i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

Relevanta dokument
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm

x 2 5x + 4 2x 3 + 3x 2 + 4x + 5. d. lim 2. Kan funktionen f definieras i punkten x = 1 så att f blir kontinuerlig i denna punkt? a.

Blandade A-uppgifter Matematisk analys

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

2x 2 3x 2 4x 2 5x 2. lim. Lösning. Detta är ett gränsvärde av typen

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

LMA515 Matematik, del B Sammanställning av lärmål

1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).

Tentamen i matematik. f(x) = 1 + e x.

Tentamensuppgifter, Matematik 1 α

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Tentamen i Envariabelanalys 2

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e x2 /4 2) = 2) =

Institutionen för Matematik, KTH Torbjörn Kolsrud

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik Lösningsförslag till del I

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Repetitionsuppgifter

Moment Viktiga exempel Övningsuppgifter Ö , Ö1.25, Ö1.55, Ö1.59

SF1600, Differential- och integralkalkyl I, del 1. Tentamen, den 9 mars Lösningsförslag. f(x) = x x

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

Lösningsförslag, preliminär version 0.1, 23 januari 2018

SF1625 Envariabelanalys

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

v0.2, Högskolan i Skövde Tentamen i matematik

1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.

Kursens Kortfrågor med Svar SF1602 Di. Int.

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.

Kap Inversfunktion, arcusfunktioner.

Några saker att tänka på inför dugga 2

Matematik 1. Maplelaboration 1.

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

Planering för Matematik kurs D

Kontrollskrivning KS1T

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

KOMPLETTERANDE UPPGIFTER TILL MATEMATISK ANALYS - EN VARIABEL AV FORSLING OCH NEYMARK

Tentamen i matematik. f(x) = ln(ln(x)),

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Lösningar till MVE016 Matematisk analys i en variabel för I yy 1 + y 2 = x.

KOKBOKEN 3. Håkan Strömberg KTH STH

Modul 4 Tillämpningar av derivata

Tentamen Matematisk grundkurs, MAGA60

= 0. Båda skärningsvinklarna är således π/2 (ortogonala riktningsvektorer).

BASPROBLEM I ENDIMENSIONELL ANALYS 1 Jan Gustavsson

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

x 1 1/ maximum

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Tentamen Lördagen den 11 januari, 2014

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.

Instuderingsfrågor för Endimensionell analys kurs B1

SF1625 Envariabelanalys

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Föreläsning 1. X kallas för funktionens definitionsmängd, mängden av funktionens alla värden kallas funktionens värdemängd.

Instuderingsfrågor för Endimensionell analys kurs B1 2011

Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Tentamensproblem i Matematik 1 β. Sammanställda av Tomas Claesson Utskrivna av Kjell Elfström

Svar till tentan

Högskolan i Skövde (SK, YW) Svensk version Tentamen i matematik

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

MA2001 Envariabelanalys

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet.

Lösningar till tentamen i kursen Envariabelanalys

Tentamen i Matematisk analys MVE045, Lösningsförslag

Endast kommenterade svar!!! OBS: Inte alla delsteg är redovisade!

Kontrollskrivning 1A

f(x) = 1 x 1 y = f(x) = 1 y = 1 (x 1) = 1 y x = 1+ 1 y f 1 (x) = 1+ 1 x 1+ 1 x 1 = 1 1 =

Lösning till kontrollskrivning 1A

Kap Generaliserade multipelintegraler.

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

SF1658 Trigonometri och funktioner Lösningsförslag till tentamen den 19 oktober 2009

Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

M0038M Differentialkalkyl, Lekt 10, H15

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

Några viktiga satser om deriverbara funktioner.

Transkript:

Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5 då a = och b = 3. Ê. Visa att Á nˆ Ë - Ê Á nˆ Ë + Ê Á nˆ Ê Ë -º+ (-) n n Á ˆ = där n =,,3, Ë n 5. Visa med induktion att a 5 n- + är jämnt delbart med 6 for n =,, 3...... b. n 3 + n är jämnt delbart med 3 for n =,, 3...... n < n för n = 5,6,7, d. - 3 + 5-7 +º+ (-) n (n -) = (-) n+ n e. n k - 3 Â = - n k= 3 k 3 n 6. Visa att coshx =+ sinh x. b. sinh(x + y) = sinh x cosh y + sinh y cosh x. 7. Förenkla så långt som möjligt sin(arccos 3 - arcsin 3 ) b. cos(arccos 3 ) 8. Verifiera att arctan( - 3) = p b. arcsin 6 5 + arcsin 3 = 3p 9. Finns det något värde på konstanten A så att funktionen Ï Ô x då x f (x) = Ì x + x blir kontinuerlig i punkten x =? Ó Ô A då x =. 35. n = =>, n = 5 =>, n = 6 =>. För övriga n är koefficienten. 3. - 7. 7/9 b. /8 9. Nej

. Bestäm i förekommande fall inversfunktionen f - (x) till den funktion f (x) som anges nedan. Bestäm definitionsmängden och värdemängden till f resp. f -. f (x) = ln(x +) - ln(x -) b. f (x) = ln(x +) + ln(x -). Låt f (x) =+ x och g(x) = -. Bestäm de sammansatta funktionerna f o g, g o f, f o f och x g o g.. Beräkna derivatorna till följande funktioner: x 3 b. x - - x x d. sin (+ 3x) e. g. ln -sin x + sin x j. arccos x sin x - x cos x cos x + x sin x h. arccos - x k. arctan(tan x) x + x f. ln x - x + i. x - arctan x 3. Beräkna höger- och vänsterderivatorna i x = till funktionen f (x) = sin x.. Beräkna derivatan dy uttryckt i x och y då funktionen y = y(x) definieras av: dx x 3 y + xy 3 = b. x cos y + y sin x = y y = x 3 + x. f - (x) = ex + e x -. D f = V f - = alla reella tal >. D f - = V f = alla reella tal utom. b. Har ingen invers.. f o g(x) = ( x -)(x -) g o f (x) = (x + )(x + ), f o f (x) = (3x + )(x + ) g o g(x) = (3x -)(x -).. b. + ( - x )3/ 3 x x x d. 3sin( + 6x). e. g. - cosx j. x x -. k. sinx sin x + cos x 3. f + () =, f - () = - h. +x + x. x (cos x + x sin x). f. x x -. + x - x i. x (+ x) - y(3x + y ) x(x + 3y ) b. y cos x + cos y x sin y - sin x (3x +) y y (+ ln y)

5. Bestäm ekvationen för tangenten och normalen till kurvan y = (3- x ) i punkten (,). 6. Ekvationen xy + ln(+ x - 3y) = definierar en funktion y = y(x) sådan att y(3) =. Bestäm ekvationen för tangenten och normalen till kurvan y = y(x) i punkten (3,). 7. Bestäm arean av den triangel som tangenten till ellipsen x + y = 6 i punkten (,) bildar med koordinataxlarn 8. En tangent till kurvan y = x ln x är parallell med linjen x -y = 3. Bestäm tangentens ekvation. 9. Antag att funktionen y = f (x) är deriverbar och har en invers y = f - (x). Sant eller falskt: Punkten (,) ligger på kurvan y = f (x) fi punkten (,) ligger på kurvan y = f - (x). b. f () = 3 fi ( f - ) () = 3. Linjen y - = 3(x -) är tangenten till kurvan y = f (x) i punkten (,) filinjen y -= 3 (x -) är tangenten till kurvan y = f - (x) i punkten (,).. Bestäm eventuella lokala extrempunkter och deras karaktär till följande funktioner: x + x b. x - 3x + x + x + x - x 3 d. x x - e. xe -x f. x ln x g. x /3 (- x) /3 h. arctan x - ln + x 5. T: x + y = 6, N: y - x = 7 6. T: x + 3y =, N: 3x -y = 5 7. 9/ 8. x - y = 9. Sant b. Sant Sant..min. i x =-,.max. i x = b. l.min. i x = 7/5.max. i x = d. l.min. i x = 3/ e.. max. i x = f.. min. i x = e - g.. max. i x = /3,. min. I x = h.. max. i x = 3

. Sök största och minsta värdet till följande funktioner: 5 - x, - x b. + x + x - x, x 5 3+ x d. px -6x arcsinx - 3 - x. Bestäm de intervall där funktionen f (x) = ln(+ x ) -ln(+ x ) är monoton. 3. Visa att ln(+ x ) + arctanx ln(+ x), för alla x > - b. sin x -cos x x + x, för alla x. - x. Vilka värden antar f (x) = arccos - arctan x då x >? + x 5. Bestäm värdemängden till följande funktioner: f (x) = 6 -x + x b. f (x) = x + x + 3, x f (x) = x + x + 3 6. Visa att funktionen f (x) = x 3-3x + 6x har en invers. 7. Bestäm alla punkter på kurvan y = x - 8x + där tangenten är parallell med x-axeln. 8. Visa att ekvationen x 5 + x -= har precis en lösning på intervallet [-,. 9. Låt f (x) = x - x + x + arctan x. Visa att -- p < f (x) p. 3. Bestäm ekvationen för den räta linje som går genom punkten (,) och med de positiva koordinataxlarna bildar en triangel med så liten area som möjligt. 3. Bestäm Maclaurinpolynomet av grad till följande funktioner f (x) : x ln(+ x) b. x ln(+ sinx) c + x - x d. e sin x. och 3 b. Största värdet är (+ ) /, minsta saknas /3 och -/6 d. -3 3 och -π. Strängt avtagande då x < - eller < x <. Strängt växande då - < x < eller x >.. Endast 5. [ 3,3] b. [/3,/ [-/6,/] 7., ± 3. x + y = 3. x b. x + x + x / d. + x + x /

3. Bestäm Taylorutvecklingen av ordning av funktionen f (x) = x kring punkten x =. b. f (x) = x arcsin(- x) kring punkten x =. Restermen anges på ordoform. 33. Beräkna följande gränsvärden: e. lim ex + e -x - x Æ x sin x lim x -arctan x d. x Æ x 3 lim( x + x - x - x ) f. x Æ b + cosx lim x Æ - sinx lim( x Æ x - e x - ) + cosx lim x Æp (x - p) g. lim(cot x)ln(+ x) h. x Æ lim(e x - x) /x x Æ 3. Bestäm de allmänna lösningen till differentialekvationen y - 5 y + y =6x + b. y - 6 y + 9y = 9x + 3 y - 6 y + 9y = 9x + 3+ e 3x d. y + y - 3y = (5x +)e x e. y - y + 3y =sin x f. y - y + y = x 35. Bestäm den lösning till differentialekvationen y + y + 3y = e - x cos x för vilken y() = och y () = och y'(o) =. 36. Sök asymptoter till följande kurvor: y = x + x + b. y = + ln(x +) ln(x +) 3. + (x -) / -(x -) / 8 + O(x -) 3 b. -(x -) -(x -) + O(x -) 3 33. b. /3 d. / e. f. / g. h. e 3. y = Ae x + Be x + x + 6 b. y = Ae 3x + Bxe 3x + x + y = Ae 3x + Bxe 3x + x ++ x e 3x d. y = Ae x + Be -3x + (x -)e x e. y = Ae x + Be 3x + cosx + sin x f. y = Axe x + Be x + C + 8x + x 35. y = e -x (cos x -cos(x ) + sin(x )) 36. x = -, y = x -. b. x =, y =. 5

37. Beräkna följande integraler: x - 3 x + Ú dx b. Ú dx 3 x - 3x + x - x + 3 Ú dx d. Ú x - x 3 dx (x -)(x - 3) e. x - e x Ú dx f. Ú dx x + 3 9 - e x g. Ú x ln( - x) dx h. Ú ln( - x) dx i. k. cos x Ú dx j. ( + sin x)(+ sin x) p/ Ú dx - x / Ú dx - x 38. Beräkna följande generaliserade integraler Ú dx b. Ú e -x x(+ x ) - e -x dx x Ú dx d. Ú dx x x - (+ x 3 ) 39. Beräkna volymen av den kropp som uppstår då området mellan kurvorna y = x och y = - x roterar ett varv kring x-axeln. b. mellan kurvorna y = x och y = - x roterar ett varv kring y-axeln. y e -x, x ln roterar ett varv kring x-axeln. d. y e -x, x ln roterar ett varv kring y-axeln. e. mellan linjen y = x och kurvan y = x - x 3 roterar ett varv kring x-axeln. 37. n3 b. - (5/)n3 -n+5n3 d. /9 e. 3 - arctan( 3 / ) f. (ln(3 + e) - ln(3 - e) - ln)/6 g. n - 5/ h. n - i. n - n3 j. π/6 k. π/ 38. In / b. /3 π d. /3 39. l6π/3 b. π 3π/8 d. π( - In ) e. ( - 5)p / 9 6

. Bestäm längden av kurvan föjande kurvor 5y = x 5/, x 9 b. y = e x, ln 3 x ln 8 y = 3 (x +) 3/, x d. x = cost + (t -)sint, y = sin t -(t -)cost, t e. x = 3cost -cos 3t, y = 3sint -sin 3t, t p f. r = sinv + cosv, v p (polära koordinater) g. r =+ sinv, v p (polära koordinater). Beräkna arean av det ändliga området som begränsas av kurvan y = (x - 5) 6 - x och x-axeln. b. kurvorna y = x - 3x + och y = x 3 +. llinjen y = x och y = x 9-5x d. y = (- x)x, x e. y = x och y = x. Undersök konvergensen av följande serier n + a, Â. b. n=n + n 7n Â. n=8n + e. g. 3 n  d. 3 n= n + 3 (-) n n Â. f. n= n + n  h. n=n 3 3 n  n=n + 3 (-) n  n=+ 3 n (n +) n  n= n 3/5 b. + ln 3 / 7/5 d. e. f. p g. 8. /5 b. 37/ 8/5 d. 8/5 e. /3. divergent. b. konvergent. divergent. d. konvergent. e. konvergent. f. konvergent. g. divergent. h. konvergent 7

3. Undersök konvergensen av följande generaliserade integraler: x x - x + dx x Ú b. Ú dx - x ln(+ x) ln x Ú dx d. Ú x - x dx. Skriv ( + i)(3+ i) -i på formen a + ib. 5. Bestäm absolutbeloppet av (3 -i)(-i) ( + i). (3 + i 3) 6. Bestäm argumentet för. (-i) 8 7. Skriv e 3pi/ på formen a + ib. 8. Lös ekvationen z =. 9. Lös ekvationen z 3 -iz - z + i =, då manvet att z = i är en rot. 5. Ekvationen z + z 3 + 3z + z + = har en rot z = - + i. Bestäm samtliga rötter. 5. Ekvationen z + 3z 3 + z +8z - 3 = har en rent imaginär rot. Lös ekvationen. 5. Bestäm de reella talen a och b så att ekvationen z 3 + az + b = får roten z = - i. Lös ekvationen. 53. Uppdela x + så långt som möjligt i reella faktorer. 3. konvergent. b. konvergent. divergent. d. konvergent.. 5 7 + 5 i 7 5. 6 / 5 6. π/3. 7. -i 8., i, -, -i. 9. i,, - 5. -+ i, --i, i, -i 5. i 6, - i 6, - 3 / + 9 /, - 3 / - 9 / 5. a =, b =, z =+ i, z 3 = -. 53. (x + x +)(x - x +) 8