilen till Severus_Snape_ nb, men bara om ditt namn är Severus Snape med personnummer nb är formatet för mathematicafilerna och ska vara med. Om Du heter något annat så skriver Du in ditt namn och personnummer på motsvarande sätt. Notera att man kan skapa fina rapporter mha mathematica. 6 När ska Laborationen redovisas :: Deadline Ingen hård deadline finns. Ni lämnar in när ni vill men kom bara ihåg att för att få ett godkänt betyg på kursen så krävs det att labben är godkänd (och så klart ett godkänt betyg vid tentamen.) 3 Anton och Rorres, Elementary Linear Algebra 9 ed,, ISBN: , kapitel 11.6: Markov Chains, finns som pdf på kurssajten 5

6 7 Användbara Mathematicakommandon Följande mathematicakommandon kan vara till nytta. Ni använder naturligtvis Mathematicas inbyggda hjälpsystem för att ta reda på exakt vad kommandon gör och hur man ska använda dem. MatrixPower, IdentityMatrix, RowReduce, NullSpace, Norm, Transpose, Total, Inverse, 6

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

TENTAMEN I PROGRAMMERING. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng

TENTAMEN I PROGRAMMERING. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng TENTAMEN I PROGRAMMERING Ansvarig: Jan Skansholm, tel 7721012 Betygsgränser: Hjälpmedel: Sammanlagt maximalt 60 poäng. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng Skansholm,

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

For-sats/slinga. Notis

For-sats/slinga. Notis Notis I koden för exemplen förekommer kommentarer. Kommentarer i Matlabkoden identieras med prexet %. Kommentarer är text/kod som Matlab bortse från. Alltså all text/kod som ligger till höger och på samma

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Kapitel 10 Matriser. Beräkning med hjälp av matriser. Redigering av matriser

Kapitel 10 Matriser. Beräkning med hjälp av matriser. Redigering av matriser Anteckningar Kapitel 10 Matriser Beräkning med hjälp av matriser Redigering av matriser I detta kapitel behandlas matrisberäkning vilket är lämpligt att ta till då du ska utföra beräkningar som ger flera

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php

Alla filer som bearbetar PHP script ska avslutas med ändelsen.php, exempelvis ska en indexsida till en hemsida heta index.php Introlektion PHP är ett av de enklare språken att lära sig just pga. dess dynamiska struktur. Det används för att bygga upp båda stora och mindre system. Några vanliga system som använder sig av PHP är

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren 2000-03-17 specialversion inför kursstart Elektronik och mätteknik 2000 DATORINTRODUKTION Laboration E850-2000 ELEKTRO Personalia: Namn: Kurs:

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84

Klassrumshantering Av: Jonas Hall. Högstadiet. Material: TI-82/83/84 Inledning Det som är viktigt att förstå när det gäller grafräknare, och TI s grafräknare i synnerhet, är att de inte bara är räknare, dvs beräkningsmaskiner som underlättar beräkningar, utan att de framför

Läs mer

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition.

Eulercykel. Kinesiska brevbärarproblemet. Kinesiska brevbärarproblemet: Metod. Kinesiska brevbärarproblemet: Modell. Definition. Definition. Eulercykel Definition En Eulercykel är en cykel som använder varje båge exakt en gång. Definition En nods valens är antalet bågar som ansluter till noden. Kinesiska brevbärarproblemet En brevbärartur är

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

Laboration 1 Introduktion till Visual Basic 6.0

Laboration 1 Introduktion till Visual Basic 6.0 Laboration 1 Introduktion till Visual Basic 6.0 Förberedelse Förbered dig genom att läsa föreläsningsanteckningar och de kapitel som gåtts igenom på föreläsningarna. Läs även igenom laborationen i förväg.

Läs mer

Smart insatsplan. Bifogat den här artikeln finns en enkel A4 där du kan bokföra insatsplanens spel. Använd den!

Smart insatsplan. Bifogat den här artikeln finns en enkel A4 där du kan bokföra insatsplanens spel. Använd den! Smart insatsplan Artikel är skriven av Johan som äger www.storavinster.se. Vi ger professionella råd om hur du ska spela för att vinna i längden. Du hittar fler artiklar om spel om du besöker hemsidan.

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H. HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

RESULTAT - MÅLUPPFYLLELSE

RESULTAT - MÅLUPPFYLLELSE Som absolut nybörjare i programmering och utan att ha några handledarpass: Mycket tufft, låg bokstavligen talat i fosterställning varannan vecka... Den gav en bra grund till fortsatta egenstudier i C++.

Läs mer

WebitRental Uthyrningssystem. WebIT Design i Kalmar HB www.webit.se

WebitRental Uthyrningssystem. WebIT Design i Kalmar HB www.webit.se WebitRental Uthyrningssystem WebIT Design i Kalmar HB www.webit.se Instruktioner INSTALLATION... 3 FRÅN CD... 3 FRÅN NÄTET... 3 KOMMA IGÅNG... 4 FÖRETAGSUPPGIFTER... 4 HYRTIDER... 4 SJÄLVRISKREDUCERING...

Läs mer

Ränteberäkning vid reglering av monopolverksamhet

Ränteberäkning vid reglering av monopolverksamhet 1 Jan Bergstrand 2009 12 04 Ränteberäkning vid reglering av monopolverksamhet Bakgrund Energimarknadsinspektionen arbetar f.n. med en utredning om reglering av intäkterna för elnätsföretag som förvaltar

Läs mer

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1 Inlämningsuppgift : Finn 2D1418 Språkteknologi Christoffer Sabel E-post: csabel@kth.se 1 1. Inledning...3 2. Teori...3 2.1 Termdokumentmatrisen...3 2.2 Finn...4 3. Implementation...4 3.1 Databasen...4

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Guide för PDF/A Författare Avd Telefon Datum Version Sid Göran Lindqvist 0921-573 00 2006-08-16 1.1 1 (9)

Guide för PDF/A Författare Avd Telefon Datum Version Sid Göran Lindqvist 0921-573 00 2006-08-16 1.1 1 (9) Göran Lindqvist 0921-573 00 2006-08-16 1.1 1 (9) Inledning Detta dokument är framtaget för att ge generell hjälp med att skapa ett PDF/A-dokument av ett Microsoft Word-dokument. Även hur man ställer in

Läs mer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 1. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 1 i 5B1512, Grundkurs i matematisk statistik för ekonomer Namn:........................................................ Elevnummer:.............. Laborationen syftar till ett ge information

Läs mer

1. Mätning av gammaspektra

1. Mätning av gammaspektra 1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.

Läs mer

Centralt innehåll som vi arbetar med inom detta område:

Centralt innehåll som vi arbetar med inom detta område: BRÅK & PROCENT PEDAGOGISK PLANERING/KUNSKAPSKRAV MATEMATIK Ö7 HT 2012 Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att ü formulera och lösa problem med hjälp

Läs mer

2B1115 Ingenjörsmetodik (Engineering Fundamentals)

2B1115 Ingenjörsmetodik (Engineering Fundamentals) 2B1115 Ingenjörsmetodik (Engineering Fundamentals) HT 2005 Kompendium 2 Datorlaborationer med kalkylark, Matlab och ordbehandlare. Redovisas senast 2005-10-31 1 Innehåll Inledning... 2 Deluppgift 1. Kalkylark...

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

Kalkylering i ett tjänsteföretag med hjälp av Excel

Kalkylering i ett tjänsteföretag med hjälp av Excel Kalkylering i ett tjänsteföretag med hjälp av Excel Baserat på ett exempel ur Anderssons bok kapitel 5.4 Som vanligt gäller att kalkylmodellen endast är en förenklad modell av verkligheten. För att du

Läs mer

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period.

Innehållsförteckning. Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period. 2 Resultat Innehållsförteckning Installation Inledning Pedagogisk bakgrund Arbeta med Matematik Screening Basnivå Kalkylator Inställningar Namn Period Screeningmoment Talserier Jämnt - udda Tal och obekanta

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Vanliga frågor för VoiceXpress

Vanliga frågor för VoiceXpress Vanliga frågor för VoiceXpress 1) Hur stort ordförråd (vokabulär) innehåller VoiceXpress? VoiceXpress innehåller ett mycket omfattande ordförråd, och svaret på frågan varierar en aning beroende på hur

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Talsystem Teori. Vad är talsystem? Av Johan Johansson

Talsystem Teori. Vad är talsystem? Av Johan Johansson Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska

Läs mer

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

Grundkurs 2 IKT. Dan Haldin Ålands lyceum

Grundkurs 2 IKT. Dan Haldin Ålands lyceum Grundkurs 2 IKT Dan Haldin Ålands lyceum KALKYLERING MED MICROSOFT OFFICE EXCEL... 4 Användning av funktioner i Microsoft Excel... 4 LETARAD FUNKTIONEN... 5 OM funktionen... 8 Mer Diagramhantering...10

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas DN1212, Numeriska metoder & grundläggande programmering för P1. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas Introduktion till UNIX och MATLAB Del 1: UNIX och

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Användarhantering Windows 7 I denna laboration kommer vi att skapa nya användare och grupper och titta på hur man hantera dessa.

Användarhantering Windows 7 I denna laboration kommer vi att skapa nya användare och grupper och titta på hur man hantera dessa. Användarhantering Windows 7 I denna laboration kommer vi att skapa nya användare och grupper och titta på hur man hantera dessa. Antal: Enskilt Material: En dator med Windows 7 (Vista, Windows 8 eller

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Resfritt Gävleborg (av Robert Stewing)

Resfritt Gävleborg (av Robert Stewing) Presentation av arbetet angående ett Resfritt Gävleborg (av Robert Stewing) Resandet tar mycket tid och en överlevnadsfråga för oss är att så många av mötena som möjligt kan klaras utan resor. Citat ur

Läs mer

Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-05-25

Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-05-25 Tentamen i Grundläggande programmering STS, åk 1 lördag 2002-0-2 Skrivtid: 09.00 14.00 Hjälpmedel: Inga Lärare: Anders Berglund. Elena Fersman besöker tentan vid två tillfällen: cirka kl. 10.30 samt cirka

Läs mer

Optimeringslära 2013-11-01 Kaj Holmberg

Optimeringslära 2013-11-01 Kaj Holmberg Tekniska Högskolan i Linköping Optimering för ingenjörer Matematiska Institutionen Lösning till tentamen Optimeringslära 23-- Kaj Holmberg Uppgift a: Problemet skrivet i standardform är: Lösningar min

Läs mer

Människa- datorinteraktion, MDI, vt 2012, Anvisningar för projekt- /grupparbete

Människa- datorinteraktion, MDI, vt 2012, Anvisningar för projekt- /grupparbete Människa- datorinteraktion, MDI, vt 2012 Anvisningar för projekt- /grupparbete Kursens projektuppgift består av att genomföra ett projektarbete i grupper om 3-4 personer. Uppgiften ska sedan presenteras

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 2

TENTAMEN I STATISTIKENS GRUNDER 2 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 2 2012-11-20 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Laborationsinformation

Laborationsinformation Linköpings Tekniska Högskola 2015 08 25 Matematiska institutionen/optimeringslära Kaj Holmberg Laborationsinformation 1 VINEOPT: Visual Network Optimization 1.1 Introduktion VINEOPT är ett program för

Läs mer

Nationella prov i verkligheten

Nationella prov i verkligheten Nationella prov i verkligheten: Sida 1 Nationella prov i verkligheten Övningsprov Matte 1C (2012) Vad används matematiken till? Vad gör en matematiker? 2 Räkning med procent förekommer i prisberäkningar

Läs mer

DD2458-224344 - 2014-12-19

DD2458-224344 - 2014-12-19 KTH / KURSWEBB / PROBLEMLÖSNING OCH PROGRAMMERING UNDER PRESS DD2458-224344 - 2014-12-19 Antal respondenter: 26 Antal svar: 18 Svarsfrekvens: 69,23 % RESPONDENTERNAS PROFIL (Jag är: Man) Det var typ en

Läs mer

OBS! Det är av största vikt att innan konfiguration av modulen, genomfört de inställningar som presenteras med bilagorna till denna manual.

OBS! Det är av största vikt att innan konfiguration av modulen, genomfört de inställningar som presenteras med bilagorna till denna manual. 1 LB-M-EX 0001 2010 LB-M-EX 0001 2010 Användarmanual för Lockbee Backup Exchange 2007 Användarmanualen är avsedd att ge en närmare introduktion av Lockbee Backup Exchange 2007 och dess funktioner och nyttjande.

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Installera SoS2000. Kapitel 2 Installation Innehåll

Installera SoS2000. Kapitel 2 Installation Innehåll Kapitel 2 Installation Innehåll INSTALLATION MDAC och ODBC...2 Installera SoS2000 i arbetsplatsen...2 SoS2000 serverprogramvara...2 SoS2000 och övriga Office program...3 Avinstallera SoS2000...3 Brandväggar...3

Läs mer

namn, inklusive katalogtillhörigheten. Den andra saken vi måste förstå är något som kallas "den atlab

namn, inklusive katalogtillhörigheten. Den andra saken vi måste förstå är något som kallas den atlab 5 Pass 2 Datorer, filnam och mer beräkningar I det här passet skall vi lära oss litet allmänt om hur datorprogram fungerar och hur de hanterar data på hårddisk och i minnet. Men framför allt skall vi lära

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år.

STYRANDE SATSER. 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. STYRANDE SATSER 1) Skriv ett program som räknar ut hur många år du har till pensionen. Vi räknar här med att man pensioneras det år man fyller 65 år. Vilket år är du född? 1971 Då har du bara 35 år kvar

Läs mer