MATEMATIKSPELET TAR DU RISKEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "MATEMATIKSPELET TAR DU RISKEN"

Transkript

1 MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta en tärning 10 gånger. Målet är att minst 3 gånger få ögontalet 2 eller 3. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 3. kast minst få ögontalet 3. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 4. Kasta 2 tärningar 10 gånger. Målet är att få summan 7 eller lägre minst 5 gånger. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 200 poäng. Tar 5. Kasta 2 tärningar 6 gånger. Målet är att minst en gång få ett par, dvs. samma ögontal. Om du 100 poäng. Tar 6. kast få olika ögontal. Om du lyckas, får du 200 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar 7. Singla en slant 3 gånger. Målet är att få 3 kronor eller 3 klavar. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar

2 8. Singla en slant 15 gånger. Målet är att minst 8 gånger få klave. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 9. Singla två slantar 10 gånger. Målet är att 6 gånger få samma (dvs. 2 kronor eller klavar). Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 10. Singla en slant 6 gånger. Målet är att minst 4 gånger få klave. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar 11. Dra 3 kort från en kortlek, utan återläggning av korten. Målet är att alla kort ska vara av olika färg. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 12. Dra 2 kort från en kortlek, utan återläggning av korten. Målet är att de ska vara av samma färg. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar 13. av korten. Målet är att få minst 5 röda kort. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 150 poäng. Tar 14. av korten. Målet är att få minst 3 spader. Om du 100 poäng. Tar 15. Dra 5 kort från en kortlek, utan återläggning av korten. Målet är att få minst 3 klädda kort (11, 12, 13). Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar

3 MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 2. Kasta en tärning 10 gånger. Målet är att minst 3 gånger få ögontalet 2 eller 3. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Uppgiften lyckas cirka 7 gånger av kast minst få ögontalet 3. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Uppgiften lyckas cirka 3 gånger av Kasta 2 tärningar 10 gånger. Målet är att få summan 7 eller lägre minst 5 gånger. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 200 poäng. Tar Uppgiften lyckas cirka 4 gånger av Kasta 2 tärningar 6 gånger. Målet är att minst en gång få ett par, dvs. samma ögontal. Om du 100 poäng. Tar Uppgiften lyckas cirka 2 gånger av kast få olika ögontal. Om du lyckas, får du 200 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar 7. Singla en slant 3 gånger. Målet är att få 3 kronor eller 3 klavar. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar

4 8. Singla en slant 15 gånger. Målet är att minst 8 gånger få klave. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 9. Singla två slantar 10 gånger. Målet är att 6 gånger få samma (dvs. 2 kronor eller klavar). Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 10. Singla en slant 6 gånger. Målet är att minst 4 gånger få klave. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Uppgiften lyckas cirka 1 gång av Dra 3 kort från en kortlek, utan återläggning av korten. Målet är att alla kort ska vara av olika färg. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar 12. Dra 2 kort från en kortlek, utan återläggning av korten. Målet är att de ska vara av samma färg. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar 13. av korten. Målet är att få minst 5 röda kort. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 150 poäng. Tar 14. av korten. Målet är att få minst 3 spader. Om du 100 poäng. Tar 15. Dra 5 kort från en kortlek, utan återläggning av korten. Målet är att få minst 3 klädda kort (11, 12, 13). Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar

5 MATEMATIKSPELET TAR DU RISKEN 1. Kasta en tärning 20 gånger. Målet är att minst 10 gånger få ögontalet 4, 5 eller 6. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Chansen att lyckas är cirka 59 procent. 2. Kasta en tärning 10 gånger. Målet är att minst 3 gånger få ögontalet 2 eller 3. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Uppgiften lyckas cirka 7 gånger av 10. Chansen att lyckas är cirka 70 procent. 3. kast minst få ögontalet 3. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Uppgiften lyckas cirka 3 gånger av 10. Chansen att lyckas är cirka 30 procent. 4. Kasta 2 tärningar 10 gånger. Målet är att få summan 7 eller lägre minst 5 gånger. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 200 poäng. Tar Uppgiften lyckas cirka 4 gånger av 5. Chansen att lyckas är cirka 80 procent. 5. Kasta 2 tärningar 6 gånger. Målet är att minst en gång få ett par, dvs. samma ögontal. Om du 100 poäng. Tar Uppgiften lyckas cirka 2 gånger av 3. Chansen att lyckas är cirka 67 procent. 6. kast få olika ögontal. Om du lyckas, får du 200 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Chansen att lyckas är cirka 56 procent. 7. Singla en slant 3 gånger. Målet är att få 3 kronor eller 3 klavar. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Chansen att lyckas är cirka 25 procent.

6 8. Singla en slant 15 gånger. Målet är att minst 8 gånger få klave. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Chansen att lyckas är cirka 50 procent. 9. Singla två slantar 10 gånger. Målet är att 6 gånger få samma (dvs. 2 kronor eller klavar). Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Chansen att lyckas är cirka 38 procent. 10. Singla en slant 6 gånger. Målet är att minst 4 gånger få klave. Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Uppgiften lyckas cirka 1 gång av 3. Chansen att lyckas är cirka 34 procent. 11. Dra 3 kort från en kortlek, utan återläggning av korten. Målet är att alla kort ska vara av olika färg. Om du lyckas, får du 400 poäng. Om du inte lyckas, förlorar du 100 poäng. Tar Chansen att lyckas är cirka 40 procent. 12. Dra 2 kort från en kortlek, utan återläggning av korten. Målet är att de ska vara av samma färg. Om du lyckas, får du 300 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Chansen att lyckas är cirka 24 procent. 13. av korten. Målet är att få minst 5 röda kort. Om du lyckas, får du 500 poäng. Om du inte lyckas, förlorar du 150 poäng. Tar Chansen att lyckas är cirka 64 procent. 14. av korten. Målet är att få minst 3 spader. Om du 100 poäng. Tar Chansen att lyckas är cirka 48 procent. 15. Dra 5 kort från en kortlek, utan återläggning av korten. Målet är att få minst 3 klädda kort (11, 12, 13). Om du lyckas, får du 250 poäng. Om du inte lyckas, förlorar du 50 poäng. Tar Chansen att lyckas är cirka 42 procent.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Sannolikhet DIAGNOS SA3

Sannolikhet DIAGNOS SA3 Sannolikhet DIAGNOS SA3 Grundläggande sannolikhet Diagnosen omfattar 9 uppgifter där eleverna ska ges möjlighet att visa om de förstår innebörden av begreppet sannolikhet och slump samt om de har strategier

Läs mer

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök.

SOS HT Slumpvariabler Diskreta slumpvariabler Binomialfördelning. Sannolikhetsfunktion. Slumpförsök. Probability 21-9-24 SOS HT1 Slumpvariabler Slumpvariabler Ett slumpmässigt försök ger ofta upphov till ett tal som bestäms av utfallet av försöket. Talet är alltså inte känt före försöket; det bestäms

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss?

1.5 Vad är sannolikheten för att ett slumpvis draget spelkort ska vara femma eller lägre eller knekt, dam, kung eller äss? 1 ÖVNINGAR I INDUKTIV LOGIK 1.1 En tärning kastas. Ange sannolikheten för att antalet ögon är a) 3 b) inte 3 c) 3 eller 5 d) jämnt e) mindre än 4 f) jämnt och mindre än 4 g) jämnt eller mindre än 4 h)

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

Studiehandledning, LMN100, Del 3 Matematikdelen

Studiehandledning, LMN100, Del 3 Matematikdelen Studiehandledning, LMN100, Del 3 Matematikdelen Kurslitteratur Staffan Stukat: Statistikens grunder (c:a 150:-) Vretblad: Algebra och geometri, utdrag (Delas ut på marsträffen) Britton-Garmo: Sannolikhet

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Tillägg, Studiehandledning LMN100 Delkurs 4: Statistik, sannolikhet och funktioner

Tillägg, Studiehandledning LMN100 Delkurs 4: Statistik, sannolikhet och funktioner Tillägg, Studiehandledning LMN100 Delkurs 4: Statistik, sannolikhet och funktioner MI Period 3, Vecka 19-22 Statistik Läs igenom Kapitel 1-7 Staffan Stukat Statistikens grunder, och lös följande uppgifter.

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

Vad kan hända? strävorna

Vad kan hända? strävorna strävorna 4D Vad kan hända? föra, följa och värdera matematiska resonemang sannolikhet Avsikt och matematikinnehåll Innebörden i sannolikhet är en viktig kunskap för alla. Det finns gott om exempel på

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Känguru 2011 Ecolier (åk 4 och 5)

Känguru 2011 Ecolier (åk 4 och 5) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U.

Veckoblad 3. Kapitel 3 i Matematisk statistik, Blomqvist U. Veckoblad 3 Kapitel 3 i Matematisk statistik, Blomqvist U. ya begrepp: likformig fördelning, hypergeometerisk fördelning, Hyp(, n, p), binomialfördelningen, Bin(n, p), och Poissonfördelningen, Po(λ). Standardfördelningarna

Läs mer

HI1024 Programmering, grundkurs TEN

HI1024 Programmering, grundkurs TEN HI1024 Programmering, grundkurs TEN2 2014-10-27 KTH STH Haninge 13.15-18.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011

Kombinatorik. Bilder: Akvareller gjorda av Ramon Cavallers, övriga diagram och foton av Nils-Göran. Nils-Göran Mattsson och Bokförlaget Borken, 2011 Kombinatorik Teori Multiplikationsprincipen..2 Teori Permutationer 3 Teori Kombinationer...5 Modell Dragning utan återläggning & sannolikheter 8 Teori Duvslageprincipen 11 Teori Pascals triangel & Mosertal...13

Läs mer

LÄRARHANDLEDNING. Eleverna kan två och två eller i större grupper på ett lekfullt sätt träna följande: Talinnehåll Addition Subtraktion Multiplikation

LÄRARHANDLEDNING. Eleverna kan två och två eller i större grupper på ett lekfullt sätt träna följande: Talinnehåll Addition Subtraktion Multiplikation LÄRARHANDLEDNING LH Tärningsövningar innehåller blandade matematikövningar inriktade på skolår F - 5 och kan med stor fördel användas som extra resursmaterial och idébank. Med korten som bas går det lätt

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

Spelregler för restaurangkasinospel

Spelregler för restaurangkasinospel Spelregler för restaurangkasinospel Innehållsförteckning Allmänt... 2 Dessa spelregler gäller för samtliga restaurangkasinospel... 2 Black Jack... 3 Black Jack Burn... 5 Varianten Two Decks Black Jack...

Läs mer

Föreläsning G70, 732G01 Statistik A

Föreläsning G70, 732G01 Statistik A Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde

Läs mer

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att...

Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att... Innehållsförteckning 2 Innehåll 3 Mina matematiska minnen 4 Korsord - Lodrätt - Vågrätt 5 Chiffer med bokstäver 6 Lika med 8 Formel 1 10 Konsumera mera? 12 Potenser 14 Omkretsen 16 Lista ut mönstret 18

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn.

samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel med Resampling-pluginet, välj Resampling Stats for Excel i Start-menyn. LABORATION 1: SANNOLIKHETER Lös Uppgift 1-8 nedan. Första uppgiften har ledning steg för steg, resterande uppgifter löser du på samma sätt. Spara varje uppgift som separat Excelfil. För att starta Excel

Läs mer

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Student sid 1 / 8 (gymnasiet åk 2 och 3) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Student sid 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

getsmart Grå Regler för:

getsmart Grå Regler för: (x²) 1 2 Regler för: getsmart Grå Algebra 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det rekommenderas att man börjar

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Kursinformation 13 föreläsningar: Måns Thulin, mans.thulin@statistik.uu.se 3 h: normalt 2 h föreläsning + 1 h räknestuga 7 räkneövningar:

Läs mer

Stora talens lag eller det jämnar ut sig

Stora talens lag eller det jämnar ut sig Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

Grundläggande programmering, STS 1, VT Sven Sandberg. Föreläsning 20

Grundläggande programmering, STS 1, VT Sven Sandberg. Föreläsning 20 Grundläggande programmering, STS 1, VT 2007. Sven Sandberg Föreläsning 20 Förra gången: GUI: Sammanfattning Fler exempel: KryssEnkat och FotoAlbum Fönster med variabelt antal objekt Idag: Ett stort exempel:

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Jessica Vesterlund Ulrika Hultberg Åsa Dahbo Eva Samelius

Jessica Vesterlund Ulrika Hultberg Åsa Dahbo Eva Samelius Jessica Vesterlund Ulrika Hultberg Åsa Dahbo Eva Samelius Matteljéns uppdrag är att stödja utvecklingen av matematikutbildning i förskola och skola. Genom att sprida goda undervisningsidéer och forskningsresultat

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

Lite extra material för deltagarna i kursen MAB 5.1

Lite extra material för deltagarna i kursen MAB 5.1 Lite extra material för deltagarna i kursen MAB 5.1 Detta material ska endast ses som ett stöd till provförberedelserna och inte som en fullständig sammanfattning av kursen. Hela kursens innehåll repeteras

Läs mer

4. STATISTIK OCH SANNOLIKHET

4. STATISTIK OCH SANNOLIKHET 4. STATISTI OCH SANNOLIHET R M MEDIANEN Fem personer är 160 cm, 170 cm, 165 cm, 155 cm och 150 cm. a) Mårten säger att medianen är 165 cm. Varför har han fel? b) Vad är det riktiga medianvärdet? E R Godtagbart

Läs mer

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Veckoblad : Data/Eletro 54 A = Patienten är ett allvarligt fall B = Patienten är under 4 år C= Någon av patientens föräldrar har diabetes 8 + + + 5 + 5 + 8 +

Läs mer

Allmänt om Pidro. Spelets uppbyggnad

Allmänt om Pidro. Spelets uppbyggnad Allmänt om Pidro Pidro är ett kortspel för fyra personer där ett par spelar mot ett annat par. Lagmedlemmarna sitter mittemot varandra. Pidro liknar t.ex. Bridge i det avseendet att spelet är uppdelat

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Agenda. Objektorienterad programmering Föreläsning 13

Agenda. Objektorienterad programmering Föreläsning 13 Objektorienterad programmering Föreläsning 13 Copyright Mahmud Al Hakim mahmud@dynamicos.se www.webacademy.se Agenda Ett objektorienterat exempel Repetition Mer om arv Abstrakta klasser Abstrakta metoder

Läs mer

14.1 Diskret sannolikhetslära

14.1 Diskret sannolikhetslära 14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av

Läs mer

DET HELIGA ÅT DE HELIGA SPELKORTSERIE

DET HELIGA ÅT DE HELIGA SPELKORTSERIE DET HELIGA ÅT DE HELIGA SPELKORTSERIE Det heliga åt de heliga spelkortserien innehåller fem olika spelvarianter. Syftet med spelen är låta spelarna bekanta sig med bl.a. helgonens liv och grupperingen

Läs mer

Lektionsaktivitet: Vad kan hända?

Lektionsaktivitet: Vad kan hända? Modul: Didaktiska perspektiv på matematikundervisningen 1 Del 3: Fantasi, mönster och sannolikhet Lektionsaktivitet: Vad kan hända? Berit Bergius & Lena Trygg, NCM Syfte Innebörden i sannolikhet är en

Läs mer

Känguru 2016 Benjamin (åk 6 och 7)

Känguru 2016 Benjamin (åk 6 och 7) sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex.

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till?

Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till? 1 Skriv tvåhundrafemtioentusensjuhundrasextiotre baklänges. Vad får du om du först halverar 180 och sedan halverar det nya talet en gång till? Vilken siffra står den romerska bokstaven V för? V Vilka siffror

Läs mer

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är

Hur stor är sannolikheten att någon i klassen har en katt? Hur stor är Karin Landtblom Hur sannolikt är det? Uttrycket Hur sannolikt är det på en skala? använder många till vardags, ofta med viss ironi. I denna artikel om grunder för begreppet sannolikhet åskådliggör författaren

Läs mer

Sivu 1/5 Innehåll Förberedelser Spelets mål Hur man flyttar Öppna havet Passadvindarna Sunden Skatten Kapning Spelets slut Andra PIRATER spel Spelets innehåll 12 sjörövarskepp med dekaler, 2 tärningar,

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

KALLE ANKA CUP Matchskola

KALLE ANKA CUP Matchskola KALLE ANKA CUP Matchskola Kalle Anka Cup matchskola är uppdelad i fem avsnitt Sida Så ser tennisbanan ut 2 Så räknar du 4 Så spelar du singel 5 Så spelar du dubbel 7 Första matchen 8 Sida 1 av 10 Så ser

Läs mer

Hjälps åt att skriva några rader om senaste scoutmötet i avdelningens loggbok.

Hjälps åt att skriva några rader om senaste scoutmötet i avdelningens loggbok. SCOUTMÖTET KORTSPEL MED OLIKA FÖRUTSÄTTNINGAR Det är bra om du som ledare läser igenom detta innan mötet äger rum. Under dagens möte får scouterna prova på att kommunicera utan att prata med varandra och

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

SICA- läromedel som kan vara lämpliga i sfi studieväg 1

SICA- läromedel som kan vara lämpliga i sfi studieväg 1 SICA- läromedel som kan vara lämpliga i sfi studieväg 1 1) Läs- och skrivinlärning Palin system: Språk- begrepps- och matteövningar i ett komplext system av färger, siffror och bilder. Övningsuppgifterna

Läs mer

Vad behöver du för att kunna spela? Jo, du och din motståndare behöver varsin egen kortlek med 60 kort, ett mynt att singla slant med och några

Vad behöver du för att kunna spela? Jo, du och din motståndare behöver varsin egen kortlek med 60 kort, ett mynt att singla slant med och några Vad behöver du för att kunna spela? Jo, du och din motståndare behöver varsin egen kortlek med 60 kort, ett mynt att singla slant med och några polletter för att markera skador på era Pokémon. Ni kan använda

Läs mer

4. Stokastiska variabler

4. Stokastiska variabler 4. Stokastiska variabler En stokastisk variabel (s.v.) är en funktion som definieras i utfallsrummet. Varje stokastisk variabel har en viss sannolikhetsstruktur. Ex: Man kastar två tärningar. Låt X = summan

Läs mer

Sannolikhetslära Albertus Pictor Lyckohjulet

Sannolikhetslära Albertus Pictor Lyckohjulet Sannolikhetslära Albertus Pictor Lyckohjulet Regnabo. Regnaui. Sum sine Regno står det målat över Albertus Pictors lyckohjul i Härkeberga vapenhus. Det betyder jag skall ha makten, jag har makten, jag

Läs mer

Tree house. m i e. r du

Tree house. m i e. r du Tree house en r du årt tävlingsbidrag är ett spel som har till syfte att göra folk mer medvetna om hur man sparar energi i vardagen, samtidigt som de har kul. Det ska inte vara tråkigt att lära sig hur

Läs mer

Sannolikhet och statistik. S

Sannolikhet och statistik. S Sannolikhet och statistik. S Området består av två delar sannolikhet och statistik. Diagnoserna i delområdet sannolikhet avser att kartlägga elevernas förmåga att arbeta med enkel kombinatorik, att använda

Läs mer

getsmart Lila Regler för:

getsmart Lila Regler för: 3 2 Regler för: getsmart Lila 9 Graf y 4 7 3 2 2 3 Funksjon 1-4 4-3 -2-1 -1 1 2 3-2 x f(x)= f(x)= 3 2 2 3 3 2 2 3-3 -4 Graf 9 3 2 2 3 Funksjon 7 Det rekommenderas att man börjar med att se på powerpoint-reglerna

Läs mer

Kapitel 5 Multivariata sannolikhetsfördelningar

Kapitel 5 Multivariata sannolikhetsfördelningar Sannolikhetslära och inferens II Kapitel 5 Multivariata sannolikhetsfördelningar 1 Multivariata sannolikhetsfördelningar En slumpvariabel som, när slumpförsöket utförs, antar exakt ett värde sägs vara

Läs mer

Färg, form & lek. Inspiration och kreativitet

Färg, form & lek. Inspiration och kreativitet Färg, form & lek Inspiration och kreativitet Ung som gammal behöver inspireras av färg, form och lek. Att klämma, känna och skapa samtidigt som ens sinnen upplever och registrerar, ger stimulans och kreativitet.

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University

Läs mer

Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013

Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013 Lösningar tentamensskrivning i stokastik MAGB64 den 7 juni 2013 Då detta skrivs är tentorna inte färdigrättade, det tar väldig tid och blir nog inte klart före helgen (jag har annat också), men jag har

Läs mer

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet

Känguru 2012 Junior sivu 1 / 8 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasiet Känguru 2012 Junior sivu 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med

Läs mer

Regelsammandrag på Svenska Yu-Gi-Oh!

Regelsammandrag på Svenska Yu-Gi-Oh! Regelsammandrag på Svenska Yu-Gi-Oh! Spelets Mål Målet med Yu-Gi-Oh! SAMLARKORTSPEL är att vinna en match mot din motståndare. Kort Det finns tre huvudsakliga typer av kort i Yu-Gi-Oh!: Monsterkort, Magickort

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

050504/AE. Regler för Pick n Click

050504/AE. Regler för Pick n Click 050504/AE Regler för Pick n Click Gäller fr o m den 23 maj 2005 1 INNEHÅLLSFÖRTECKNING 1. ALLMÄNNA REGLER... 3 2. SPELPLAN OCH SPELFORMER... 3 3. DELTAGANDE I LOTTERIET... 4 4. KVITT ELLER DUBBELT 5 5.

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Sidan x -till bridgens värld

Sidan x -till bridgens värld 3 x 3 -till bridgens värld Sidan 1 Vad är bridge? Bridge är ett kortspel som går ut på att vinna så mycket poäng som möjligt! Bridge är ett strategispel som bygger på samarbete mellan två personer! Det

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik

1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik 1014 Att lyckas få ointresserade elever att förstå och uppskatta ämnet matematik Beskriver några projekt, laborationer och alternativa arbetsformer som gett goda resultat. Diskussion om tillvägagångssätt

Läs mer

Bridge. på 10 minuter

Bridge. på 10 minuter Bridge på 10 minuter STEG FÖR STEG Det bästa sättet att lära sig spela bridge på är att börja med en förenklad form av spelet. Varje giv består av två moment, efter det att man delat ut korten: budgivning

Läs mer

Diskreta slumpvariabler

Diskreta slumpvariabler 1/20 Diskreta slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 28/1 2013 2/20 Dagens föreläsning En maskin gör fel ibland! En man berättar att han har minst en

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT SVAR UPPGIFT SVAR UPPGIFT SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT SVAR UPPGIFT SVAR UPPGIFT SVAR Känguru 2010 Benjamin (klass 6 och 7) sida 1 / 5 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Föreläsning 7 FK2002

Föreläsning 7 FK2002 Föreläsning 7 FK2002 Föreläsning 7 Binomialfördelning Poissonfördelning Att testa en hypotes Binomialfördelningen Betrakta ett experiment som består av n försök varav ν är lyckade försök. Mätningar har

Läs mer

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller - ^^s^^^^'^^ Sannolihhet och statistik Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller chanser för att olika händelser ska inträffa.

Läs mer

Sannerligen synnerligen osannolikt

Sannerligen synnerligen osannolikt Sannerligen synnerligen osannolikt åkan Johansson och ennart Skoogh I en nation som Sverige, som så totalt har gripits av speldjävulen, behöver både lärare och elever vettiga vardagskunskaper om sannolikhet

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Husorgan för ungdomsbridgen

Husorgan för ungdomsbridgen SVERIGES Larsson Melander s 16 STENKLARA SIOR FÖR KORTLIRARE 1 1998 Husorgan för ungdomsbridgen PRIS 19:50 (inkl. moms) ÅRETS SPEL ALLA ÅR TIPSSKOLAN NICHLAS LÄR UT SINA VASSASTE TIPS BRIGEFÖRBUN WWW.ZONE.COM

Läs mer

PRELIMINÄRPROV Kort matematik

PRELIMINÄRPROV Kort matematik PRELIMINÄRPROV Kort matematik 80 Lösningar och poängförslag Lös ekvationerna x 0 x 4 x,0 a) 0x b) c) a) Multiplikation med 0; x 00x, p 0 99 b) Division med ; : 4 9 9 x ( = =,5 ) p 4 8 8 8-99 x = 0, x 0

Läs mer

Nationell simultantävling

Nationell simultantävling Nationell simultantävling Givsamling 11/9 2017 Kommentarer av Sanna Clementsson SVENSKA BRIDGEFÖRBUNDET Nordisk Standard Kommentarerna till simultantävlingarna baseras på budsystemet Nordisk Standard.

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel.

Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Övning 2 Vad du ska kunna efter denna övning Kunna definiera laplacetransformen för en kontinuerlig stokastisk variabel. Kunna definiera z-transformen för en diskret stokastisk variabel. Kunna beräkna

Läs mer

HÖGA TRAMPOLIN STATISTIK OCH SANNOLIKHET. Sida. Innehåll. Till eleven

HÖGA TRAMPOLIN STATISTIK OCH SANNOLIKHET. Sida. Innehåll. Till eleven TRAMPOLIN STATISTIK OCH SANNOLIKHET HÖGA Innehåll Stapel- och stolpdiagram Linjediagram Cirkeldiagram Histogram Vilseledande diagram Två diagram i ett Medelvärde Median Typvärde och variationsbredd Slumpförsök

Läs mer

SAMMANFATTNING Här följer spelets gång under en tur i sammanfattning. En tur måste spelas i denna ordning. Världsstrategispelet FÖRSTÄRKNINGSFAS

SAMMANFATTNING Här följer spelets gång under en tur i sammanfattning. En tur måste spelas i denna ordning. Världsstrategispelet FÖRSTÄRKNINGSFAS 14538i06 2/18/00 5:05 PM Page 1 SAMMANFATTNING Här följer spelets gång under en tur i sammanfattning. En tur måste spelas i denna ordning. FÖRSTÄRKNINGSFAS - en tredjedel av områdena ska behärskas - extra

Läs mer

Svar till gamla tentamenstal på veckobladen

Svar till gamla tentamenstal på veckobladen Svar till gamla tentamenstal på veckobladen Data/Eletro 4 A Patienten är ett allvarligt fall B Patienten är under 4 år C Någon av patientens föräldrar har diabetes 8 + + + + + 8 + a) P(A).4 och P(C).8

Läs mer

Handbok Officersskat. Martin Heni Eugene Trounev Granskare: Mike McBride Översättare: Stefan Asserhäll

Handbok Officersskat. Martin Heni Eugene Trounev Granskare: Mike McBride Översättare: Stefan Asserhäll Martin Heni Eugene Trounev Granskare: Mike McBride Översättare: Stefan Asserhäll 2 Innehåll 1 Inledning 5 2 Hur man spelar 6 3 Spelets regler, strategi och tips 7 3.1 Spelbordet..........................................

Läs mer

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar. SANNOLIKHET Sannolikhet är: Hur stor chans (eller risk) att något inträffar. tomas.persson@edu.uu.se SANNOLIKHET Grundpremisser: Ju fler möjliga händelser, desto mindre sannolikhet att en viss händelse

Läs mer