5-2 Likformighet-reguladetri
|
|
- Elias Karlsson
- för 9 år sedan
- Visningar:
Transkript
1 5-2 Likformighet-reguladetri Namn:. Inledning Du har nu lärt dig en hel del om avbildningar, kartor och skalor. Nu är du väl rustad för att studera likformighet, och hur man utnyttjar det faktum att med hjälp av en skala bestämma längder på ett i övrigt okänt objekt. Om du har två likformiga figurer, där skalan är given så kan du räkna ut en längd eller ett längdmått. Du kommer att studera avbildningar mellan modeller och verkligheten, och hur man kan använda detta synsätt i geometrin där man har likformiga figurer där skalan är given eller kan räknas ut. Du kommer även i kontakt med regeln om tre eller på latin: regula de tri. Det låter mycket komplicerat, men begreppen kommer att redas ut. Du kommer att ha nytta av det i vardagen vänta och se! Vad skall man ha en skala till? Titta på de två bilderna till höger. Den högst upp är en bild av verkligheten, den andra i skala 1:87. Det här betyder att om loket på bilden nedan är en nedskalad modell av ett av loken på den övre bilden, så är alla mått på det nedre loket 1/87 del av motsvarande mått på originalet på övre bilden. Likformiga geometriska figurer Du har läst om ett antal olika geometriska figurer i två dimensioner. Finns det några av dessa som alltid har samma form, så vi kan se den ena figuren som en uppskalad eller nedskalad avbildning av den andra? Försök hitta likformiga tvådimensionella geometriska figurer. Svar:.... Det blev lite huvudbry, men du kom säkert fram till att alla kvadrater är likformiga. Samma sak gäller för alla liksidiga trianglar och alla cirklar. Men betrakta rektanglarna här bredvid. De är också likformiga. 1
2 Vilken är skalan på förstoringen av den högra rektangeln ovan med den vänstra betraktad som är ursprunget? Mät med linjal, och kom ihåg vad som menas med skala. Svar: Och vilken är skalan på förminskningen av den vänstra jämfört med den högra som ursprung? Svar: Verkar det stämma? Visst är det så. Den högra har dubbelt så lång sida som den vänstra, så skalan blir 2:1 om den vänstra är ursprunget. Om man har den högra som ursprung, så blir skalan1:2. Lite krångligt att hålla isär, men kom ihåg hur det fungerade på kartan. Skala 1: medför ju att bilden är 1/ del av verkligheten eller omvänt att verkligheten är ggr så stor som bilden på kartan. Minnesregel: Om skalan är mindre än 1 så är det fråga om en förminskning. Exempel 1:1000 Bilden på kartan är 1/1000-del av verkligheten. Om skalan är större än 1 så är det fråga om en förstoring. Exempel: 5:1 Bilden är 5 gånger större än verkligheten, som alltid är referens och är likamed 1 Konsten att använda skalan På bilden nedan har du två likformiga trianglar. Din uppgift är att bestämma den okända sträckan x. Hur gör du? Svar:..... Inte så enkelt, men eftersom du vet att figurerna är likformiga, och att två längdmått som motsvarar varandra i de båda bilderna är givna, så kan du bestämma skalan. När du gjort det, så kan du utnyttja skalan för att bestämma den okända sträckan. Skalan är 15/5 eller 3:1 15 m Beräkna den okända sträckan x i triangeln till höger. Glöm ej sort när du svarar. Svar: 2,5 m 5m X m Beräkna den okända sträckan x i den större rektangeln. Glöm ej sort när du svarar. Svar: X cm 6 cm 2 cm 40 cm 2
3 Regula de tri (regeln om tre) I uppgifterna ovan märker du att det är fyra storheter inblandade, varav en ofta är okänd. Det du gjort är helt enkelt att du tecknat ett uttryck för skalan på två olika sätt, där två motsvarande sträckor är inblandade. Detta kallas för regula di tri. Hur ser det ut när du tecknar skalan på två sätt i figuren till höger? Nu räknar vi med algebra, och har kallat den okända sträckan för x och de med givna mätetal för a, b och c. a x b c Svar:.. Visst. Skalan = a = b x c. Tack vare detta samband så kan du räkna ut x: (multiplicera båda leden med nämnaren under x, c, och förkorta därefter så du bara får x kvar): x= b a * c Hur blir det om de likformiga figurerna uttrycks i olika sorter, till exempel den vänstra i mm och den högra i m? Svar:.. Just det. Det blir ingen skillnad. Skalan blir a b *1000 = x c *1000 a x Om du multiplicerar båda leden med 1000, så kommer du tillbaka till = Eftersom vi talar b c om förhållanden så spelar det ingen roll om du har olika enheter i de båda figurerna, bara du är konsekvent. Regula de tri: Om du har två likformiga figurer så blir: a x Skalan = = b c Spelar det någon roll om du skriver sambandet: a b = x c i stället? Svar: Nej, det gör det ju inte. Det är ett alternativt sätt att teckna skalan. I detta fall blir skalan en förminskning av den högre bilden. 3
4 Kan man skriva sambandet så här: c b =? x a Svar: Visst går det bra. Högra ledet är lika med vänstra ledet, eller vänstra ledet är lika med högra ledet. Men det är inte förbjudet att vara lite bekväm. Teckna därför förhållandet så att x hamnar i täljaren. Då blir det lättare att räkna ut vad x blir. Andra tillämpningar av reguladetri Man behöver inte vara låst till geometriska tillämpningar för att räkna med reguladetri. Titta på följande exempel: En person joggar 6 km på 30 minuter. Hur långt kommer personen på 45 minuter? Har du någon idé om hur man skall lösa problemet? Svar:.. Visst. Tillämpa tankegångarna från ovan. Om man kommer 6 km på 30 minuter, så har man ju en sorts skala, nämligen hur långt personen kommer per minut ( på en kvart eller på en timme). Det blir 6/30 km/min. På 45 minuter kommer man då 45*6/30 km eller 18 km, Två kg mjöl kostar 7,50 kr. Hur mycket kostar 5 kg? Svar: kg spagetti kostar 70 kr. Hur mycket kostar 7 kg? Svar: Om det tar 5 minuter att koka ett ägg, hur många minuter tar det att koka 4 ägg? Svar: Dagens gåta: Vad är det som kan gå genom vatten utan att bli blöt? När du kommit så här långt: be din lärare se på dina lösningar, och diskutera dessa. Sedan blir det fler träningsuppgifter. Starta med nivå 1. 4
5 5-2 Likformighet - reguladetri. Träningssuppgifter Nivå 1: Ett hus är 12 cm långt och 8 cm brett på en ritning. I verkligheten skall huset vara 20 m långt. Hur brett blir huset i verkligheten? Rita figur på ett separat rutat papper - det underlättar I två rätvinkliga trianglar är även de övriga vinklarna lika stora. Kateterna i den ena triangeln är 10 cm och 7 cm. Motsvarande längsta katet i den andra triangeln är 25 m. Hur lång är den andra? Rita gärna en figur på separat papper Vidstående figurer 35 m är likformiga. Hur 5 cm lång är sidan a? Glöm inte sort. 2 cm a I två likformiga trianglar är basarna 24 cm respektive 120 cm. Höjden i den lilla triangeln är 12 cm. Hur stor är höjden i den stora triangeln? Rita figur det underlättar, och glöm inte sort när du svarar Annas företag gräver ner bredbandskabel. På 2 dagar gräver de 500 m under normala förhållanden. Hur långt gräver de på en arbetsvecka? 5
6 Stina fick 75 kr i ränta under ett år, med 3% räntesats. Banken höjer räntan till 3,25%. Hur mycket får hon i ränta nästa år under förutsättning att kapitalet är oförändrat (dvs hon tar ut sina 75 kr som hon fick i ränta föregående år) kg ost kostar 120 kr. Hur mycket kostar ett halvt kilo? En bils bensinförbrukning i intervallet 70 km/h 90 km/h antas vara proportionell mot hastigheten. Om bilen drar 0,7 l/mil i 70 km/h, hur mycket drar den vid 90 km/h? När en båt accelererar ökar farten linjärt (proportionellt) med tiden under de första 10 sekunderna. Efter 2 sekunder är farten 3 knop. Hur hög är hastigheten efter 8 sekunder? En person cyklar 12 km på 30 minuter. Hur långt kommer personen på 45 minuter under förutsättning att medelhastigheten inte ändras? kg mjöl kostar 8 kr. Hur mycket kostar 5 kg? 6
7 Nivå 2: När en båt accelererar ökar farten linjärt (proportionellt) med tiden under de första 10 sekunderna. Efter 2 sekunder är farten 3 knop. Hur hög är hastigheten efter 9 sekunder? När ett flygplan startar ökar hastigheten proportionellt med tiden (antar vi - det stämmer inte exakt). Efter 6 sek är hastigheten 50 km/h. Hur stor är hastigheten efter 22 sek? Strömmen genom ett motstånd är 5 ma, och spänningen över motståndet är 4 V. Hur stor blir spänningen om strömmen ökar till 12 ma? (prefixet milli, m, betyder 10 3 ) Spänningen över ett motstånd är 10 V och strömmen genom motståndet är 60 ma. Hur stor blir strömmen om spänningen minskas till 2 V? Laddningen över en kondensator är proportionell mot spänningen över kondensatorn. Vid spänningen 10 V är laddningen 5uQ (mikrocoulomb eller 10 6 Q). Hur stor är laddningen om spänningen sjunker till 3 V? Svara med 1 decimal, det räcker, och glöm inte sort. 7
8 En bils koldioxidutsläpp är enligt en förenklad modell proportionell mot motorns cylindervolym. En motor med 2 liters cylindervolym släpper ut ungefär 2,2 kg CO 2 per mil. Hur mycket släpper en bil med en motor på 1,8 liter ut? Med en transversal menas en linje som dras parallellt med en triangelns bas, och som delar triangeln i två delar, varav den övre kallas för en topptriangel. Om basen på triangeln är 12 dm, och transversalen delar triangelns höjd, som är 9 dm, i förhållandet 1:2, hur stor blir basen i topptriangeln? Rita en figur, dra transversalen, och sätt ut de mått du känner till. Annars blir det svårt. Glöm ej sort när du svarar En halvcirkel med radien 10 m skalas ned 5 gånger. Hur många gånger mindre blir ytan på den nya halvcirkeln? (Ytan på en cirkel = 2*r 2 *π ) På en husritning är husets mått 15x10 cm. Husets långsida är 15 meter i verkligheten. Hur många gånger större är husets bottenyta i verkligheten jämfört med på ritningen? Ett fotooriginal med måtten 24x36 mm förstoras upp så att den långa sidan är 2 m. Hur stor blir bildens höjd? Glöm ej sort när du svarar. Nivå 3: Det finns inga uppgifter på nivå 3. 8
4-4 Parallellogrammer Namn:..
4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas
4-8 Cirklar. Inledning
Namn: 4-8 Cirklar Inledning Du har arbetat med fyrhörningar (parallellogrammer) och trehörningar (trianglar). Nu skall du studera en figur som saknar hörn, och som består av en böjd linje. Den kallas för
3-8 Proportionalitet Namn:
3-8 Proportionalitet Namn: Inledning Det här kapitlet handlar om samband mellan olika storheter och formler. När du är klar är du mästare på att arbeta med proportionalitet, det vill säga du klarar enkelt
REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.
REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter
8-6 Andragradsekvationer. Namn:..
8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,
2. 1 L ä n g d, o m k r e t s o c h a r e a
2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda
Sammanfattningar Matematikboken Y
Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller
5-3 Areaskalan och volymskalan Namn:.
5-3 Areaskalan och volymskalan Namn:. Detta kapitel är klart överkursbetonat. Men tycker du att det är kul med problemlösning: kör så det ryker! Inledning I föregående kapitel studerade du skalor, och
Lathund geometri, åk 7, matte direkt (nya upplagan)
Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8
7F Ma Planering v2-7: Geometri
7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
8F Ma Planering v2-7 - Geometri
8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består
9E Ma Planering v2-7 - Geometri
9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar
PLANGEOMETRI I provläxa med facit ht18
PLANGEOMETRI I provläxa med facit ht18 På det här avsnittet kommer du i första hand att utveckla din begrepps metod och kommunikations förmåga. Det är nödvändigt att ha en linjal för att klara avsnittet.
Lästal från förr i tiden
Lästal från förr i tiden Nedan presenteras ett antal problem som normalt leder till ekvationer av första graden. Inled din lösning med ett antagande. Teckna sedan ekvationen. Då ekvationen är korrekt uppställt
4-5 Kvadrater och rotuttryck Namn:...
4-5 Kvadrater och rotuttryck Namn:... Inledning Du har nu lärt dig en hel del om kvadrater i kapitlet om ytorparallellogrammer. Du lärde dig bland annat att om kvadratens sida var given, säg 5 cm så kan
8-1 Formler och uttryck. Namn:.
8-1 Formler och uttryck. Namn:. Inledning Ibland vill du lösa lite mer komplexa problem. Till exempel: Kalle är dubbelt så gammal som Stina, och tillsammans är de 33 år. Hur gammal är Kalle och Stina?
Matematik A Testa dina kunskaper!
Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer
4-2 Linjära mått och måttsystem Namn:.
4-2 Linjära mått och måttsystem Namn:. Inledning I det här kapitlet skall lära dig vad en linje är och vilka egenskaper en linje har. Du kommer även att repetera vilka enheter avstånd mäts i. Varför skall
3-10 Potenser i problemlösning Namn:..
3- Potenser i problemlösning Namn:.. Inledning Du har nu lärt dig en hel del om potenser i kapitel 3-9. Du vet vad som menas med ett potensuttryck och hur man räknar med dem. Nu skall du lära dig mer om
Ma7-Per: Geometri. Det tredje arbetsområdet handlar om geometri.
Ma7-Per: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda
geometri ma B 2009-08-26
OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4
9 Geometriska begrepp
9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean
150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.
Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp
fredag den 11 april 2014 M I N P O O L
M I N P O O L http://en.wikipedia.org/wiki/file:backyardpool.jpg MIN FÖRSTA KLADD Min första kladd så kladda jag lite och då hade inte jag riktigt förstått uppgiften så jag bara kladda lite runt men det
Repetitionsuppgifter. Geometri
Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 3. Ekvationer och geometri. Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre a) ett udda tal b) det största jämna tal som är möjligt A B C A B C 3,1 3,2
Alternativdiagnos 1 1 Skriv med siffror a) trettiotvåtusen femhundrasju b) femhundratusen åttiotre 2 Använd siffrorna 2, 3, 4 och 5 och skriv a) ett udda tal b) det största jämna tal som är möjligt 3 Vilka
8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB.
Tal Sida av 9 a) 000 9 000 c) 000 000 d) 9 000 000 e) 000 000 000 f) 9 000 000 000 a) 00 000 c) 00 000 d) 00 000 000 99 78 79 9 000 000 000 00 000 000 000 00 000 00 000 7 a) 8 kb 80 tusen B 80 kb 8 miljoner
Poolbygge. fredag 11 april 14
Poolbygge Första lektionen vart jag klar med att rita och skriva ritningen. Först skrev jag poolen i skalan 1:60 vilket vi inte fick göra så jag gjorde den till 1:30, alltså har jag minskat den 30 gånger
Matematik CD för TB = 5 +
Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:
5-1 Avbildningar, kartor, skalor, orientering och navigation
Namn:. 5-1 Avbildningar, kartor, skalor, orientering och navigation Inledning Nu skall du studera hur man avbildar verkligheten. Vad skall man göra det för? undrar du eftersom du skall ifrågasätta allt.
STARTAKTIVITET 2. Bråkens storlek
STARTAKTIVITET 2 Bråkens storlek Arbeta gärna två och två. Rita en stjärna över de bråk som är mindre än 1 2. Sätt ett kryss över de bråk som är lika med 1 2. Rita en ring runt de bråk som är större än
8A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
8A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
3-4 Procent Namn: Inledning. Vad menas med procent?
3-4 Procent Namn: Inledning Du har kommit i kontakt med begreppet procent i många sammanhang tidigare. Kan du nämna några? Visst, det finns hur mycket som helst. Prisökningar, rabatter, arbetslöshet, partisympatier
Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås
Taluppfattning 1. Vilket av följande tal är minst? Ringa in ditt svar. 2,9 2,98 2,998 2,889 2,89 (1/0) 2. Hur många miljoner visar miniräknaren? Svar: (1/0) 3. Vilket tal pekar pilen på? 31 32 33 Svar:
GEOMETRISKA TILLÄMPNINGAR
INNEHÅLL GEOMETRISKA TILLÄMPNINGAR GEOMETRISKA TILLÄMPNINGAR 251 252 GEOMETRISKA TILLÄMPNINGAR I samband med ett åskväder regnade det enligt en regnmätare 38 mm. Hur många liter vatten kom det a) på en
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att:
9D Ma: Geometri VT 2018 Syftet med undervisningen är att du ska utveckla din förmåga att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Läxa 11. Läxa T ex kan en sida vara 4 cm. Hur lång är då höjden mot den sidan? 8 b) Flytta andra stickan i översta raden ett steg åt höger.
ledtrådar LäxOr Läxa Rita en bild med de lyktstolparna. Hur många mellanrum är det? Läxa 8 På nedre halvan ska talen adderas tv å och två och på den övre halvan ska talen subtraheras. Läxa 6 7 Rita en
9A Ma: Geometri. Det tredje arbetsområdet handlar om geometri.
9A Ma: Geometri Det tredje arbetsområdet handlar om geometri. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt värdera valda strategier
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Figur 5.1. En triangel där nedre högra hörnet har en rät vinkel (90 ).
STUDIEAVSNITT 5 TRIGONOMETRI I det här asnittet kommer i att studera hur man beräknar inklar och sträckor för gina figurer. Ordet trigonometri innebär läran om förhållandet mellan inklar och sträckor i
markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart
PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE
Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning
Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:
Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 76 poäng varav 28 E-, 24 C- och 24 A-poäng.
NpMac vt 01 Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser
Catherine Bergman Maria Österlund
Lgr 11 Matematik Åk 3 Geometri, mätningar och statistik FA C I T Catherine Bergman Maria Österlund Kan du använda geometriska begrepp? Kan du beskriva figurernas egenskaper, likheter och skillnader? Skriv
8-5 Ekvationer, fördjupning. Namn:.
8-5 Ekvationer, fördjupning. Namn:. Inledning Du har nu lärt dig en hel del om vad en ekvation är och hur man löser ekvationer som innehåller en eller fler x-termer (om vi betecknar den okända med x).
PENGAR TILLBAKA 2. GEOMETRI P. Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning
2. GEOETRI P R PENGAR TILLBAA Ett snöre på 5 dm klipps i bitar som är 8 cm långa. Hur många bitar på 8 cm går det att få? E P Påbörjad lösning E R Löser problemet och ger korrekt svar E Redovisningen är
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)
REPETITION 2 A 1 Förenkla uttrycken. a) 4a + a b) 4a 3a c) 4(a + 1) 2 Johannas väg till skolan är a m lång. a) Robins skolväg är 200 m längre än Johannas. Teckna ett uttryck för hur lång skolväg Robin
Matematikbokens Prio kapitel Kap 3,.,Digilär, NOMP
Geometri Syftet undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem hjälp av matematik samt värdera valda strategier och metoder, - använda och analysera begrepp och samband
UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans.
UTTRYC ÅLDER Linda är 5 år äldre än Amanda. Amanda är x år. 5. ALGEBRA P M a) Skriv ett uttryck för hur gamla de är tillsammans. b)om de tillsammans är 29 år, hur gammal är var och en? E orrekt svar (a)
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
2: E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas på detta sätt.
Kängurutävlingen 018 Cadet svar och kommentarer Facit Cadet 1: C 19 0 + 18 = 8 = 19 : E TOOT Bokstäverna O och T har en lodrät symmetriaxel, men inte R, B och L. Därför kommer endast ordet TOOT kunna skrivas
Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.
LEDTRÅDAR LÄXOR Läa Förläng så att du får ett heltal i nämnaren. Använd division. Varje sekund klipper Karin, m =, m. Läa 0 ml = 0,0 liter Använd sambandet s = v t. Räkna ut hur mycket vattnet väger när
PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.
Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.
Min pool. Hanna Lind 7:2 Alfa
Min pool Hanna Lind 7:2 Alfa RITNING Jag började med att räkna ut ett antal rimliga mått som jag visste blev heltal när jag delade dom på 30, det gjorde jag då skalan var 1:30. I min ritning visar jag
4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.
Läxor Läxa 7 En sådan timme skulle ha 00 00 s = 0 000 s. 8 a) O = π d och A = π r r. 0 Beräkna differensen mellan hela triangelns area och arean av den vita triangeln i toppen. Läxa 9 Hur stor andel målar
Elevers kunskaper i geometri. Madeleine Löwing
Elevers kunskaper i geometri Madeleine Löwing Elevers kunskaper i mätning och geometri Resultaten från interna=onella undersök- ningar, såsom TIMSS, visar ac svenska elever lyckas mindre bra i geometri.
y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32
6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel
TESTVERSION. Geometri. G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder.
Geometri. G Diagnoserna i området avser att kartlägga om eleverna behärskar grundläggande geometriska begrepp och metoder. Området består av följande fyra delområden: Symmetri, GSy Geometriska former,
Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.
NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar
3-7 Procentuella förändringar
Namn: 3-7 Procentuella förändringar Inledning Du har arbetat mycket med procent, rabatter och påslag. Nu skall du lära dig konsten att beräkna procentuella förändringar. Som alltid gäller att du måste
Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA
Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra
Repetitionsuppgifter 1
Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella
Matematikboken Z röd Läraranvisning punktskrift. Verksnummer: 30381
Matematikboken Z röd Läraranvisning punktskrift Verksnummer: 30381 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt anpassade
8-4 Ekvationer. Namn:..
8-4 Ekvationer. Namn:.. Inledning Kalle är 1,3 gånger så gammal som Pelle, och tillsammans är de 27,6 år. Hur gamla är Kalle och Pelle? Klarar du att lösa den uppgiften direkt? Inte så enkelt! Ofta resulterar
Tal Räknelagar Prioriteringsregler
Tal Räknelagar Prioriteringsregler Uttryck med flera räknesätt beräknas i följande ordning: 1. Parenteser 2. Exponenter. Multiplikation och division. Addition och subtraktion Exempel: Beräkna 10 5 7. 1.
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
Högskoleverket. Delprov NOG 2005-04-09
Högskoleverket Delprov NOG 2005-04-09 1. Eva, Pia och Linus köpte totalt 18 frukter. Hur många frukter köpte Eva? (1) Eva och Linus köpte sammanlagt dubbelt så många frukter som Pia. (2) Pia köpte tre
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs
MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning
Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping
Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att
4-7 Pythagoras sats. Inledning. Namn:..
Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman
Matematik. Kursprov, vårterminen 2012. Elevhäfte. Del I och Del II. Elevens namn och klass/grupp
Kursprov, vårterminen 2012 Matematik Elevhäfte Del I och Del II 1a Elevens namn och klass/grupp Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov
Centralt innehåll i matematik Namn:
Centralt innehåll i matematik Namn: T - Taluppfattning T1 Tiosystemet 5,23 1000 = 523/0,01= T2 Positionerna 2,39-0,4 = T3 Primtal Vilka är de fem första primtalen. Vad är ett primtal? T4 Primtalsfaktorering.
sträckan = tiden. hastigheten hastigheten = sträckan tiden 210 hastigheten = 3 = 70 Bilisten kör 70 km/h. tiden =
Enheter och skala I det här kapitlet kan du lära dig mer om hastighet att skriva minuter som del av timme att räkna om km/h till m/s något om hastigheter till sjöss om volymenheterna cm 3, dm 3 och m 3
Lösningar till Matematik 3000 Komvux Kurs D, MA1204. Senaste uppdatering Dennis Jonsson
, MA104 Senaste uppdatering 009 04 03 Dennis Jonsson Lösningar till Matematik 3000 Komvu Kurs D, MA104 Fler lösningar kommer fortlöpande. Innehåll 110... 6 111... 6 11... 6 1130... 7 1141... 7 114... 8
Repetitionsuppgifter 1
Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv
identifiera geometriska figurerna cirkel och triangel
MATEMATIK F-klass Genom att använda matematik i meningsfulla sammanhang visar vi barnen vilka möjligheter den ger. Ex datum, siffror och antal, ålder, telefonnummer mm. Eleven bör kunna: benämna siffrorna
Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.
M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per
geometri och statistik
Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9
Välkommen till Borgar!
Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter
Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg
Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras
Facit Träningshäfte 9:2
Kapitel 1 1 a) 4 800 000 b) 300 200 c) 25 085 d) 0,8 e) 0,25 f) 0,785 2 a) 2 miljoner 35 tusen: 2 035 000 235 tusen: 235 000 tjugotretusen femhundra: 23 500 b) 12 tiondelar: 1,2 12 hundradelar: 0,12 12
Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5
OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering
Repetition inför kontrollskrivning 2
Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.
Sidor i boken Figur 1:
Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan
Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning
Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Övningar i ekvationer
i ekvationer Innehåll A. Addition och subtraktion B. Multiplikation och division C. Blandade räknesätt - prioritet D. Enkla förenklingar E. Parenteser F. Tillämpningar Detta häfte är till dig som läser
Eva Björklund Heléne Dalsmyr. matematik. Koll på. Skriva Facit
Eva Björklund Heléne Dalsmyr 5A matematik Koll på Skriva Facit 1 Tal i decimalform,3 1 a) 0,5 b) 0,7 c) 0, a) 4, b),1 c) 9,4 3 a) 35,8 b) 41, c) 0,9 4 a) 1,1 b) 4, c) 7,3 5 a) 13,4 b) 3,5 c) 91,7 a) 40,8
Planering Geometri år 7
Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande
Polygoner. Trianglar på tre sätt
Polygoner Trianglar på tre sätt Man kan skriva in punkter antingen via punktverktyget eller genom att skriva punktens namn och koordinater i inmatningsfältet. Då man ritar månghörningar lönar det sig att
Lokala mål i matematik
Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal
Lokala betygskriterier Matematik åk 8
Lokala betygskriterier Matematik åk 8 Mer om tal För Godkänt ska du: Kunna dividera och multiplicera med 10, 100 och 1000. Kunna räkna ut kilopriset för en vara. Kunna multiplicera och dividera med positiva