Styrsignalsfördelning hos system med redndanta aktatorer Linköpings Tekniska Högskola Tillämpningar
Styrsignalsfördelning (eng. control allocation) Hr Hr ska ska den den önskade totala styrerkan fördelas mellan de de olika olika styrsignalerna? Reglerdesign: Bestäm önskad total styrerkan Fördela styrerkan bland styrsignalerna Styrlagar Fördelare Aktatorer Systemdynamik Varför separat styrsignalsfördelning? Lättare att hantera begränsningar Enkelt att omkonfigrera Nödändigt med issa designmetoder ì Exakt linjärisering (NDI) ì Backstepping Modlaritet
Exempel: Hardoer Maxtslag efter s Varför inte? Modellapproximationer kan behöas Kan ej hantera serodynamik 3
Öersikt Matematisk formlering Existerande metoder för styrsignalsfördelning Aktell forskning i Linköping Att minnas: Separat styrsignalsfördelning = Fattigmans "reglering med med styrsignalsbegränsningar" Öersikt Matematisk formlering Existerande metoder för styrsignalsfördelning Aktell forskning i Linköping 4
Matematisk formlering Aktatorer = faktisk styrsignalektor = irtell styrsignalektor (total styrerkan) Modellerat samband: = g() Linjärisering: = B Begränsningar: min max & & & min max () t () t Fördelningsproblemet Att lösa i arje sampeltidpnkt: B = Vilken lösning ska äljas? Vad göra om lösning saknas? (command limiting) Hr beräkna lösningen nmeriskt? 5
Exempel Dynamik: Begränsningar: Styrlag: Fördelningsproblem: x& = 0 0 = x + = x& = = + = 3 = 4 = 5 Flygplansreglering Dynamik: V& = ω V + F m Jω & = ω Jω + M () δ ω F Begränsningar: δ δ& min min δ δ δ& δ& max max Approximationer: δ = F = 0 δ Styrlag: = M() δ = k( x,r) V M M Fördelningsproblem: M () δ Bδ + c = δ δ δ δ 6
Öersikt Matematisk formlering Existerande metoder för styrsignalsfördelning Aktell forskning i Linköping Metoder för styrsignalsfördelning Optimeringsbaserad fördelning Minimera lämplig kostnadsfnktion Daisy chaining Prioritera bland styrsignalerna Direct control allocation Skala ned den styrsignal som ger maximal styrerkan 7
Optimeringsbaserad fördelning Minimera lämplig kostnadsfnktion B = Ω = arg min W B ( ) = arg min W( d) Ω + 0 0 = = 3.5 Ω d W = I W = 0 = =.5 d Daisy chaining Prioritera bland styrsignalerna Exempel: + 0 0 = = 3.5 0.75 = Prioritera 8
Direct control allocation Skala ner den styrsignal som ger maximal styrerkan Exempel: + 0 0 = = 3.5 0.875 =.75 = ger = 4 Öersikt Matematisk formlering Existerande metoder för styrsignalsfördelning Aktell forskning i Linköping 9
Forskningsfrågor Kan anliga optimeringsmetoder anändas för styrsignalsfördelning? Ja. Hr förhåller sig styrsignalsfördelning till anlig LQ-design? Ekialenta tan biillkor. Hr kan man inkldera filtrering i fördelningen? Straffa äen förändringar i styrsignalen. Kan Kan anliga optimeringsmetoder anändas för för styrsignalsfördelning? 0
Akti mängd-metoder för styrsignalsfördelning Psedoiners Akti mängd B = B = d Varför akti mängd? d Hittar alltid optimm Kan återanända tidigare lösning Kan abrytas Exempel (Drham and Bordignon, 996) Aerodynamiska koefficienter tipp gir roll 8 roder, 3 moment Positions- och rate-begränsningar
Simleringar Akti mängd Medel: 0.9 ms Max:.5 ms Psedoiners Medel: 0.9 ms Max:.5 ms Hr Hr förhåller sig sig styrsignalsfördelning till till anlig LQ-design?
Styrsignalsfördelning s LQ-design r Styrlagar r Styrlagar Fördelare x& = Ax + B min 0 T T x Q x + R dt = L x Q, R x B = Q B B,R, W x& = Ax + B = B min min 0 3 T T x Q x + R dt = L x W = L L x x då B = = L 3 Exempel (Admire: Mach 0., 3000m) 3
Hr Hr kan kan man man inkldera filtrering ii fördelningen? Dynamisk styrsignalsfördelning Vad? G(s) G(s) Biillkor: B = Varför? Praktiska aspekter Serodynamik Finjstera systemets respons 4
Dynamisk styrsignalsfördelning Hr? Straffa äen förändringar a styrsignalen min () t B = W () t + W ( () t ( t ) T () t = F( t T) G() t + Stabilt linjärt filter Sammanfattning Varför anända separat styrsignalsfördelning? ì Kan hantera begränsningar ì Lätt att omkonfigrera Varför inte? ì Kan kräa modellapproximationer ì Serodynamik kan ej hanteras Varför anända minsta kadratramerk? ì Rättfram analys (linjär styrlag) ì Effektia lösare finns 5