BANDGAP Inledning

Storlek: px
Starta visningen från sidan:

Download "BANDGAP 2009-11-17. 1. Inledning"

Transkript

1 1 BANDGAP nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive halvledarmaterial. GaAs är excitationen direkt. Detta innebär att en elektron i halvledarens valensband absorberar fotonens energi E och därigenom exciteras till ett tillstånd i halvledarens ledningsband. Excitationen är möjlig om E E g där bandgapet E g definieras som energiskillnaden mellan den högsta energin (den s.k. valensbandkanten) i valensbandet och den lägsta energin (ledningsbandkanten) i ledningsbandet. Tröskelvärdet (fotonens minimienergi) för excitation av en elektron är alltså E = E g (bortsett från vissa modifikationer som diskuteras i den artikel som laborationen baseras på). Si är excitationen för fotoner nära tröskelvärdet för excitation indirekt. Detta innebär att elektronen, vid sin excitation från valensbandet till ledningsbandet, inte endast absorberar en foton, utan även emitterar eller absorberar en s.k. fonon. En fonon är ett energikvantum hos en kvantiserad vibration (vågrörelse) i halvledarens kristallstruktur. Eftersom en sådan vibration har mycket lägre frekvens än frekvensen hos det infraröda ljuset, är fononens energi E p mycket mindre än fotonens energi E. Tröskelvärdet för excitation blir E = E g + E p E = E g E p (vid emission av en fonon) (vid absorption av en fonon) Båda processerna föreligger samtidigt och bidrar var för sig till den observerade absorptionen av infrarött ljus i halvledaren. Mätningarna går ut på att man för olika våglängder λ mäter transmissionen T av infrarött ljus genom en skiva av halvledarmaterialet. Från T beräknar man absorptionskoefficienten α för det infraröda ljuset. För fotonenergier mindre än tröskelvärdet för excitation är halvledarna genomskinliga (α = ). Transmissionen T är dock mindre än 1%, väsentligen på grund av reflexion vid halvledarskivans ytor. För fotonenergier tillräckligt mycket större än tröskelvärdena (t.ex. i det synliga området) är halvledarna ogenomskinliga (T = ) praktiskt taget alla fotoner absorberas. övergången mellan dessa båda energiområden ökar α med ökande fotonenergi E på ett sätt som beror på tillståndstätheten i valensband och ledningsband, dvs på antalet elektrontillstånd per energienhet.

2 . Uppgift Målsättningen för det experimentella arbetet och analysen av mätdata är att a) bestämma bandgapets storlek E g (ev) i såväl GaAs som Si b) bestämma fononens energi E p (ev) i den indirekta absorptionen i Si. 3. Metod Den metod som används i laborationen beskrivs i artikeln "Characterization of a bulk semiconductor's band gap via a near-edge optical transmission experiment", American Journal of Physics 61 (1993) 646, av J.M.Essick och R.T.Mather. Sök efter artikeln på och följ anvisningar för nedladdning. Artikeln är endast tillgänglig på universitetets bibliotek och datorer. Några kommentarer och förklaringar till denna artikel ges nedan Kommentarer till teori och analys. Ekv.(1) i artikeln anger transmissionen T genom halvledarskivan, givet reflektansen R hos skivans ytor, absorptionskoefficienten α och skivans tjocklek x. Ekvationen härleds ur en modell av multipel reflektion och dämpning i halvledarskivan. Modellen illustreras i Fig.1. Vid halvledarskivans båda ytor är reflektansen, dvs förhållandet mellan reflekterad och infallande intensitet, likamed R (för strålning från båda håll). Den vid reflektionen transmitterade intensiteten är 1 R. ntensiteten hos strålningen avtar med faktorn exp(-αx) vid varje passage av distansen x i halvledaren. Den infallande strålningens intensitet är. Den transmitterade strålningens intensitet kan, om interferenseffekter är försumbara (se nedan), beräknas som = j=1 j x där j är intensiteten hos den strålning som kommer ut i transmissionsriktningen efter (j-1) inre reflektioner i halvledarskiktet (se Fig.1). Denna strålning j har alltså reflekterats (j-1) gånger, färdats sträckan x + (j-1) x i halvledaren och transmitterats gånger. Således fås 1 3 Fig.1. Multipel reflektion och transmission i halvledarskiva. nfallsvinkeln visas sned bara för tydlighets skull; i beräkningen antas vinkelrätt infall. j = ( j 1) R exp( α ( x + ( j 1) x)) (1 R)

3 3 varav (med användning av formeln för summan av en geometrisk serie) j 1 exp( α x) (1 R) = exp( α x)(1 R) ( R exp( α x)) = j= 1 1 R exp( α x) varav följer ekv.(1) i artikeln. (Notera att man i denna härledning ignorerar eventuell interferens mellan de fram- och återgående strålarna. Detta kan motiveras av den ändliga koherenslängden hos strålningen jämförd med skivans tjocklek samt eventuellt förekomsten av ojämnheter i skivtjocklek och i de båda ytorna.) Riktigheten av ekv.() i artikeln inses om man betänker att halvledaren bör vara i det närmaste genomskinlig för fotoner vilkas energi är mindre än eller nära likamed bandgapet E g. Variabeln k, som är proportionell mot absorptionskoefficienten α, är i då i det närmaste likamed noll, varför reflektansen R bestäms helt av n, dvs det vanliga brytningsindex. Ekv.(3) i artikeln anger hur absorptionskoefficienten α kan förväntas variera med fotonenergin E i övergångsområdet, om excitationen är direkt (som i GaAs). Emellertid används snarare ekv.(4) i analysen av bandgapet i GaAs, av skäl som anges i artikeln. Ekv.(6) och (7) anger hur α kan förväntas variera med fotonenergin E om excitationen är indirekt (som i Si). 3.. Kommentarer till experimentell metodik. Den experimentella uppställningen liknar, i princip, den i artikeln av Essick och Mather. Fig. nästa sida ger en mycket schematisk översikt. Ljuskällan vid mätning av transmissionen genom halvledarskivan utgörs av en vanlig glödtrådslampa, vilken ger ett brett, kontinuerligt spektrum. Vid kalibrering av apparaturen utgörs ljuskällan av en Hg-lampa, vilken ger ett linjespektrum med väl kända våglängder för de olika linjerna; eventuellt kan lysdioder användas. Hg-spektrum ger i det intressanta området följande tydliga linjer, angivna med våglängd i Å: 5461 (grön) 579 (gul) 114 (infrarött) De första två är synliga, och kan vara lämpliga referenslinjer att observera för att hitta ungefär rätt område.

4 4 L M C D P Fig.. Experimentell uppställning, mycket schematiskt. L = ljuskälla, C = chopper, M = monokromator (konkava speglar endast antydda), P = provhållare, D = detektor. Tillkommer diverse linser, speglar, en lock-in-förstärkare och en dator. Ljuset från ljuskällan fokuseras på en chopper, som hackar ljuset till pulser med en viss frekvens, chopperfrekvensen. Chopperns uppgift är att (tillsammans med en s.k. lock-införstärkare) eliminera bakgrund och störningar. Den således pulserande ljusstrålen fokuseras med ytterligare linser och/eller speglar på ingångsspalten till en monokromator av typ Czerny- Turner. (Funktionssättet hos en sådan kan ses t.ex. på internet.) Alternativt bygger man själv sin monokromator på ett optiskt bord. Fokuseringen bör göras så att en skarp avbildning av ljuskällan (eventuellt av en spalt framför ljuskällan) fås på ingångsspalten vars bredd bör vara.1 -. mm. monokromatorn passerar ljuset, via två fokuserande speglar, ett prisma, i vilket ljuset spektraluppdelas. Genom rotation av prismat kan en vald del av spektrum avbildas på utgångsspalten, vars bredd likaså bör vara.1 -. mm. Prismat roteras av en motor, mekaniskt kopplad till en potentiometer. Rotationsläget, svarande mot våglängden hos det ljus som träffar utgångsspalten, avläses genom att registrera utspänningen från potentiometern. Rotationsläget kan också avläsas direkt på en skala på monokromatorn. Observera att sambandet mellan rotationsläge (potentiometerspänning) och våglängd måste bestämmas genom ovan nämnda kalibrering, och att kalibreringen är ytterst känslig för hela det experimentella arrangemanget. Efter monokromatorns utgångsspalt passerar ljuset genom en provhållare, som antingen är försedd med ett prov (Si eller GaAs), eller tom. Slutligen registreras ljuset av en PbS-detektor, vars funktionssätt baseras på att dess ledningsförmåga ökar med ljusintensiteten. Det bör noteras att detektorns respons (signal ut/ljusintensitet) varierar med ljusets våglängd. Alternativt används (vid det optiska bordet)en Ge-fotodiod som detektor. Transmissionen T(λ ) vid en viss våglängd λ fås som T ( λ) = ( λ) ( ) λ där (λ ) är ljusintensiteten mätt med prov, medan (λ ) är ljusintensiteten mätt utan prov, men under i övrigt identiska förhållanden.

5 5 Signalen från PbS-detektorn går till ingången på lock-in-förstärkaren, som jämför signalen från detektorn med en referenssignal från choppern. Syftet är att eliminera yttre störningar (störande ljus, värme) genom att endast signaler med rätt frekvens (chopper-frekvensen) släpps fram. Från lock-in-förstärkaren fås en spänning R som väsentligen är amplituden hos den signal från detektorn som har chopperns frekvens. Denna spänning bör alltså vara ett mått på den av detektorn registrerade ljusintensiteten. Beskrivning av hur en lock-in-förstärkare fungerar, och manual till det använda instrumentet, (lock-in amplifier SR85) kan laddas hem på Avsnittet SR85 Basics ger en introduktion till funktionssättet. Sidorna ger en första introduktion till principen hos lock-in-förstärkaren, och bör läsas i förväg. En utskrift av manualen finns tillgänglig vid laborationen. de experimentella uppsättningar som använder en färdig monokromator av typ Czerny- Turner registrerar lock-in-förstärkaren även utspänningen från potentiometern (som ger prismats rotationsläge) samt levererar inspänningen till potentiometern (normalt 1 V), spänningen som driver motorn som roterar prismat (normalt 3 V), samt spänningen till detektorn. den uppsättning där man själv bygger sin monokromator är arrangemanget något annorlunda. Data registreras av ett LabView mätprogram. En introduktion till handhavandet av lock-införstärkaren och mätprogrammet ges av laborations-assistenten. 4. Förberedelser. 1) Studera artikeln av Essick och Mather. Läs om hur en Czerny-Turner-monokromator fungerar på exempelvis internet. Studera principen för funktionssättet hos lock-in förstärkaren. ) Tänk igenom och planera de mätningar som behövs för att lösa uppgifterna. Man kan räkna med att mycket tid går åt för att finjustera uppställning och mätmetod. 3) Tänk igenom och planera den analys av mätdata som måste göras för att bestämma E g (för GaAs och Si) och E p (för Si). Räkna med att även denna analys tar tid! Lycka till!

BANDGAP 2013-02-06. 1. Inledning

BANDGAP 2013-02-06. 1. Inledning 1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive

Läs mer

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?

Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? 1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Introduktion till halvledarteknik

Introduktion till halvledarteknik Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g

Läs mer

LABORATION ENELEKTRONSPEKTRA

LABORATION ENELEKTRONSPEKTRA LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna

Läs mer

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.

I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet. Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del

Läs mer

Kvantfysik - introduktion

Kvantfysik - introduktion Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR n, 18 DECEMBER 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Polarisation laboration Vågor och optik

Polarisation laboration Vågor och optik Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen

Läs mer

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd

Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma

Läs mer

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat

Denna våg är. A. Longitudinell. B. Transversell. C. Något annat Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare

Läs mer

Mätningar på solcellspanel

Mätningar på solcellspanel Projektlaboration Mätningar på solcellspanel Mätteknik Av Henrik Bergman Laboranter: Henrik Bergman Mauritz Edlund Uppsala 2015 03 22 Inledning Solceller omvandlar energi i form av ljus till en elektrisk

Läs mer

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111

Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111 Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Måndagen den 21:e maj 2012, kl 14:00 18:00 Fysik del B2 för tekniskt

Läs mer

Diffraktion och interferens Kapitel 35-36

Diffraktion och interferens Kapitel 35-36 Diffraktion och interferens Kapitel 35-36 1.3.2016 Natalie Segercrantz Centrala begrepp Huygens princip: Tidsskillnaden mellan korresponderande punkter på två olika vågfronter är lika för alla par av korresponderande

Läs mer

Tentamen i Optik för F2 (FFY091)

Tentamen i Optik för F2 (FFY091) CHALMERS TEKNISKA HÖGSKOLA 2009-03-10 Teknisk Fysik 08.30-12.30 Sal: H Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics

Läs mer

12 Elektromagnetisk strålning

12 Elektromagnetisk strålning LÖSNINGSFÖRSLAG Fysik: Fysik oc Kapitel lektromagnetisk strålning Värmestrålning. ffekt anger energi omvandlad per tidsenet, t.ex. den energi ett föremål emitterar per sekund. P t ffekt kan uttryckas i

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX 1 (6) LABORATION 2 MIKROSKOPET Att läsa i kursboken: sid. 189-194 Förberedelseuppgifter:

Läs mer

Föreläsning 13: Opto- komponenter

Föreläsning 13: Opto- komponenter Föreläsning 13: Opto- komponenter Opto- komponent Interak?on ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser CCD/CMOS Dan Flavin 1 Opto- komponenter En opto- komponent Omvandlar

Läs mer

Laborationer i miljöfysik. Solcellen

Laborationer i miljöfysik. Solcellen Laborationer i miljöfysik Solcellen Du skall undersöka elektrisk ström, spänning och effekt från en solcellsmodul under olika förhållanden, och ta reda på dess verkningsgrad under olika förutsättningar.

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

4:7 Dioden och likriktning.

4:7 Dioden och likriktning. 4:7 Dioden och likriktning. Inledning Nu skall vi se vad vi har för användning av våra kunskaper från det tidigare avsnittet om halvledare. Det är ju inget självändamål att tillverka halvledare, utan de

Läs mer

Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00

Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00 FAFF25-2012-03-09 Tentamen i Fotonik - 2012-03-09, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel

Läs mer

v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I =

v = v = c = 2 = E m E2 cµ 0 rms = 1 2 cε 0E 2 rms (33-26) I = Kap. 33 Elektromagnetiska vågor Den klassiska beskrivningen av EM-vågorna, går tillbaka till mitten av 1800-talet, då Maxwell formulerade samband mellan elektriska och magnetiska fält (Maxwells ekvationer).

Läs mer

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]

530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.] 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M

TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M TENTAMEN I TILLÄMPAD VÅGLÄRA FÖR M 2012-01-13 Skrivtid: 8.00 13.00 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Experimentell fysik 2: Kvantfysiklaboration

Experimentell fysik 2: Kvantfysiklaboration Experimentell fysik 2: Kvantfysiklaboration Lärare: Hans Starnberg Assistenter: Anna Martinelli Christoph Langhammer Mer info: Klicka er fram till kurshemsidan via Chalmers studieportal Spektroskopi Studier

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik

Läs mer

10.0 Grunder: upprepning av elektromagnetism

10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret

10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret 10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Ljus är en elektromagnetisk våg 10. Materiens optiska egenskaper [Callister, etc.] våglängd, våglängd, k vågtal, c hastighet, E

Läs mer

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)

Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa) Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos

Läs mer

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111

Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111 Tentamen Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Tisdagen den 27:e maj 2008, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt

Läs mer

Föreläsning 6: Opto-komponenter

Föreläsning 6: Opto-komponenter Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser

Läs mer

Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18. Konjugerade molekyler

Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18. Konjugerade molekyler Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18 Konjugerade molekyler Introduktion Syftet med den här laborationen är att studera hur ljus och materia

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt

Läs mer

5. Elektromagnetiska vågor - interferens

5. Elektromagnetiska vågor - interferens Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor

Läs mer

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP

TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP Avsikten med detta problem är att ta fram en enkel teori för att förstå så kallad laserkylning och optisk sirap. Detta innebär att en stråle

Läs mer

Polarisation Laboration 2 för 2010v

Polarisation Laboration 2 för 2010v Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus

Läs mer

Diffraktion och interferens

Diffraktion och interferens Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det är just detta fenomen som gör att

Läs mer

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):

1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter): FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.

Läs mer

SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse

SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse Kosmisk strålning Gammastrålning Röntgenstrålning Ultraviolet Synligt Infrarött Mikrovågor Radar Television NMR Radio Ultraljud Hörbart ljud Infraljud SEKTROSKOI () Kemisk mätteknik CSL Analytisk kemi,

Läs mer

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:

Ett materials förmåga att leda elektrisk ström beror på två förutsättningar: Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt

Läs mer

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5

KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna

Läs mer

Institutionen för Fysik 2013-10-17. Polarisation

Institutionen för Fysik 2013-10-17. Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra

Läs mer

v.2.1 Sida 1 av 8 Nedan fokuserar jag på begreppet markvåg eftersom det är detta som denna artikel behandlar.

v.2.1 Sida 1 av 8 Nedan fokuserar jag på begreppet markvåg eftersom det är detta som denna artikel behandlar. v.2.1 Sida 1 av 8 16. MARKVÅG Författare Bertil Lindqvist, SM6ENG Denna myt handlar om att många sändareamatörer ofta tillmäter markvågen större betydelse än vad den har. Vidare så behandlar den en del

Läs mer

4. Allmänt Elektromagnetiska vågor

4. Allmänt Elektromagnetiska vågor Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen

Läs mer

LABORATION 2 MIKROSKOPET

LABORATION 2 MIKROSKOPET LABORATION 2 MIKROSKOPET Personnummer Namn Laborationen godkänd Datum Assistent Kungliga Tekniska högskolan BIOX (5) Att läsa före lab: LABORATION 2 MIKROSKOPET Synvinkel, vinkelförstoring, luppen och

Läs mer

Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner

Läs mer

SPEKTROFOTOMETRISK BESTÄMNING AV KOPPARHALTEN I MÄSSING

SPEKTROFOTOMETRISK BESTÄMNING AV KOPPARHALTEN I MÄSSING 1 SPEKTROFOTOMETRISK BESTÄMNING AV KOPPARHALTEN I MÄSSING Spektrofotometri som analysmetod Spektrofotometrin är en fysikalisk-kemisk analysmetod där man mäter en fysikalisk storhet, ljusabsorbansen, i

Läs mer

Vågrörelselära och Optik VT14 Lab 3 - Polarisation

Vågrörelselära och Optik VT14 Lab 3 - Polarisation Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000

Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000 Assistent: Cecilia Askman Laborationen utfördes: 7 februari 2000 21 februari 2000 Inledning Denna laboration innefattade fyra delmoment. Bestämning av ultraljudvågors hastighet i aluminium Undersökning

Läs mer

Föreläsning 2 - Halvledare

Föreläsning 2 - Halvledare Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer

Läs mer

Michelson-interferometern och diffraktionsmönster

Michelson-interferometern och diffraktionsmönster Michelson-interferometern och diffraktionsmönster Viktor Jonsson vjons@kth.se 1 Sammanfattning Denna labb går ut på att förstå fenomenen interferens och diffraktion. Efter utförd labb så ska studenten

Läs mer

Optik, F2 FFY091 TENTAKIT

Optik, F2 FFY091 TENTAKIT Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31

Läs mer

PLANCKS KONSTANT. www.zenitlaromedel.se

PLANCKS KONSTANT. www.zenitlaromedel.se PLANCKS KONSTANT Uppgift: Materiel: Att undersöka hur fotoelektronernas maximala kinetiska energi beror av frekvensen hos det ljus som träffar fotocellen. Att bestämma ett värde på Plancks konstant genom

Läs mer

LABORATION 4 DISPERSION

LABORATION 4 DISPERSION LABORATION 4 DISPERSION Personnummer Namn Laborationen gokän Datum Assistent Kungliga Tekniska högskolan BIOX (8) LABORATION 4 DISPERSION Att läsa i kursboken: si. 374-383, 4-45 Förbereelseuppgifter: Va

Läs mer

Fysik. Laboration 3. Ljusets vågnatur

Fysik. Laboration 3. Ljusets vågnatur Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall

Läs mer

Elektromagnetiska vågor (Ljus)

Elektromagnetiska vågor (Ljus) Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer

Läs mer

Tentamen i FysikB IF0402 TEN2:3 2010-08-12

Tentamen i FysikB IF0402 TEN2:3 2010-08-12 Tentamen i FysikB IF040 TEN: 00-0-. Ett ekolod kan användas för att bestämma havsdjupet. Man sänder ultraljud med frekvensen 5 khz från en båt. Ultraljudet reflekteras mot havets botten. Tiden det tar

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!

Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel

Läs mer

Institutionen för Fysik Polarisation

Institutionen för Fysik Polarisation Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat-, linjärt- och cirkulär polariserat ljus. Exempel på komponenter som kan

Läs mer

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 35-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260

Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260 Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben! De mest relevanta kapitlena i kompendiet är kapitel 6 och 7 om

Läs mer

Ljusets böjning & interferens

Ljusets böjning & interferens ... Laboration Innehåll 1 Förberedelseuppgifter 2 Laborationsuppgifter Ljusets böjning & interferens Ljusets vågegenskaper Ljus kan liksom ljud beskrivas som vågrörelser och i den här laborationen ska

Läs mer

Laboration i Optiska Effekter. Fredrik Olsen

Laboration i Optiska Effekter. Fredrik Olsen Laboration i Optiska Effekter Fredrik Olsen 16 maj 8 Innehåll 1 Inledning 1 Teori 1.1 Absorption och emission i band........................... 1. Natriumklorid kristallen................................3

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1

Läs mer

Vad är KiselGermanium?

Vad är KiselGermanium? Vad är KiselGermanium? Kiselgermanium, eller SiGe, får nog sägas vara den nya teknologin på modet inom området integrerade kretsar för radiofrekvenser, RF-ASIC. Det kan vara på sin plats med en genomgång

Läs mer

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005

Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005 Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara

Läs mer

Övningsuppgifter. 1. Ljusets natur. Våglära och optik FAFF30. 1.1 D Varför är kortvågigt ljus ofta mer skadligt än långvågigt ljus?

Övningsuppgifter. 1. Ljusets natur. Våglära och optik FAFF30. 1.1 D Varför är kortvågigt ljus ofta mer skadligt än långvågigt ljus? Övningsuppgifter Våglära och optik FAFF30 1. Ljusets natur 1.1 D Varför är kortvågigt ljus ofta mer skadligt än långvågigt ljus? 1.2 Ett enkelt experiment att testa om man är nyfiken på vilken frekvens

Läs mer

När man förklarar experiment för andra finns det en bra sekvens att följa:

När man förklarar experiment för andra finns det en bra sekvens att följa: Den inledande teoridelen ska läsas av alla studenter före laborationstillfället. Tänk igenom och lös förberedelseuppgifterna innan labben det kommer ni att ha nytta av. De mest relevanta kapitlena i kompendiet

Läs mer

Ögonlaboration 1(1) ÖGONLABORATION

Ögonlaboration 1(1) ÖGONLABORATION Ögonlaboration 1(1) Uppsala Universitet Institutionen för Neurovetenskap, Fysiologi VT 08 GS, LJ För Neural reglering och rörelse ÖGONLABORATION Avsikten med laborationen är att illustrera teoretisk bakgrund

Läs mer

F9 ELEKTRONMIKROSKOPI

F9 ELEKTRONMIKROSKOPI Chalmers tekniska högskola Institutionen för Teknisk fysik Mats Halvarsson 1991, uppdaterad av Anna Jansson 2012 F9 ELEKTRONMIKROSKOPI TEM- bild i atomär upplösning av en tunn film av LaAlO3 (fyra enhetsceller

Läs mer

Kvantbrunnar Kvantiserade energier och tillstånd

Kvantbrunnar Kvantiserade energier och tillstånd Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på

Läs mer

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1

Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1 Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition

Läs mer

4 Halveringstiden för 214 Pb

4 Halveringstiden för 214 Pb 4 Halveringstiden för Pb 4.1 Laborationens syfte Att bestämma halveringstiden för det radioaktiva sönderfallet av Pb. 4.2 Materiel NaI-detektor med tillbehör, dator, högspänningsaggregat (cirka 5 kv),

Läs mer

Böjning och interferens

Böjning och interferens Böjning och interferens Böjning: Oänligt många elementarvågor från en öppning Böjnings minima bsin m Interferens: Änligt många elementarvågor från flera öppningar Interferens maxima sin m Multipelinterferens

Läs mer

A12. Laserinducerad Fluorescens från Jodmolekyler

A12. Laserinducerad Fluorescens från Jodmolekyler GÖTEBORGS UNIVERSITET CHALMERS TENKISKA HÖGSKOLA Avdelningen för Experimentell Fysik Göteborg april 2004 Martin Sveningsson Mats Andersson A12 Laserinducerad Fluorescens från Jodmolekyler Namn... Utförd

Läs mer

HALVLEDARE. Inledning

HALVLEDARE. Inledning HALVLEDARE Inledning Halvledare har varit den i särklass viktigaste materialkategorin för den högteknologiska utvecklingen under 1900-talet. Man kan också säga att inget annat exempel kan mer tydligt visa

Läs mer

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016

FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016 Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med

Läs mer

2.6.2 Diskret spektrum (=linjespektrum)

2.6.2 Diskret spektrum (=linjespektrum) 2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.

Läs mer

Ljus, färger och hjärnor

Ljus, färger och hjärnor Ljus, färger och hjärnor Våra sinnen För att varsebli vår omgivning och för att kunna orientera oss i tillvaron, med syfte att tex undvika hotande faror, behöver vi kunskaper om omvärlden. Dessa kunskaper

Läs mer

Sensorer och brus Introduktions föreläsning

Sensorer och brus Introduktions föreläsning Sensorer och brus Introduktions föreläsning Administration Schema Kurslitteratur Föreläsningar Veckobrev Övningsuppgifter Laborationer Tentamen Kommunikation Kursens Innehåll Mätsystem Biasering Brus Sensorer

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Gauss Linsformel (härledning)

Gauss Linsformel (härledning) α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a

Läs mer

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod.

Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. I denna övning kallas ett kösystem som ingår i ett könät oftast nod. Övning 8 Vad du ska kunna efter denna övning Kunna beräkna medelantal kunder för alla köer i ett könät med återkopplingar. Kunna beräkna medeltiden som en kund tillbringar i ett könät med återkopplingar.

Läs mer

Grundläggande Akustik

Grundläggande Akustik Läran om ljud och ljudutbredning Ljud i fritt fält Ljudet utbreder sig som tryckväxlingar kring atmosfärstrycket Våglängden= c/f I luft, ljudhastigheten c= 344 m/s eller 1130 ft/s 1ft= 0.3048 m Intensiteten

Läs mer

Kapacitansmätning av MOS-struktur

Kapacitansmätning av MOS-struktur Kapacitansmätning av MOS-struktur MOS står för Metal Oxide Semiconductor. Figur 1 beskriver den MOS vi hade på labben. Notera att figuren inte är skalenlig. I vår MOS var alltså: M: Nickel, O: hafniumoxid

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Laboration: Optokomponenter

Laboration: Optokomponenter LTH: FASTA TLLSTÅNDETS FYSK Komponentfysik för E Laboration: Optokomponenter Utförd datum nlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer

Läs mer

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion

Förklara dessa begrepp: Ackommodera Avbildning, Brytning Brytningslagen Brytningsindex Brytningsvinkel Brännvidd Diffus och regelbunden reflektion Förklara dessa begrepp: Ackommodera, ögats närinställning, är förmågan att förändra brytkraften i ögats lins. Ljus från en enda punkt på ett avlägset objekt och ljus från en punkt på ett närliggande objekt

Läs mer

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14

Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tentamen i SK1111 Elektricitets- och vågrörelselära för K, Bio fr den 13 jan 2012 kl 9-14 Tillåtna hjälpmedel: Två st A4-sidor med eget material, på tentamen utdelat datablad, på tentamen utdelade sammanfattningar

Läs mer

λ = T 2 g/(2π) 250/6 40 m

λ = T 2 g/(2π) 250/6 40 m Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten

Läs mer

EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD

EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD EXPERIMENTELLT PROBLEM 1 BESTÄMNING AV LJUSVÅGLÄNGDEN HOS EN LASERDIOD UTRUSTNING Utöver utrustningen 1), 2) and 3), behöver du: 4) Lins monterad på en fyrkantig hållare. (MÄRKNING C). 5) Rakblad i en

Läs mer

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt

Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,

Läs mer