Lite extra material för deltagarna i kursen MAB 5.1

Storlek: px
Starta visningen från sidan:

Download "Lite extra material för deltagarna i kursen MAB 5.1"

Transkript

1 Lite extra material för deltagarna i kursen MAB 5.1 Detta material ska endast ses som ett stöd till provförberedelserna och inte som en fullständig sammanfattning av kursen. Hela kursens innehåll repeteras noggrant på sidorna i boken. Arbeta dig gärna igenom det materialet också. Sannolikhet Sannolikheten för någon händelse A är P(A)= antalet gynnsamma utfall för A totala antalet utfall Exempel: En tärning kastas. Vilken är sannolikheten för att ögontalet är mindre än 5? Svar: P ögontalet mindre än 5 = 4 6 0,67 Förklaring: Händelsen är ögontalet mindre än 5 De gynnsamma utfallen för händelsen är ögontalen {1,2,3,4} (4 st) Alla utfall, dvs alla ögontal är {1,2,3,4,5,6} (6 st) Uppgift Vilken är sannolikheten för att en person född år 1991 är född a) i februari? b) den sista dagen av en månad? Svar: a) P född i februari år 1991 = ,077 b) P född sista dagen av en månad år 1991 = ,033 Förklaring: a)-fallet händelsen är född i februari år 1991 gynnsamma utfall är dagarna i februari (28 st) totala antalet utfall är alla dagar år 1991 (365 st) Förklaring: b)-fallet händelsen är född sista dagen av en månad år 1991 gynnsamma utfall är antalet sådana dagar (12 st) totala antalet utfall är alla dagar år 1991 (365 st)

2 Experimentell sannolikheten Med experimentell sannolikhet avser man sannolikheter som man härleder från insamlad information. Den experimentella sannolikheten är inte nödvändigtvis exakt samma som den verkliga sannolikheten, men om materialet är stort kommer den att ligga mycket nära den verkliga. Exempel: Tabellen nedan visar antalet förlossningar och tvillingfödslar i Finland år 2003 Förlossningar Tvillingfödslar Den experimentella sannolikheten för tvillingfödsel blir nu den relativa andelen av tvillingfödslar, alltså P tvillingfödsel = ,014 Exempel Tusen glödlampors livstid har testats och resultatet är följande: Funktionstid (h) Antal lampor Med vilken sannolikhet lyser en lampa som redan fungerat i 2000 timmar, ytterligare 2000 timmar? Lösning: Enligt tabellen slocknade = 741 lampor inom 2000 timmar. Alltså lyste =259 lampor ännu efter 2000 timmar. Enligt tabellen slocknade =229 i tidsintervallet timmar. Alltså lyste ännu =30 lampor efter 4000 timmar. Svaret blir således P lampa som lyst 2000 h lyser ytterligare 2000 h = ,12

3 Tärningskast med två tärningar Uppgift: Vi kastar två tärningar, en röd en blå. Vad är sannolikheten att ögontalens summa blir 5? Beteckning: I detta sammanhang är ett utfall ögontalen av tärningarna vid ett kast. Om till exempel den blå tärningen blir en fyra och den röda en etta kan utfallet nedtecknas som (4,1). =(4,1) Lösning med hjälp av definitionen för sannolikhet: Sammanlagt finns det 36 möjliga utfall: {(1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (1,2), (2,2), (3,2), (4,2), (5,2), (6,2), (1,3), (2,3), (3,3), (4,3), (5,3), (6,3), (1,4), (2,4), (3,4), (4,4), (5,4), (6,4), (1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (1,6), (2,6), (3,6), (4,6), (5,6), (6,6)} Gynnsamma utfall är {(1,4), (2,3), (3,2), (4,1)}. Dessa är fyra till antalet. Svaret blir: P ögontalens summa 5 = ,11 Snabbare lösningsmetod: Vi ritar upp följande koordinatsystem och ringar in de punkter för vilka koordinaternas summa är 5: Vi ser av bilden att det finns fyra punkter i området. Svaret blir således P ögontalens summa 5 = ,11

4 Multiplikationsregeln Om A och B är oberoende händelser har vi att P A och B =P A P B Exempel: 51,2 av nyfödda barn är pojkar. Med vilken sannolikhet är alla fyra barn i en familj pojkar? Lösning: Vi gör beteckningar för händelser: A 1 = första är pojke A 2 = andra är pojke A 3 = tredje är pojke A 4 = fjärde är pojke P(alla är pojkar) = P(A 1 och A 2 och A 3 och A 4 ) = P(A 1 ). P(A 2 ). P(A 3 ). P(A 4 ) = 0,512. 0,512. 0,512. 0,512 0,69 Multiplikationsregeln, händelser som inte är oberoende P A och B =P A P B händer förutsatt att A redan ägt rum. Exempel: Vad är sannolikheten att dra tre hjärter ur en kortpacke? Lösning: ,013 Komplementhändelse Om A är någon händelse, så är dess komplementhändelse A = "A händer inte". Sannolikheternas samband är P A =1 P A. Typisk användning av komplementhändelse: 5% är vänsterhänta. Med vilken sannolikhet finns det åtminstone en vänsterhänt i en grupp på 20 elever? Kommentar: Händelsen åtminstone en vänsterhänt är svår att räkna ut direkt, för då skulle man bli tvungen att separat beräkna sannolikheterna att exakt en är vänsterhänt, exakt två är vänsterhänta, exakt tre är vänsterhänta etc. Komplementhändelsen till åtminstone en är vänsterhänt är händelsen ingen är vänsterhänt och den är lättare att räkna ut. Lösning: Sannolikheten att en person inte är vänsterhänt är 0,95. Sannolikheten att ingen av de tjugo eleverna är vänsterhänta blir därför enligt multiplikationsregeln lika med 0, Således får vi att P åtminstone en vänsterhänt =1 0, ,64

5 Additionsregeln Om A och B är uteslutande händelser så gäller det att P(A eller B)=P(A)+P(A). Additionsregeln använd ofta is samband med multiplikationsregeln, vilket vi ser i följande exempel. Uppgift: En fotbollsmålvakt räddar 13% av motståndarens straffsparkar. Med vilken sannolikhet lyckas han rädda exakt en av fem straffar? Lösning: Vi gör följande beteckningar: A 1 = han räddar första straffen, släpper in resten A 2 = han räddar andra straffen, släpper in resten A 3 = han räddar tredje straffen, släpper in resten A 4 = han räddar fjärde straffen, släpper in resten A 5 = han räddar femte straffen, släpper in resten Vi ser m.h.a. multiplikationsregeln att P( A 1 )=0,13. 0,87. 0,87. 0,87. 0,87=0,13. 0,87 4 och också att P( A 2 )=0,87. 0,13. 0,87. 0,87. 0,87= 0,13. 0,87 4 etc. Alltså har vi att P räddar exakt en straff = P A 1 ellera 2 ellera 3 ellera 4 ellera 5 =P A 1 P A 2 P A 3 P A 4 P A 5 Produktprincipen och permutationer = 0,13 0,87 4 0,13 0,87 4 0,13 0,87 4 0,13 0,87 4 0,13 0,87 4 = 5 0,13 0,87 4 0,37 Produktprincipen: Om du gör flera val efter varandra, blir det totala antalet kombinationer produkten av valmöjligheterna vid de olika valen. Mera konkret: Anta att du att du går till en kebabrestaurang där du kan göra följande val: 1) Kebab eller falafel 2) Stark eller svag chilisås 3) Franskisar, ris eller pitabröd. Hur många olika sorters måltid kan du få? Lösning: Vid val 1) har du 2 alternativ. Vid val 2) har du 3 alternativ Vid val 3) har du 2 alternativ. Det finns alltså sammanlagt =12 olika sorters måltid.

6 Permutationer: Anta att vi har fyra objekt som kan arrangeras i en ordningsföljd. Varje sådan ordningsföljd är en permutation. En sak som man ofta behöver veta är hur många permutationer en mängd har. Hur många permutationer har dessa fyra objekt då? val av första objekt val av andra objekt val av tredje objekt val av fjärde objekt 4 möjligheter 3 möjligheter 2 möjligheter 1 möjlighet Enligt produktprincipen finns det således =24 permutationer. Man kan alltså arrangera dem i 24 olika ordningsföljder. Man betecknar 4!= Uppgift: Efter en fest väljer alla fem gäster på måfå en hatt på hatthyllan. Med vilken sannolikhet får alla sin egen hat? Lösning: Det finns 5!= =120 olika sätt att placera fem hattar på fem herrar. Ett av dessa är det rätta. Alltså blir sannolikheten P alla får sin egen hatt = ,0083 Antalet delmängder En mängd med n element har n n n 1 n 2 n k 1 k = k! stycken delmängder med k element. Uttryck av typen n k kallas binomialkoefficienter. Man räknar ut värdet på dem med räknemaskinen m.h.a. ncr-knappen. Uppgift: Beräkna 8 5. Lösning: = = =56. På räknemaskin: knappra in 8 ncr 5

7 Uppgift: Anta att vi har 27 elever i en högstadieklass. På hur många sätt kan man av eleverna bilda ett sexpersoners innebandylag? Ett sådant lag väljs med lottning. Vilken är sannolikheten att klassens bästa spelare Jenny och Johan båda kommer med i laget? Lösning: Det finns 27 6 = olika sätt att välja laget. Då vi räknar sannolikheten att Jenny och Johan kommer med finns det således totalt 27 6 utfall. Om Johan och Jenny väljs finns det 25 4 gynnsamma utfall. Således får vi att P(Johan och Jenny med) = ,043 sätt att välja de övriga fyra spelarna. Detta är antalet

8 Repetitionsmaterial för MAB 5.1, statistikdelen De cetrala centrala delalarna i kursens andra del är följande: diagram, frekvenstabeller, lägesmått (medeltal, modus, median), kumulativa fördelningar, standardavvikelse och normalfördelningen. Exempel: Vi åskådliggör statistiskt material över dagstidningsprenumeratiooner Andel hushåll % HBL och HS 4 Endast HBL 2 Endast HS 65 Andra tidningar 10 Ingen tidning 19 Som stapeldiagram: Andel hushåll % Andel hushåll % HBL och HS Endast HBL Endast HS Andra tidningar Ingen tidning

9 Materialet kan också framställas dom ett cirkeldiagram: Andel hushåll % Ingen tidning 19 % Andra tidningar 10 % HBL och HS 4 % Endast HBL 2 % Endast HS 65 % HBL och HS Endast HBL Endast HS Andra tidningar Ingen tidning När man rita vinklar med penna och papper måste man räkna ut sektorernas vinklar så att de motsvarar förhållandena de representerar: Andel hushåll % Sektorvinkel HBL och HS 4 0,04*360º=14,4º Endast HBL 2 0,02*360º=7,2º Endast HS 65 0,65*360º=234º Andra tidningar 10 0,10*360º=36º Ingen tidning 19 0,19*360º=68,4º Frekvenstabell, medelvärde, typvärde och median Statistiskt material presenteras ofta i en frekvenstabell. Exempel: En nybörjarkurs i judo för under åringar har 21 deltagare. Nedan är en tabell över frekvensen av olika åldrar Ålder frekvens Modus (typvärde) är det vanligaste värdet, dvs värdet med den högsta relativa frekvensen, i detta fall 16. Medianen är det mittersta värdet (se en definition på sida 107 i boken). Tabellen visar att det finns 9st adertonåringar, 4st sjuttonåringar och 6st sextonåringar. Om vi arrangerar alla deltagares åldrar i en storleksordning skulle den se ut såhär: 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18 Det mittersta talet är 17 (det finns lika många som är större eller lika som det finns åldrar som är mindre eller lika).

10 Medianen kan också läsas ur tabellen. Sammanlagt finns det 21 deltagare. Hälften av 21 är 10,5. Vi räknar ihop klasser tills vi kommer till detta värde: 4) I klassen adertonåringar finns 8 (detta överskrider inte 10,5) 5) I klasserna adertonåringar och sjuttonåringar finns 8+4=12. Detta överstiger 10,5. 6) Alltså är 17 medianen. Medeltalet räknar vi ut enligt följande: ,0. 21 Klassindelning Det är ofta naturligt att presentera statistiskt material i klassindelningar. Tänk er t.ex. att man har fört statistik över inkomster på tusentals individer och vill presentera materialet i en begriplig form. Då lönar det sig inte att berätta exakt vad varje individ har tjänat, utan man man delar in individerna i olika inkomstklasser. Exemplet med elevers bostadsytor: En enkät ger följande resultat: 45, 51, 74, 71, 32, 102, 78, 89, 95, 88, 80, 74, 81, 77, 89, 105, 90, 108, 125, 58, 59, 85, 87, 70, 66, 65, 80, 74, 69, 46, 67, 74, 67, 54, 54, 76, 77, 37, 78, 68, 64, 87, 82, 85, 63, 59, 60, 71, 62, 63, 100 Vi gör en klassindelad frekvenstabell: Area (m²) Frekvens Klassmitterna blir: =40, =60,etc. Alltså får vi att Area (m²) Klassmitt (m²) Frekvens

11 Vi räknar ut ett medeltal m.h.a. klassmitterna: Detta medelvärde är inte alldeles exakt eftersom man antar att alla värden som faller inom en klass är samma som klassmitten. Det verkliga medeltalet skulle man kunna räkna ut i vanlig ordning genom att utgå direkt ifrån svaren i enkäten. Om man däremot endast har tillgång till en klassindelad frekvenstabell räknar man ut medelvärdet som ovan. Kumulativa fördelningar Nedan har vi Finlands åldersfördelning år 1850 Ålder % , , , , , ,0 90-0,0

12 Av tabellen ovan kan vi bilda en kumulativ tabell: Ålder % under 5 13,9 under 15 34,5 (=13,9 + 20,6) under 25 52,2 (=34,5+17,7) under 45 79,3 under 65 95,6 under 75 99,0 under Nu kan vi göra ett kumulativt diagram genom att låta pricka in datapunkterna i tabellen till höger i ett koordinatsysten och anpassa en kurva till den. Ålder blir x-axeln och % blir y-axeln. Kumulativt diagram: Nu kan vi t.ex. läsa ut att medianåldern år 1850 var ungefär 24 år: Normerade värdet

13 Standardavvikelse och normerade värden Power pointen från lektionen:

14

15 Normalfördelningen Många statistiska variabler har en fördelning som påminner om normalfördelningen. Längd, vitsord, mätfel, nyföddas vikt, etc fördelas ungefär enligt normalfördelningen. Om vi lär oss förstå normalfördelningen kan vi tillämpa den i många situationer. Bilden nedanför visar fördelningen av en variabel som är normalfördelad och har medelvärde noll och standardavvikelse 1. I praktiken har de flesta variabler vi undersöker inte medeltal 0 och standardavvikelse 1. Däremot kommer deras normerade värden att vara det (se förra sidan för normerade värden). Exempel: Anta att den den stokastiska variabeln X är normalfördelad med medeltal 20 och standardavvikelse 5. Vad är sannolikheten att X är mellan 15 och 25? Lösning: De normerade värdena fär 15 och 25 är (15-20)/5=-1 respektive (25-20)/5=1. Nu visar tabellen ovan att sannolikheterna mellan -1 och 1 adderas till 15+19,1+19,1+15=68,2. Svar: 68,2%. Kommentar: I exemplet ovan skulle X i en vanlig uppgift vara något konkret, till exempel vikten på Schäferhundar eller liknande.

16 Normalfördelningen med tabeller Tabellen i förra avsnittet visar sannolikheter där vi behandlar multiplar av hälften av en standardavvikelse (axelns värden på-1, -0,5, 0, 0,5, 1, 1,5,...). Vi kan med hjälp av tabellen lösa uppgifter där de normerade värdena inte råkar vara just sådana tal. Exempel: Anta att Schäferhundarnas vikt är normalfärdelad med medelvikt på 20 kg och standardavvikelse på 4 kg. Vad är sannolikheten att en Schäfer väger under 23 kg? Lösning: Vi räknar ut det normerade värdet för 23: (23-20)/4=0,75. Tabellvärdet för 0,75 är 7734, dvs 0,75 =7734. Svar: 77,34% 73% av schäfrarna är under 23 kg. Förklaring: 77,34% 0,75

17 Exempel: Medeltalet på längden av kvinnor i åldern 20 är 165 cm och standardavvikelsen är 6 cm. Vad är sannolikheten att en godtycklig kvinna i den ålder är längre än 158 cm? Lösning: Normerade värdet för 158 är ( )/6-1,17. Tabellvärdet för -1,17 finns inte. Men tabellvärdet för 1,17 är 1,17 =8790. Svar: 87,90% Förklaring: Detta är den sökta sannolikheten! -1,17 De vita områdena är lika stora pga symmetri! 87,90% 1,17

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

13.1 Matematisk statistik

13.1 Matematisk statistik 13.1 Matematisk statistik 13.1.1 Grundläggande begrepp I den här föreläsningen kommer vi att definiera och exemplifiera ett antal begrepp som sedan kommer att följa oss genom hela kursen. Det är därför

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.

Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195. Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Sorina Barza Department of Mathematics, Karlstad University, Sweden October 5, 2010 Vad är beskrivande statistik? Sammanställning av statistiska material Vad är beskrivande statistik?

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-)fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

F4 Beskrivning av ett datamaterial. Val av diagram, lägesmått och spridningsmått.

F4 Beskrivning av ett datamaterial. Val av diagram, lägesmått och spridningsmått. Tabellering av kvalitativ variabel En variabel varierar över ett antal kategorier. F4 Beskrivning av ett datamaterial. Val av diagram, lägesmått och spridningsmått. T ex, individer är kvinnor eller män.

Läs mer

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,

1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, 1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt

Läs mer

Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå.

Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå. Övningsuppgifter statistik Varje deluppgift ger 1 poäng. Det är även utskrivet vilken förmåga du kan visa på varje uppgift. Till exempel betyder EB, begreppsförmåga på E-nivå. Hjälpmedel: papper och penna.

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

REPETITION 3 A. en femma eller en sexa?

REPETITION 3 A. en femma eller en sexa? REPETITION 3 A 1 Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sexa? 2 Eleverna i klass 8C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

NpMa2b vt Kravgränser

NpMa2b vt Kravgränser Kravgränser Provet består av ett muntligt delprov (Del A) och tre skriftliga delprov (Del B, Del C och Del D). Tillsammans kan de ge 67 poäng varav 26 E-, 24 C- och 17 A-poäng. Observera att kravgränserna

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

6-2 Medelvärde och median. Namn:

6-2 Medelvärde och median. Namn: 6-2 Medelvärde och median. Namn: Inledning Du har nu lärt dig en hel del om datainsamling och presentation av data i olika sorters diagram. I det här kapitlet skall du studera hur man kan karaktärisera

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 2

ÖVNINGSUPPGIFTER KAPITEL 2 ÖVNINGSUPPGIFTER KAPITEL 2 DATAMATRISEN 1. Datamatrisen nedan visar ett utdrag av ett datamaterial för USA:s 50 stater. Stat Befolkningsmängd Inkomst Marijuana Procent män (miljoner) per person lagligt?

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology Mars 23, 2015 Lärare och kurslitteratur : Rum: E-mail: Anders Hildeman: Rum: E-mail: Kursansvarig och föreläsare H3018

Läs mer

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift

Exempel: Väljarbarometern. Föreläsning 1: Introduktion. Om Väljarbarometern. Statistikens uppgift Exempel: Väljarbarometern Föreläsning 1: Introduktion Matematisk statistik Det som typiskt karakteriserar ett statistiskt problem är att vi har en stor grupp (population) som vi vill analysera. Vi kan

Läs mer

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov

PLANERING MATEMATIK - ÅK 8. Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik. Elevens namn: Datum för prov PLANERING MATEMATIK - ÅK 8 Bok: Y (fjärde upplagan) Kapitel : 5 Ekvationer Kapitel : 6 Sannolikhet och statistik Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017

STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 1 732G70 Statistik A 1 Population och stickprov Population = den samling enheter (exempelvis individer) som vi vill dra slutsatser om. Populationen definieras på logisk väg med utgångspunkt

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik Chalmers University of Technology August 29, 2016 Lärare : Rum: E-mail: Anders Hildeman: Rum: E-mail: Sandra Eriksson Barman: Rum: E-mail: Kursansvarig

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera) KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar

Läs mer

Forskningsmetodik 2006 lektion 2

Forskningsmetodik 2006 lektion 2 Forskningsmetodik 6 lektion Per Olof Hulth hulth@physto.se Slumpmässiga och systematiska mätfel Man skiljer på två typer av fel (osäkerheter) vid mätningar:.slumpmässiga fel Positiva fel lika vanliga som

Läs mer

Grundläggande statistik kurs 1

Grundläggande statistik kurs 1 Grundläggande statistik kurs 1 Problem 1 Arbeta med frekvenstabeller Sid 2: Så här ser sidan 2 ut. Vi har alltså en delad sida med kalkylbladet till vänster och en Data&Statistik-sida till höger. I den

Läs mer

Olika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala.

Olika typer av variabler och skalor. 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Kvotskala. Intervallskala. Nominalskala. Olika typer av variabler och skalor Kvalitativ variabel -variabeln antar inte numeriska värden utan bara olika kategorier. vis olika bilmärken, eller man, kvinna. Kvantitativ variabel Antar numeriska värden

Läs mer

1.1 Diskret (Sannolikhets-)fördelning

1.1 Diskret (Sannolikhets-)fördelning Föreläsning III. Diskret (Sannolikhets-fördelning Med diskret menas i matematik, att något antar ett ändligt antal värden eller uppräkneligt oändligt med värden e.vis {, 2, 3,...}. Med fördelning menas

Läs mer

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson

STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson 1 STOCKHOLMS UNIVERSITET VT 2007 Statistiska institutionen Johan Andersson Skriftlig tentamen på momentet Beskrivande statistik SDA l, 2 poäng, ingående i kurserna Grundkurs i statistik 20 poäng, samt

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

732G70, 732G01 Statistik A 7hp

732G70, 732G01 Statistik A 7hp 732G70, 732G01 Statistik A 7hp Linda Wänström (linda.wanstrom@liu.se) Tommy Schyman (tommy.schyman@liu.se) Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin 1 Statistik är en gren inom

Läs mer

MA1S TATISTIK UPPGIFTER

MA1S TATISTIK UPPGIFTER 1. Ett antal familjer svarade på frågan: Hur många datorer har Ni i Er familj? Resultatet visas i diagrammet. A) Bestäm typvärdet och medianen. B) Bestäm medelvärdet. 2. Diagrammet visar antalet syskon

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Föreläsning 1: Introduktion

Föreläsning 1: Introduktion Föreläsning 1: Introduktion Matematisk statistik David Bolin Chalmers University of Technology March 22, 2014 Lärare och kurslitteratur David Bolin: Rum: E-mail: Fredrik Boulund: Rum: E-mail: Kursansvarig,

Läs mer

Tal Räknelagar. Sammanfattning Ma1

Tal Räknelagar. Sammanfattning Ma1 Tal Räknelagar Prioriteringsregler I uttryck med flera räknesätt beräknas uttrycket i följande ordning: 1. Parenteser 2. Potenser. Multiplikation och division. Addition och subtraktion Exempel: 5 22 1.

Läs mer

Repetitionsprov inför provet Statistik

Repetitionsprov inför provet Statistik Repetitionsprov inför provet Statistik Del 1 Med miniräknare Endast svar krävs! 1. I en skolklass mättes sju elevers skostorlek. Detta visas i tabellen nedan: 37 41 43 39 45 47 38 a) Ange de sju skostorlekarnas

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Kombinatorik och sannolikhetslära

Kombinatorik och sannolikhetslära Grunder i matematik och logik (2018) Kombinatorik och sannolikhetslära Marco Kuhlmann Sannolikhetslära Detta avsnitt är för det mesta en kompakt sammanfattning av momentet sannolikhetslära som ingår i

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Bearbetning och Presentation

Bearbetning och Presentation Bearbetning och Presentation Vid en bottenfaunaundersökning i Nydalasjön räknade man antalet ringmaskar i 5 vattenprover. Följande värden erhölls:,,,4,,,5,,8,4,,,0,3, Det verkar vara diskreta observationer.

Läs mer

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120) Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor

Läs mer

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler

Finansiell statistik, vt-05. Slumpvariabler, stokastiska variabler. Stokastiska variabler. F4 Diskreta variabler Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F4 Diskreta variabler Slumpvariabler, stokastiska variabler Stokastiska variabler diskreta variabler kontinuerliga

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Statistik. Berit Bergius & Lena Trygg, NCM

Statistik. Berit Bergius & Lena Trygg, NCM Modul: Didaktiska perspektiv på matematikundervisningen 2 Del 3: Geometri och statistik Statistik Berit Bergius & Lena Trygg, NCM Bakåt i tiden förmedlades information muntligt, från man till man. När

Läs mer

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster

Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster PLANERING MATEMATIK - ÅK 7 Bok: X (fjärde upplagan) Kapitel : 3 Längd, tid och samband Kapitel : 4 Algebra och mönster Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Förra gången (F4-F5)

Förra gången (F4-F5) F6 Standardiseringsmetoder Etiska regler och lagregler Förra gången (F4-F5) Lägesmått: aritmetiskt medelvärde (minst intervall), median (minst ordinal), typvärde (alla nivåer) När vi vill beskriva tyngdpunkten

Läs mer

Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation

Sociologi GR (A) Sociologisk Metod Examination #2 Peter Axelsson. N Minimum Maximum Mean Std. Deviation Uppgift 1 Vikt Vikt är en variabel på kvotskalan. Det gör att vi kan räkna med aritmetiskt medelvärde (m) som centralmått (Djurefeldt, 2003:59). Medelvärdet är 35,85 kg. Det saknas värden för två observationer,

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

Ma7-Åsa: Statistik och Sannolikhetslära

Ma7-Åsa: Statistik och Sannolikhetslära Ma7-Åsa: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng

Deskription (Kapitel 2 i Howell) Moment 1: Statistik, 3 poäng Kognitiv psykologi Moment 1: Statistik, 3 poäng VT 27 Lärare: Maria Karlsson Deskription (Kapitel 2 i Howell) Beskrivande mått, tabeller och diagram 1 2 Tabeller Tabell- och kolumnrubriker bör vara fullständiga

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

HI1024 Programmering, grundkurs TEN

HI1024 Programmering, grundkurs TEN HI1024 Programmering, grundkurs TEN2 2014-10-27 KTH STH Haninge 13.15-18.00 Tillåtna hjälpmedel: En A4 handskriven på ena sidan med egna anteckningar Kursboken C PROGRAMMING A Modern Approach K. N. King

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Grundbegrepp, axiomsystem, betingad sannolikhet, oberoende händelser, total sannolikhet, Bayes sats Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Matematiska lägesmått med en micro:bit

Matematiska lägesmått med en micro:bit Matematiska lägesmått med en micro:bit Lektionen handlar om att träna lägesmått genom att programmera en micro:bit. Lektionsförfattare: Camilla Askebäck Diaz Till läraren Sida 1 av 18 1. Repetera medelvärde,

Läs mer

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17

F8 Skattningar. Måns Thulin. Uppsala universitet Statistik för ingenjörer 14/ /17 1/17 F8 Skattningar Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 14/2 2013 Inledande exempel: kullager Antag att diametern på kullager av en viss typ är normalfördelad N(µ,

Läs mer

4. STATISTIK OCH SANNOLIKHET

4. STATISTIK OCH SANNOLIKHET 4. STATISTI OCH SANNOLIHET R M MEDIANEN Fem personer är 160 cm, 170 cm, 165 cm, 155 cm och 150 cm. a) Mårten säger att medianen är 165 cm. Varför har han fel? b) Vad är det riktiga medianvärdet? E R Godtagbart

Läs mer

Läs noggrant informationen nedan innan du börjar skriva tentamen

Läs noggrant informationen nedan innan du börjar skriva tentamen Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: Mykola Shykula 5 25 Tentamensdatum 2014-05-15 Skrivtid 09.00-14.00 Jourhavande lärare:

Läs mer

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp

Tentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare

Läs mer

Värdena för en diskret variabel (med få värden) kan redovisas i en tabell över frekvensfördelningen, dvs antalet observationer för de olika värdena.

Värdena för en diskret variabel (med få värden) kan redovisas i en tabell över frekvensfördelningen, dvs antalet observationer för de olika värdena. Deskriptiv statistik De enskilda uppgifterna i ett statistiskt material innehåller all tillgänglig information men behöver oftast sammanfattas och förenklas på något sätt. Detta kan göras i form av tabeller,

Läs mer

TENTAMEN Datum: 14 feb 2011

TENTAMEN Datum: 14 feb 2011 TENTAMEN Datum: 14 feb 011 Kurs: KÖTEORI OCH MATEMATISK STATISTIK HF1001 TEN 1 (Matematisk statistik ) Ten1 i kursen HF1001 ( Tidigare kn 6H301), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 13:15-17:15

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast

Läs mer

2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel

2. Lära sig beskriva en variabel numeriskt med proc univariate 4. Lära sig rita diagram med avseende på en annan variabel Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

F2 Beskrivning av ett datamaterial. Tabellering och val av diagram. Summatecknet

F2 Beskrivning av ett datamaterial. Tabellering och val av diagram. Summatecknet F2 Beskrivning av ett datamaterial. Tabellering och val av diagram. Summatecknet Tabellering av kvalitativ variabel En kvalitativ variabel varierar över ett antal kategorier. Antag att vi har observerat

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5

1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt , 2.5 1 Föreläsning I, Vecka I: 5/11-11/11 MatStat: Kap 1, avsnitt 2.1-2.2, 2.5 Introduktion till kursen. Grundläggande sannolikhetslära. Mängdlära, händelser, sannolikhetsmått Händelse följer samma räkneregler

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Tal Räknelagar Prioriteringsregler

Tal Räknelagar Prioriteringsregler Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.

Läs mer

Extramaterial till Matematik X

Extramaterial till Matematik X LIBER PROGRAMMERING OCH DIGITAL KOMPETENS Extramaterial till Matematik X NIVÅ ETT Statistik ELEV Du kommer nu att få bekanta dig med Google Kalkylark. I den här uppgiften får du öva dig i att skriva in

Läs mer

9A Ma: Statistik och Sannolikhetslära

9A Ma: Statistik och Sannolikhetslära 9A Ma: Statistik och Sannolikhetslära Efter påsklovet börjar det femte arbetsområdet som handlar om statistik och sannolikhetslära. Det kommer också att bli tid för att arbeta vidare med målen för begrepp

Läs mer

TAMS79: Föreläsning 1 Grundläggande begrepp

TAMS79: Föreläsning 1 Grundläggande begrepp TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.

Läs mer

Matematiska lägesmått med en micro:bit

Matematiska lägesmått med en micro:bit Lektionen ger eleverna möjlighet att träna matematik och lägesmått med hjälp av att programmera en micro:bit. Camilla Askebäck Diaz är högstadielärare i matematik på Södermalmsskolan i Stockholm. Till

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

Vägda medeltal och standardvägning

Vägda medeltal och standardvägning Linköpings universitet 2000 MAI/Statistik Eva Leander Vägda medeltal och standardvägning Här följer ett antal sidor som behandlar vägda medeltal och standardvägning. Avsnittet om vägda medeltal förbereder

Läs mer

Beskrivande statistik Kapitel 19. (totalt 12 sidor)

Beskrivande statistik Kapitel 19. (totalt 12 sidor) Beskrivande statistik Kapitel 19. (totalt 12 sidor) För att åskådliggöra insamlat material från en undersökning används mått, tabeller och diagram vid sammanställningen. Det är därför viktigt med en grundläggande

Läs mer