1 Mätdata och statistik

Storlek: px
Starta visningen från sidan:

Download "1 Mätdata och statistik"

Transkript

1 Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt svar skulle vi behöva ange vikten för varje bebis som fötts hittills under mänsklighetens historia. Statistik handlar i mångt och mycket om att ge förenklade svar på denna typ av frågor, men ändå ge en bra beskrivning av verkligheten. Den första förenkling som måste göras i exemplet ovan är att inte försöka ange vikten på alla bebisar. Vi väljer i stället på måfå ut ett fåtal. Detta urval kallas för ett stickprov. Från ett stickprov på tio bebisar så kan man tänka sig att vi får ut följande data (angivet i gram): Ett sätt att besvara vår fråga vore nu att säga: En nyfödd bebis väger 34, 340, 2638, 353, 320, 3, 33, 222, 288 eller 3038 gram. Detta är ett mycket förenklat svar på en svår fråga. Ett betydligt mer kortfattat (och på flera sätt bättre) sätt att svara är genom att ta (det aritmetiska) medelvärdet av våra mätdata: Medelvärdet av n olika värden x, x 2, x 3,..., x n, x n ges av x = n n k= x k = x + x x n + x n. n I vårt exempel blir detta värde 37 gram. Vårt svar på frågan blir då: En nyfödd bebis väger i genomsnitt 37 gram. Svaret vi har angivit är inte jättebra. Faktum är att vissa data i vårt stickprov avviker med över 700 gram. Att mätdata avviker från medelvärdet är ingenting vi kommer ifrån, men vad vi kan försöka göra är att försöka beräkna hur stora avvikelser vi bör förvänta oss. Ett vanligt mått på avvikelsernas storlek är den så kallade standardavvikelsen: Standardavvikelsen av n olika värden x, x 2, x 3,..., x n, x n med medelvärde x ges av σ = n (x k x) n 2. I vårt exempel blir standardavvikelsen 370 gram. Det svar vi nu får på frågan är: En nyfödd bebis väger i genomsnitt 37 gram, med en standardavvikelse på 370 gram. k=

2 Är vårt svar bra? Det enda måttet på detta är om det duger för att göra förutsägelser om verkligheten. Vi måste alltså gå ut och väga fler bebisar. Om vi går ut och väger tio bebisar till så kanske vi får mätdata: De flesta bebisar i detta stickprov verkar avvika ganska mycket från vår förutsägelse. Detta tyder på att vi behöver göra en noggrannare undersökning, exempelvis med ett större stickprov.. Beräkna medelvärde och standardavvikelse för nedanstående värden. a) b) 5, 2 42, 3 4, 2 45, 54 47, 50 44, 08 5, 8 46, 73. c) 2, 3 0, 0 2, 46 0, 2 0, 45 0, 83 0, 4 0, 03 0, 76 0, Slump och sannolikhet Ibland saknar vi en bra modell för att kunna förutsäga resultatet av ett experiment. I ett sådant läge kan vi betrakta experimentet som slumpmässigt. Resultatet av att utföra ett slumpmässigt experiment kallas för ett utfall. Exempel. Om vi rullar en vanlig sexsidig tärning med numrerade sidor så är de möjliga utfallen, 2, 3, 4, 5 och 6. Exempel. Ett mynt har två sidor. Vi kan kalla dessa för kung respektive krona. Om vi singlar två mynt samtidigt så finns fyra möjliga utfall: Första myntet visar kung, andra myntet visar kung. Första myntet visar kung, andra myntet visar krona. Första myntet visar krona, andra myntet visar kung. Första myntet visar krona, andra myntet visar krona. En samling av ett eller flera utfall kallas för en händelse. De utfall som ingår i en viss händelse kallas gynnsamma för händelsen. Exempel. En möjlig händelse då vi singlar två mynt är att precis ett av mynten visar kung. Genom att titta på vår lista ser vi att denna händelse har två gynnsamma utfall. Exempel. En annan möjlig händelse när vi singlar två mynt är minst ett av mynten visar kung. Denna händelse har tre gynnsamma utfall. Exempel. Vi rullar en sexsidig tärning 00 gånger. Det finns sex olika utfall. Det kan vara intressant att undersöka hur vanliga de olika utfallen är. Antalet gånger som ett utfall (eller en händelse) förekommer kallas för frekvensen av detta. Ett möjligt resultat är: Utfall Frekvens Ett annat mått på förekomsten av ett visst utfall är relativ frekvens, vilket är frekvensen dividerat med antalet upprepningar. I exemplet med en tärning får vi Utfall Relativ frekvens 0,6 0,4 0,6 0,7 0,7 0,20 2

3 Utfallet av ett slumpmässigt experiment kan beskrivas med hjälp av sannolikheter. Varje möjlig händelse tilldelas ett tal som kallas för sannolikheten att händelsen inträffar. Om sannolikheten ska var en bra beskrivning av verkligheten bör det väljas så att den är ungefär lika med den relativa frekvensen av händelsen då försöket upprepas ett stort antal gånger. I vissa situationer är valet av sannolikheter mycket svårt, och i vissa situationer kan det verka så uppenbart att vi kanske inte ens tänker på det. Exempel. Om vi rullar en välgjord tärning många gånger så förväntar vi oss att alla utfall ska vara lika vanligt förekommande. Sannolikheten gör varje utfall väljs då till 6 0, 67. Detta verkar stämma ganska bra med vad vi såg då vi rullade tärningen 00 gånger. Om vi rullar den gånger så kan vi istället få Utfall Relativ frekvens 0,664 0,663 0,666 0,666 0,670 0,672 Vi verkar alltså ha gjort ett rimlilgt val av våra sannolikheter. Två olika händelser kallas för uteslutande om de inte kan inträffa samtidigt. En viktig egenskap hos sannolikheter är att de är additiva i följande mening: om vi har två olika händelser A och B som är uteslutande och har sannolikheter P (A) respektive P (B) så ges sannolikheten för att Aeller B inträffar av P (A eller B) = P (A) + P (B). Exempel. Rulla en rätning och betrakta händelsen tärningen visar tre eller fyra prickar. Denna händelse består av utfallen tärningen visar tre prickar och tärningen visar fyra prickar. Dessa utfall är uteslutande och därför är sannolikheten för händelsen tärningen visar tre eller fyra prickar lika med = Vi singlar tre mynt. a) Beskriv alla möjliga utfall. b) Beräkna sannolikheten för händelserna att få tre, två, en respektive inga kronor. c) Addera sannolikheterna från föregående uppgift. Fundera över vad resultatet betyder. 3. Vi singlar två mynt. Men det ena myntet är lite felgjort och har därför sannolikheten att visa kung. 3 a) Beräkna sannolikheterna för vart och ett av de möjliga utfallen. b) Addera sannolikheterna från föregående uppgift. Fundera över vad resultatet betyder. c) Hur stor är sannolikheten att få precis en kung? 4. En pirat låter förbipasserande spela följande spel: Spelaren kan satsa på 0, eller 2. Därefter rullar piraten två tärningar. Om spelaren satsade på rätt antal prickar får han tillbaka 0 gånger insatsen för 0 prickar, 20 gånger insatsen för prickar och 40 gånger insatsen för 2 prickar. a) Beräkna sannolikheten att få 0, respektive 2 prickar. b) Vilket antal prickar är mest fördelaktigt att satsa på? c) Antag att piraten fuskar. Sannolikheten att hans tärningar visar en etta är tre gånger så stor som för vart och ett av de övriga antalen prickar. Gör om beräkningarna ovan. Är det möjligt att på lång sikt vinna spelet mot piraten? 3

4 5. I ett tv-program ingick följande moment: På scenen fanns tre dörrar. Bakom en av dörrarna fanns en bil. Bakom de andra två fanns några getter. En tävlande fick välja en dörr. Därefter öppnade programledaren en av de dörrar som den tävlande inte valt (bakom den öppnade dörren fanns bara getter). Den tävlande fick därefter valet att stå fast vid sitt tidigare val, eller att byta dörr. Hur bör man gå till väga för att maximera sin vinstchans? 3 Sannolikhetsfördelningar Det är vanligt att dela upp alla möjliga utfall i olika händelser och sedan göra en grafisk representation av sannolikheterna för dessa händelser. Nedan ses sådana representationer för sannolikheterna att få ett visst totalt antal prickar då vi rullar, 2 respektive 0 tärningar: Figur : Sannolikhetsfördelning med avseende på antal prickar för en tärning. Figur 2: Sannolikhetsfördelning med avseende på antal prickar för två tärningar. När vi på detta sätt anger alla sannolikheter på en gång så talar vi ofta om en sannolikhetsfördelning. De sannolikhetsfördelningar vi får när vi rullar tärningar är så kallade diskreta fördelningar. Det betyder att mellan två möjliga utfall eller händelser så finns det alltid omöjliga händelser eller utfall. Vi kommer exempelvis aldrig att få 7 3 prickar när vi rullar tre tärningar. Om vi återgår till exemplet med födelsevikter så är situationen annorlunda. Tänkbara värden ligger kanske här mellan 000 gram och 6000 gram, men framför allt så är alla värden däremellan också möjliga. En sådan sannolikhetsfördelning kallas kontinuerlig. 4

5 Figur 3: Sannolikhetsfördelning med avseende på antal prickar för tio tärningar. Vill vi beskriva detta experiment med en sannolikhetsfördelning så görs detta med hjälp av en så kallad täthetsfunktion. I fallet med födelsevikter är den så kallade normalfördelningen en lämplig beskrivning: f(x) = σ (x µ) 2 2π e 2σ 2. Figur 4: Normalfördelningen. Här är µ och σ två tal som beror på vilket konkret problem vi har för oss. Tolkningen av dessa är att om vi tar ett tillräckligt stort stickprov från vår fördelning så kommer stickprovets medelvärde och standardavvikelse att vara ungefär lika med µ respektive σ. I exemplet med födelsevikter så är lämpliga värden för µ och σ ungefär 3400 gram respektive 400 gram. När vi har en kontinuerlig sannolikhetsfördelning så bestämmer vi sannolikheten för en händelse inte genom att summera sannolikheter för olika utfall, utan genom att integrera täthetsfunktionen. Mer specifikt så ges sannolikheten att ett värde ur en normalfördelning ligger mellan värdena a och b av integralen σ 2π b a e (x µ)2 2σ 2 dx. Observera att denna integral inte kan beräknas med hjälp av elementära funktioner. Den måste alltså lösas numeriskt. 6. Baserat på tidigare information: Hur stor är sannolikheten att ett nyfött barn väger mellan 3000 gram och 4000 gram? Mer än 4000 gram? 5

6 7. Den berömda IQ-skalan för mänsklig individuell intelligens beskrivs av en normalfördelning med medelvärde µ=00 och standardavvikelse σ=5. Vad är sannolikheten att en slumpvis utvald person har IQ mellan 80 och 20? Mer än 40? Mindre än 60? Vad är sannolikheten att ha IQ mindre än 0? Facit. a) x 60, 3, σ 36, 3. b) x 46, 30, σ 3, 87. c) x 0, 4, σ, a) De åtta möjliga utfallen är (Krona, Krona, Krona) (Krona, Krona, Kung) (Krona, Kung, Krona) (Krona, Kung, Kung) (Kung, Krona, Krona) (Kung, Krona, Kung) (Kung, Kung, Krona) (Kung, Kung, Kung). b) Sannolikheterna är 8, 3 8, 3 8 respektive 8. c) Summan av sannolikheterna är. Detta betyder att om vi utför vårt experiment så är sannolikheten att vi får något av de möjliga utfallen, dvs. 00 %. 3. a) Sannolikheterna anges i tabellen nedan. Krona 4 Krona 2 Kung b) Sannolikheterna summerar återigen till. c) Sannolikheten ges av = 4 Kung 2 4. a) Sannolikheterna är 2, 8 respektive 36. b) eller 2 prickar. c) Med fusktärningar blir motsvarande sannolikheter 3 omöjligt att på lång sikt vinna mot piraten. 64, 32 respektive 64. Det är nu 5. Genom att hålla fast vid sitt val är sannolikheten att vinna 3. Genom att byta är sannolikheten att vinna Sannolikheterna är ungefär 77,5 % respektive 6,7 %. 7. Sannolikheterna är, i den ordning de nämns i texten, ungefär 8,8 %, 0,38 %, 0,38 % respektive,

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 4 Statistiska metoder 1 Dagens föreläsning o Sannolikhet Vad är sannolikhet? o Slumpvariabel o Sannolikhetsfördelningar Binomialfördelning Normalfördelning o Stickprov och population o Centrala

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

F9 SAMPLINGFÖRDELNINGAR (NCT

F9 SAMPLINGFÖRDELNINGAR (NCT Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120)

Övningstentamen i kursen Statistik och sannolikhetslära (LMA120) Övningstentamen i kursen Statistik sannolikhetslära (LMA0). Beräkna ( ) 04.. Malin har precis yttat, ska skruva ihop sitt rektangulära skrivbord igen. Bordet har ett ben i varje hörn, har två långsidor

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Introduktion till sannolikhetslära. Människor talar om sannolikheter :

Introduktion till sannolikhetslära. Människor talar om sannolikheter : F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval

Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab

Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P.

F6 STOKASTISKA VARIABLER (NCT ) Används som modell i situation av följande slag: Slh för A är densamma varje gång, P(A) = P. Stat. teori gk, ht 2006, JW F6 STOKASTISKA VARIABLER (NCT 5.4-5.6) Binomialfördelningen Används som modell i situation av följande slag: Ett slumpförsök upprepas n gånger (oberoende upprepningar). Varje

Läs mer

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid

LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-06-05 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 6 Krav för G: 12 Lärare:

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

9. Konfidensintervall vid normalfördelning

9. Konfidensintervall vid normalfördelning TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning

Lotto. Singla slant. Vanliga missuppfattningar vad gäller slumpen. Slumpen och hur vi uppfattar den - med och utan tärning Slumpen och hur vi uppfattar den - med och utan tärning Ingemar Holgersson Högskolan Kristianstad grupper elever Gr, 7, 9 och. grupp lärarstudenter inriktning matematik Ca i varje grupp Gjord i Israel

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 12 november 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 1 november 005, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, OCH INFÖR ÖVNING 4 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 3, 216-4-6 OCH INFÖR ÖVNING 4 Övningens mål: Du ska förstå begreppet slumpvariabel och skilja

Läs mer

Kap 3: Diskreta fördelningar

Kap 3: Diskreta fördelningar Kap 3: Diskreta fördelningar Sannolikhetsfördelningar Slumpvariabler Fördelningsfunktion Diskreta fördelningar Likformiga fördelningen Binomialfördelningen Hypergeometriska fördelningen Poisson fördelningen

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIKTEORI KONSTEN ATT DRA INTERVALLSKATTNING. STATISTIK SLUTSATSER. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 10 STATISTIKTEORI KONSTEN ATT DRA SLUTSATSER. INTERVALLSKATTNING. Tatjana Pavlenko 25 april 2017 PLAN FÖR DAGENS FÖRELÄSNING Statistisk inferens oversikt

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 5 HT06 Bengt Ringnér September 20, 2006 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Väntevärde standardavvikelse

Läs mer

Kort om mätosäkerhet

Kort om mätosäkerhet Kort om mätosäkerhet Henrik Åkerstedt 14 oktober 2014 Introduktion När man gör en mätning, oavsett hur noggrann man är, så får man inte exakt rätt värde. Alla mätningar har en viss osäkerhet. Detta kan

Läs mer

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng

TT091A, TVJ22A, NVJA02 Pu, Ti. 50 poäng Matematisk statistik Provmoment: Ladokkod: Tentamen ges för: TT091A, TVJ22A, NVJA02 Pu, Ti 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2012-08-31 Tid:

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov

Varför statistik? det finns inga dumma frågor, bara dumma svar! Serik Sagitov Summer Science Camp, Tjärnö, 8 August 2012 Varför statistik? Serik Sagitov http://www.math.chalmers.se/ serik/ Avdelningen för matematisk statistik Matematiska Vetenskaper Chalmers Tekniska Högskola och

Läs mer

2010-08-30 Fysikexperiment, 7.5 hp 1

2010-08-30 Fysikexperiment, 7.5 hp 1 Presentation av data Medelvärde av grupperade data Slumptal Gränsvärdesfunktioner Normalfördelningsfunktionen Parameterbestämning Minsta kvadratmetoden 010-08-30 Fysikexperiment, 7.5 hp 1 1 Presentation

Läs mer

Stora talens lag eller det jämnar ut sig

Stora talens lag eller det jämnar ut sig Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.

Läs mer

Statistiska begrepp och metoder som används i Successivprincipen

Statistiska begrepp och metoder som används i Successivprincipen Statistiska begrepp och metoder som används i Successivprincipen Generellt har statistiska procedurer antingen varit överförenklade eller opraktiska för projektteamen. Resultatet blir inte trovärdigt i

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

Vetenskaplig metod och statistik

Vetenskaplig metod och statistik Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

Samplingfördelningar 1

Samplingfördelningar 1 Samplingfördelningar 1 Parametrar och statistikor En parameter är en konstant som karakteriserar en population eller en modell. Exempel: Populationsmedelvärdet Parametern p i binomialfördelningen 2 Vi

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se

Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se Föreläsning 10 Datorlaboration 8/5 Jobba i grupper om 2-3 personer Vi jobbar i Minitab Lämna in rapport via fronter senast 22/5 Förbered er genom att läsa och se vad som skall göras Föreläsning 10 Inferens

Läs mer

Vi har en ursprungspopulation/-fördelning med medelvärde µ.

Vi har en ursprungspopulation/-fördelning med medelvärde µ. P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Föreläsning G70, 732G01 Statistik A

Föreläsning G70, 732G01 Statistik A Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde

Läs mer

Exempel för diskreta och kontinuerliga stokastiska variabler

Exempel för diskreta och kontinuerliga stokastiska variabler Stokastisk variabel ( slumpvariabel) Sannolikhet och statistik Stokastiska variabler HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Stokastisk variabel, slumpvariabel (s.v.): Funktion: Resultat

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera)

KLEINLEKTION. Område statistik. Lektionens upplägg. Lämplig inom kurserna Matematik 2b och 2c. Engage (Väck intresse) Explore (Upptäck laborera) KLEINLEKTION Område statistik. Lämplig inom kurserna Matematik 2b och 2c. Centralt innehåll i Matematik 2b och 2c: Statistiska metoder för rapportering av observationer och mätdata från undersökningar

Läs mer

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 1. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 1 Statistik; teori och tillämpning i biologi 1 Kursens uppbyggnad 9 föreläsningar Föreläsningsunderlag läggs ut på kurshemsidan 5 lektioner Uppgifter från kursboken enligt planering 5 laborationer

Läs mer

Ingenjörsmetodik IT & ME 2011 Föreläsning 11

Ingenjörsmetodik IT & ME 2011 Föreläsning 11 Ingenjörsmetodik IT & ME 011 Föreläsning 11 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Läsanvisningar

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II

Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin thulin@math.uu.se Senast uppdaterad 20 februari 2013 Diskussionsproblem till Lektion 3 1. En projektledare i ett byggföretaget ska undersöka

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Föreläsning 2 4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler Stokastiskavariabler Stokastisk variabel (eng: random variable) En variabel vars värde

Läs mer

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel

Läs mer

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel.

Övning 1(a) Vad du ska kunna efter denna övning. Problem, nivå A. Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Övning 1(a) Vad du ska kunna efter denna övning Redogöra för begreppen diskret och kontinuerlig stokastisk variabel. Definiera fördelningsfunktionen för en stokastisk variabel. Definiera frekvensfunktionen

Läs mer

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl

Tentamen i Statistik, STA A10 samt STA A13 9p 24 augusti 2005, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A0 samt STA A3 9p 4 augusti 005, kl. 08.5-3.5 Tillåtna hjälpmedel: Ansvarig lärare: Övrigt:

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema

Läs mer

732G01/732G40 Grundläggande statistik (7.5hp)

732G01/732G40 Grundläggande statistik (7.5hp) 732G01/732G40 Grundläggande statistik (7.5hp) 2 Grundläggande statistik, 7.5 hp Mål: Kursens mål är att den studerande ska tillägna sig en översikt över centrala begrepp och betraktelsesätt inom statistik.

Läs mer

Obligatorisk uppgift, del 1

Obligatorisk uppgift, del 1 Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten

Läs mer

Beskrivande statistik

Beskrivande statistik Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005

Läs mer

Föreläsning 1, Matematisk statistik Π + E

Föreläsning 1, Matematisk statistik Π + E Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

Experimentella metoder 2014, Räkneövning 1

Experimentella metoder 2014, Räkneövning 1 Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0

Sannolikheten för att barnet skall få blodgrupp A0 A0 1/2 AA 1 AB 1/2 Övriga 0 Avd. Matematisk statistik TENTAMEN I SF191, SANNOLIKHETSTEORI OCH STATISTIK, ONSDAGEN DEN 1:A JUNI 216 KL 8. 13.. Kursledare: Thomas Önskog, 8-79 84 55 Tillåtna hjälpmedel: Formel- och tabellsamling i

Läs mer

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd

PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik

Läs mer

LABORATION 1. Syfte: Syftet med laborationen är att

LABORATION 1. Syfte: Syftet med laborationen är att LABORATION 1 Syfte: Syftet med laborationen är att ge övning i hur man kan använda det statistiska programpaketet Minitab för beskrivande statistik, grafisk framställning och sannolikhetsberäkningar, visa

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall

Läs mer

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 21 januari 2006, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 1 januari 006, kl. 09.00-13.00 Tillåtna hjälpmedel: Bifogad formel-

Läs mer

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 2. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 2 Statistik; teori och tillämpning i biologi 1 Normalfördelning Samplingfördelningar och CGS Fördelning för en stickprovsstatistika (t.ex. medelvärde) kallas samplingfördelning. I teorin är

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 5 Statistiska metoder 1 Dagens föreläsning o Konfidensintervall För andelar För medelvärden Vid jämförelser o Den statistiska felmarginalen o Stickprovsstorlek 2 Introduktion När man beräknar

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,

Läs mer

ÄMNESPROV I MATEMATIK Skolår 9 Delprov B

ÄMNESPROV I MATEMATIK Skolår 9 Delprov B ÄMNESPROV I MATEMATIK Skolår 9 Delprov B Till uppgifterna krävs fullständiga lösningar. Din redovisning ska vara så klar att en annan person ska kunna läsa och förstå vad du menar. Det är viktigt att du

Läs mer

Vetenskaplig metod och Statistik

Vetenskaplig metod och Statistik Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:

Läs mer

Ingenjörsmetodik IT & ME 2010 Föreläsning 5

Ingenjörsmetodik IT & ME 2010 Föreläsning 5 Ingenjörsmetodik IT & ME 010 Föreläsning 5 Sammansatt fel (Gauss regel) Felanalys och noggrannhetsanalys Mätvärden och mätfel Medelvärde, standardavvikelse och standardosäkerher (statistik) 1 Frågor från

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 1, 4p 24 april 2004, kl Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen 1, 4p 4 april 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen

Läs mer

Bengt Ringnér. October 30, 2006

Bengt Ringnér. October 30, 2006 Väntevärden Bengt Ringnér October 0, 2006 1 Inledning 2 Väntevärden Låt X vara en stokastisk variabel som representerar ett slumpmässigt försök, t ex att mäta en viss storhet. Antag att man kan göra, eller

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller: Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig

Läs mer

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120)

Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Gamla tentauppgifter i kursen Statistik och sannolikhetslära (LMA120) Lärandemål I uppgiftena nedan anger L1, L2 respektive L3 vilket lärandemål de olika uppgifterna testar: L1 Ta risker som i förväg är

Läs mer