, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

Relevanta dokument
is a basis for M. Also, find the coordinates of the matrix M = with respect to the basis M 1, M 2, M 3.

1. Find for each real value of a, the dimension of and a basis for the subspace

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

for M, the matrix of the linear transformation F : R 3 M defined as x1 + x F ((x 1, x 2, x 3 )) = 2 + x 3 2x 1 + x 2 + 3x 3

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where

2. Find, for each real value of β, the dimension of and a basis for the subspace

1. Find an equation for the line λ which is orthogonal to the plane

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

MMA129 Linear Algebra academic year 2015/16

1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

2 4xy. and classify each of them with respect to the corresponding linearized system. x 2 dy + 2xy = y2

(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

1. Find, for x > 0, the general solution of the differential equation. dy/dt 4xy + 10y + 6y 2,

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

1. The sum of two non-negative numbers x and y equals 4. Which is the smallest interval that surely contains the number x 3 + 3y 2?

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)

2. For which values of the parameters α and β has the linear system. dy/dt x + y

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Tentamen i Matematik 2: M0030M.

Pre-Test 1: M0030M - Linear Algebra.

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

2. Find an equation for and sketch the curve which begins at the point P : (3, 1) and which otherwise is given by the linear system 1 = 2

Tentamen i Matematik 3: M0031M.

Isometries of the plane

2. Find the area of the bounded region precisely enclosed by the curves y = 3 x 2 and y = x + x.

Lösningsförslag obs. preliminärt, reservation för fel

2. Find to the differential equation 2y + (y ) 2 = 0 the solution whose graph at the point with the coordinates (1, 0) has the tangent line x + y = 1.

Tentamen i Matematik 2: M0030M.

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

1. Beräkna determinanten

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

Solutions to exam in SF1811 Optimization, June 3, 2014

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

Bestäm den matris B som löser ekvationen = 1 2

Module 1: Functions, Limits, Continuity

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

KTH, Matematik. Del I. (totalt 15 poäng, inklusive bonuspoäng). (1) Betrakta följande mängder i R 3 :

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

Linjär algebra F1, Q1, W1. Kurslitteratur

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5

Uppgifter, 2015 Tillämpad linjär algebra

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen MMG610 Diskret Matematik, GU

1 x 1 x 2 1 x x 2 x 2 2 x 3 2 A = 1 x 3 x 2 3 x x 4 x 2 4 x 3 4

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3

12.6 Heat equation, Wave equation

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

Uppgifter, 2014 Tillämpad linjär algebra

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

Module 6: Integrals and applications

7 n + 8 n 3 2n. converges or not. Irrespective whether the answer is yes or no, give an explanation

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle

4x az = 0 2ax + y = 0 ax + y + z = 0

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

(4x 3 + y)y + x(x 3 + 2y) dy dx = 0

(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) ,

1 basen B = {f 1, f 2 } där f 1 och f 2 skall uttryckas i koordinater i standardbasen.

Tentamen i ETE305 Linjär algebra , 8 13.

where β R. Find the numbers β for which the operator är diagonalizable, and state a basis of eigenvectors for each of these β.

Tentamen i Linjär algebra (TATA31/TEN1) ,

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

Transkript:

MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA9 Linear Algebra Date: 05-06-0 Write time: 5 hours Aid: Writing materials This examination consists of eight randomly ordered problems each of which is worth at maximum 5 points. The maximum sum of points is thus 40. The pass-marks, 4 and 5 require a minimum of 8, 6 and 4 points respectively. Solutions are supposed to include rigorous justifications and clear answers. All sheets with solutions must be sorted in the order the problems are given in. Especially, avoid to write on back pages of solution sheets.. The linear operator F : E E has the matrix 4 A = 0. 4 relative to the standard basis. Prove that F is diagonalizable, i.e. that there exists a basis of eigenvectors of F, and determine the matrix à of F relative to that basis. Finally, find an orthogonal change-of-basis matrix S in the relation à = S AS between the matrices of F in the two bases.. Let m = ( ), m = ( ), m = ( Prove that m, m, m is a basis for the linear space M of all real-valued - matrices with the trace (the sum of the ( diagonal) elements) equal to zero. Also, determine the coordinates of the matrix 9 in the basis m, m, m.. Determine for each real α and for each real β 0 the geometric meaning of the equation x + y + αz + xz 4yz = β. 4. Find an orthonormal basis for the linear space 6 9 {(x, x, x, x 4 ) E 4 : x + x + x + x 4 = 0}. 5. Let P be the linear space of polynomial functions p of degree, and define by F (p)(x) = p(x + ) a linear operator F : P P. Find the matrix of F in the basis p p 0, p, p 0 + p, where p n (x) = x n. 6. For each value of a, find the dimension of, and a basis for, the linear span span{(a +, 0, a +, 0), (,, 0, 6), (,, a, 4), (a +,,, a )} R 4. 7. The linear transformation F : R 5 R 4 has in the standard bases the matrix 4 0. 4 5 Find the kernel and the image of F, and express them as linear spans generated by a set of basis vectors for each space respectively. Also, specify explicitly the dimensions of the two spaces. 8. Determine a unit vector n that is orthogonal to both e +e +e and e +e +e in the inner product space E for which the scalar product is fixed as u v = 6x y + x y + x y (x y + x y ) + (x y + x y ) 4(x y + x y ), where (x, x, x ) and (y, y, y ) are the coordinates of u and v respectively in the basis e, e, e. ). Om du föredrar uppgifterna formulerade på svenska, var god vänd på bladet.

MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 05-06-0 Skrivtid: 5 timmar Hjälpmedel: Skrivdon Denna tentamen består av åtta om varannat slumpmässigt ordnade uppgifter som vardera kan ge maximalt 5 poäng. Den maximalt möjliga poängsumman är således 40. För betygen, 4 och 5 krävs minst 8, 6 respektive 4 poäng. Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i. Undvik speciellt att skriva på baksidor av lösningsblad.. Den linjära operatorn F : E E ges i standardbasen av matrisen 4 A = 0. 4. Låt Visa att F är diagonaliserbar, dvs att det finns en bas av egenvektorer till F, och bestäm F :s matris à i denna bas. Bestäm slutligen en ortogonal basbytesmatris S i sambandet à = S AS mellan avbildningsmatriserna i de två baserna. m = ( ), m = ( ), m = ( Visa att m, m, m är en bas för det linjära rummet M av alla reellvärda - matriser med spåret (summan ( av diagonalelementen) ) lika med noll. Bestäm även koordinaterna för matrisen 9 i basen m, m, m. 6 9. Bestäm för varje reellt α och för varje reellt β 0 den geometriska innebörden av ekvationen x + y + αz + xz 4yz = β. 4. Bestäm en ON-bas för det linjära rummet {(x, x, x, x 4 ) E 4 : x + x + x + x 4 = 0}. 5. Låt P vara det linjära rummet av polynomfunktioner p av grad, och definiera genom F (p)(x) = p(x + ) en linjär operator F : P P. Bestäm avbildningsmatrisen för F i basen p p 0, p, p 0 + p, där p n (x) = x n. 6. Bestäm för varje värde på a dimensionen av, och en bas för, det linjära höljet [(a +, 0, a +, 0), (,, 0, 6), (,, a, 4), (a +,,, a )] R 4. 7. Den linjära avbildningen F : R 5 R 4 har i berörda standardbaser matrisen 4 0. 4 5 Bestäm F :s nollrum och värderum, och uttryck dem som linjära höljen genererade av en uppsättning basvektorer för respektive rum. Ange även explicit dimensionerna av de två rummen. ). 8. Bestäm en enhetsvektor n som är ortogonal mot såväl e +e +e som e +e +e i det euklidiska rum E för vilket skalärprodukten är fixerad som u v = 6x y + x y + x y (x y + x y ) + (x y + x y ) 4(x y + x y ), där (x, x, x ) och (y, y, y ) är koordinaterna för u respektive v i basen e, e, e. If you prefer the problems formulated in English, please turn the page.

MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MMA9 Linear algebra EVALUATION PRINCIPLES with POINT RANGES Academic year: 04/5 Examination 05-06-0. A basis of eigenvectors e, e, e of the linear operator F is e.g. e = ( e e ) e = ( e 4e + e) e = ( + + ) e 6 e e 0 0 A = 0 0, 4 S = 0 0 0 8 Maximum points for subparts of the problems in the final examination p: Correctly proven that F is diagonalizable, by e.g. determining three linearly independent eigenvectors (p for each fully determined eigenspace) p: Correctly determined the matrix A of F relative the basis of eigenvectors e, e, e p: Correctly orthogonalized the column vectors of an orthogonal change-of-basis matrix S p: Correctly normalized the column vectors of an orthogonal change-of-basis matrix S. Proof The coordinates of m, 9 6 9 m, m are ( 5,, 4 ). If β = 0 then α < : an elliptic cone α = : a line α > : a point (the origin) in the basis If β > 0 and α < : a one-sheeted hyperboloid α = : an elliptic cylinder α > an ellipsoid 4. An orthonormal basis is e.g. (, 0, 0, ), (,, 0, ) 6 (,,,, ) p: Correctly proven that the vectors m, m, m is a basis for the linear space M p: Correctly determined the coordinates of the matrix 9 in the basis m, m, m 6 9 p: Correctly completed the squares of the quadratic form h α (u) so that conclusions about the meaning of the equation h α (u) = β for different values of α and β can be drawn correctly p: Correctly determined the geometric meaning in the case ( β = 0) ( α < ) p: Correctly determined the geometric meanings in the cases ( β = 0) ( α = ) and ( β = 0) ( α > ) respectively p: Correctly determined the geometric meaning in the case ( β > 0) ( α = ) p: Correctly determined the geometric meaning in the cases ( β > 0) ( α < ) and ( β > 0) ( α > ) respectively p: Correctly found that the linear space is spanned by e.g. the vectors (, 0, 0, ), ( 0,, 0, ) and ( 0, 0,, ), here denoted by u, u, u respectively p: Correctly initiated a Gram-Schmidt process to find an orthonormal basis e, e, e, and correctly as a first step in the process normed u to e p: Correctly performed a second step in the G-S process by defining a vector f = u u e e (which a) is in the linear space, b) is not equal to the zero vector, and c) is orthogonal to e ), by evaluating u u e e, and by norming f to e p: Correctly performed a third step in the G-S process by defining a vector f = u u e e u e e (which a) is in the linear space, b) is not equal to the zero vector, and c) is orthogonal to e and e ), by evaluating u u e e u e e, and by norming f to e ()

5. 0 0 0 6 ---------------- Another scenario --------------------- p: Correctly determined that F ( p0) = p0, F ( p) = p0+ p and F ( p) = 4 p0+ 4 p+ p p: Correctly formulated the matrix A of F relative the basis p 0, p, p p: Correctly determined the change-ofbasis matrix S for a change from the basis p 0, p, p to basis e, e, e p: Correctly determined the inverse of the matrix S p: Correctly found and evaluated the matrix product S AS as the matrix of F relative the basis e, e, e -------------------------------- One scenario ------------------------------------------ p: Correctly determined that F maps the st of the three polynomial base functions to the second, i.e. that F ( e) = e where e= p p0 and e = p p: Correctly determined that F maps the nd of the three polynomial base functions to the linear combination p + p 0, and that the latter can be reformulated as p ( p p0) by which follows that F( e) = e e p: Correctly determined that F maps the rd of the three polynomial base functions to the linear combination p + 4 p + 5p0, and that the latter can be reformulated as ( p0 + p) + 6 p ( p p0) by which follows that F( e) = e+ 6e e p: Correctly formulated the matrix of F relative to the basis e, e e, 6. if ( a = ) ( a = ) dim LS ( a) = 4 if a, a = : A basis for the LS is e.g. (,,0,),(,,,4),(,,, 4) a =: A basis for the LS is e.g. (,0,,0),(,,0,),(4,,, ) a,: A basis for the LS is e.g. the four vectors in the definition of the span (but of course also e.g. the 4 standard basis for R ) p: Correctly initiated an analysis of the vectors defining the linear span, correctly determined the reduced rowechelon form of the coordinate matrix of the vectors, and correctly deduced that the special cases (dimension of the linear span less than 4) occur if a = or a = p: Correctly in the case a = found the dimension and a basis for the linear span (LS) p: Correctly in the case a = found the dimension and a basis for the linear span (LS) p: Correctly in the case a, found the dimension and a basis for the linear span (LS) 7. ker(f) = span{ (,,,0,0),(,,0,,0) } im(f) = span{ (,,, 4),(,,,),(,,, ) } dim(ker (F)) = dim(im (F)) = 8. The vectors ( e + 4e e ) 6 ( e 4e + e 6 are the two possibilities for n ) p: Correctly determined the reduced row-echelon form of the matrix p: Correctly determined the dimensions of ker(f) and im(f ) respectively p: Correctly determined a linear span of two vectors for the kernel of F p: Correctly determined a linear span of a three vectors for the image of F p: Correctly formulated and evaluated the condition that n = a e + be + ce is orthogonal to e + e + e p: Correctly formulated and evaluated the condition that n = a e + be + ce is orthogonal to e + e + e p: Correctly solved the system of linear equations for finding two (in terms of the third) of the coordinates ( a, b, c) of the vector n in the basis e, e, e p: Correctly evaluated the condition for n being normed ()