Projekt i bildanalys: Snakes Sofia Åberg, F98 HT-01 Handledare: Anders Heyden

Storlek: px
Starta visningen från sidan:

Download "Projekt i bildanalys: Snakes Sofia Åberg, F98 HT-01 Handledare: Anders Heyden"

Transkript

1 Projekt i bildanalys: Snakes Sofia Åberg, F98 HT-01 Handledare: Anders Heyden

2 1. Inledning Inom datorseende vill man ofta segmentera ut objekt som man sedan vill följa i en bildsekvens. En segmenteringsteknik som används för detta är aktiva konturer-snakes. Kortfattat kan sägas att denna teknik fungerar så att man i bilden lägger ut en kontur runt det objekt som man vill segmentera ut. Denna kontur styrs av en energifunktion som beror på snakens såväl som bildens egenskaper. Precis som fysikaliska system vill snaken minimera sin energi, vilket leder till att den sluter sig kring objektet i bilden. Denna rapport kommer i avsnitt att ge en bakomliggande teori om energifunktionen och hur denna kan minimeras. Sedan, i avsnitt 3, kommer en enkel implementering av en snake att redovisas, med tillhörande exempel.. Aktiva konturer och energifunktioner En snake är en kurva vilken man lägger ut i bilden runt det objekt som man vill segmentera ut. Denna kurva är aktiv såtillvida att den påverkas av krafter som får den att ändra sin form. Dessa krafter kan härledas ur en energifunktion som är kopplad till kurvan. Krafterna har sådan storlek och riktning att de strävar efter att minimera kurvans energi, precis som i verkliga fysikaliska system. Matematiskt representeras snaken av en parametriserad kurva v(s). v ( s) = ( x( s), y( s)), där s [ 0, 1] (1) Denna styrs av en energifunktion som kan skrivas som 1 ( E v( s)) + E ( v( s)) E ( v( s)) ) ds Esnake = inre ( bild + villkor () 0 Här är Einre den inre energin i snaken som beror på hur den är sträckt och böjd, ett mått på hur olika saker i bilden, exempelvis konturer, påverkar snaken och mått på yttre villkor som användaren har lagt på. Ebild E villkor ett Inre energin Snakens inre energi beror bara på dess form och är helt oberoende av hur bilden ser ut. Snakens vilja att minimera sin inre energi kommer att leda till att krafter verkar på den som vill dra ihop den. Om vi bara hade haft den inre energin att ta hänsyn till hade alltså snaken successivt omslutit ett mindre och mindre område. Den inre energin kan delas upp i olika delar. En del kan sägas styra de elastiska egenskaperna hos snaken varvid man kan likna den vid ett gummiband som deformeras på olika sätt. Detta energibidrag kan skrivas som

3 E elastisk dv = α ( s) (3) ds där α (s) kan tolkas som elasticiteten längs snaken. Den andra delen av den inre energin utgörs av böjningsenergi. Snaken liknas vid ett metallband med en viss styvhet som ska böjas till. Denna energi beror på krökningen på kurvan och kan skrivas som E böjning d v = β ( s) (4) ds där β (s) kan tolkas som styvheten längs kurvan. Bildenergi För att kunna segmentera ut ett objekt i en bild måste givetvis snaken påverkas av krafter från bilden. Bildenergin utgörs av en eller flera komponenter, exempelvis vill man kanske att snaken ska dras till kanter eller linjer. Om man vill att snaken ska dras till mörka linjer eller områden kan man definiera en linjeenergi som E linje = I( x, y) (5) där I(x, y) betecknar intensiteten i punkten (x, y). På liknande sätt kan en kantenergi definieras som gör att snaken dras till kanter, d.v.s. punkter där gradienten är stor. E kant = I( x, y) (6) Minimering av energifunktionen Att minimera energifunktionen är ett långt ifrån trivialt problem och det finns många olika tillvägagångssätt. En metod bygger på att man hela tiden tar ett litet steg i gradientens motsatta riktning (steepest-descent method). Denna har dock nackdelen att det tar väldigt lång tid innan man når ett minimum. Ett annat sätt är att så kallad dynamisk programmering där man i varje steg prövar alla möjligheter och väljer den som ger den minsta energin. Nackdelen med denna är att den är väldigt beräkningskrävande. Ett mer empiriskt sätt är att direkt ta fram de krafter som verkar på snaken och ta ett steg i denna riktning. Ett gemensamt problem för de olika metoderna är att det är svårt att bestämma viktparametrarna för de olika energislagen. Dessutom är hela problemställningen mycket känslig för brus vilket ytterligare komplicerar det hela.

4 3. Implementering av en snake I detta avsnitt beskrivs en implementering av en snake. Syftet med denna är att få en ökad förståelse för hur en snake fungerar och, kanske framförallt, att det verkligen fungerar. Utgångspunkten i denna implementering är att man betraktar de krafter som energifunktionen ger upphov till. När man väl vet kraften kan man ta ett steg i dess riktning och på så vis kommer förhoppningsvis energin att stegvis minimeras. När man implementerar en snake betraktar man inte hela kurvan utan ett ändligt antal punkter på denna, s.k. kontrollpunkter. Genom att diskretisera de krafter som verkar på snaken kan man beräkna den kraft som verkar på var och en av dessa punkter. Den elastiska energin på snaken ges av ekvation (3). Då kan den elastiska kraften i x-led på den i:te kontrollpunkten skrivas som: F x _ elastisk, i = K1 + 1 (( 1 ) + ( )). (7) Ett liknande uttryck gäller givetvis för kraften i y-led. Den elastiska kraften strävar efter att krympa snaken eftersom den försöker minimera avståndet mellan punkterna. Detta syns tydligt i figuren nedan. Figur1. Snaken krymper successivt under inverkan av den elastiska kraften. I ekvation (4) ser man att böjenergin beror på krökningen på kurvan. Om man disktretiserar denna kan man uttrycka kraften på den i:te kontrollpunkten som:

5 F K (6x 4x 4x + x x ). (8) böj _ x, i = i i+ 1 i 1 i+ + i Även här får man ett analogt uttryck för kraften i y-led. Böjkraften strävar efter att kurvan ska vara jämn och inte ha några vassa kanter. Detta illustreras i figur. Figur. Böjkraften strävar efter att ta bort vassa kanter på kurvan. När det gäller bildenergier finns det många olika saker man kan ta hänsyn till. I denna implementering har endast linje- och kantenergier tagits med. Ekvation (5) ger uttrycket för linjeenergin. Ett enkelt sätt att implementera linjekraften är att appromera denna med gradienten I( + 1, yi ) I( 1, yi ) F line, i = (9) I(, yi + 1) I(, yi 1) Om vi har en bild med konstant bildgradient borde alltså snaken röra sig odeformerad mot mörkare eller ljusare områden beroende på hur vi väljer tecken när vi definierar linjeenergin. Ett positivt tecken gör att snaken vill röra sig mot mörkare områden och ett negativt gör att den vill röra sig mot ljusare. Detta visas i figur3.

6 Figur3. Linjekraften gör att snaken rör sig mot det mörka området. Kantenergin given av ekvation 6 försöker binda snaken till områden med hög gradient. Kantkraften kan skrivas som I( + 1, yi ) I( 1, yi ) F kant, i = (10) I(, yi + 1) I(, yi 1) Den totala kraften som verkar på snaken fås som en sammanvägning av de olika delkrafterna. Snakens uppförande beror starkt på vilka vikter som väljs för de olika krafterna, vilket gör den väldigt känslig. Det är väldigt lätt att snaken blir instabil och helt urartar. Detta är inte bara ett problem med just denna implementeringen utan gäller helt allmänt för snakes. Hur fungerar då snaken för en riktig bild? Betrakta följande bild med blodceller, figur 4. Säg att man önskar segmentera ut en av de svarta cirklarna. Börja med att placera ut en snake runt den intressanta cellen. Kör sedan programmet ett antal interationer med lämpligt valda parametrar. Resultatet ser vi i i figur 5. Snaken lägger sig fint runt den önskade cellen.

7 Figur4. Snaken placeras ut runt den önskade blodcellen. Figur5. Efter ett antal intertioner har snaken segmenterat ut den önskade cellen.

8 Snakes används ju ofta i datorseendesammanhang när man vill tracka ett objekt, d.v.s. följa det i en bildsekvens. Antag nu att man har en bildsekvens med en bil och vill studera hur den rör sig. Kanske har man då anledning att segmentera ut navet på ett av hjulen för att sedan studera hur det rör sig. I figur 6 visas ett hjul och en initierad snake. Efter ett antal iterationer, återigen med väl valda parametrar, så har man segmenterar ut navet, se figur 7. Den här implementeringen är dock inte så bra som man kan tro. Det är svårt att välja lämpliga parametrar och den fungerar dåligt på objekt med godtycklig form. För att den ska fungera bör objekten vara elliptiska. Ändå fungerar den bra med tanke på det enkla tillvägagångssättet. Koden till programmet finns med som en bilaga till denna rapport. Figur6. Ett hjul med en initierad snake.

9 Figur7. Resultat efter ett antal iterationer. 4. Sammanfattning För att segmentera ut objekt i en bild kan man använda sig av snakes. En snake är en kurva som man placerar ut i bilden runt det objekt som man vill segmentera ut. Problemet att få denna kurva att sluta sig kring objektet är ett optimeringsproblem där man vill minimera en med snaken sammanhörande energifunktion. Detta problem kan lösas på många olika sätt. I denna rapport har ett sätt redovisats där man beräknar de krafter som verkar på snaken. Denna enkla modell fungerar för att segmentera ut elliptiska objekt, men den är väldigt känslig för små parametervariationer. Snakes är en relativt ny metod och används framförallt inom datorseende när man vill följa ett objekt i en bildsekvens. 5. Referenser [1] -D Deformable Template Models: A Review (Yu Zhong) [] Active or fleble contour models (Andrew Wallace och Sarah Price)

10 [3] Active Contour Models (Snakes) (David Young) [4] Snakes: an active model (Ramani Pichumani) [5] Active contour models - snakes (Milan Sonka, Vaclav Hlavac, and Roger Boyle) [6] Implementation of Snakes (Jose Gerardo Gonzalez) Bilaga: Programkod function [snake]=contour(snake,absgrad,im,alfa,beta,gamma,delta) K1=1; K4=0.05; step=1; nbrsnas=size(snake,); extendsnake=[snake(:,nbrsnas-1:nbrsnas) snake snake(:,1:)]; for i=1:nbrsnas Fel(:,i)=*K1*(extendsnake(:,i+1)-*extendsnake(:,i+)+extendsnake(:,i+3)); Fbend(:,i)=*K4*(6*extendsnake(:,i+)-4*extendsnake(:,i+3)- 4*extendsnake(:,i+1)+extendsnake(:,i+4)+extendsnake(:,i)); Fline(:,i)=[im(snake(1,i)+1,snake(,i))-im(snake(1,i)-1,snake(,i));im(snake(1,i),snake(,i)+1)- im(snake(1,i),snake(,i)-1)]; Fedge(:,i)=[-absgrad(snake(1,i)+1,snake(,i))+absgrad(snake(1,i)-1,snake(,i));- absgrad(snake(1,i),snake(,i)+1)+absgrad(snake(1,i),snake(,i)-1)]; if sqrt(fedge(1,i)^+fedge(,i)^)>1.e-4 Fedge(:,i)=Fedge(:,i)/sqrt(Fedge(1,i)^+Fedge(,i)^); end end Ftot=alfa*Fel-beta*Fbend-gamma*Fedge-delta*Fline; snake=round(snake+step*ftot); hold off colormap(gray(56)) image(im); hold on plot(snake(,:),snake(1,:),'-r',snake(,:),snake(1,:),'.b')

Projekt i Bildanalys: Automatisk detektion av lungemboli ur scintbilder

Projekt i Bildanalys: Automatisk detektion av lungemboli ur scintbilder : Automatisk detektion av lungemboli ur scintbilder Susann Stjernqvist, F00 och Handledare: Anders Ericsson HT2003 1 Innehåll 1 Syfte 3 2 Teori 3 2.1 SCINTbilder............................. 3 2.2 Snakes.................................

Läs mer

Programmeringsuppgift Game of Life

Programmeringsuppgift Game of Life CTH/GU STUDIO TMV06a - 0/0 Matematiska vetenskaper Programmeringsuppgift Game of Life Analys och Linär Algebra, del A, K/Kf/Bt Inledning En cellulär automat är en dynamisk metod som beskriver hur komplicerade

Läs mer

6.3. Direkta sökmetoder

6.3. Direkta sökmetoder 6.3. Direkta sökmetoder Förutom de nyss nämnda metoderna för att uppsöka ett minimum av en funktion av en variabel finns det en enkel metod som baserar sig på polynomapproximation av funktionen. Om vi

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A

Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

1 Några elementära operationer.

1 Några elementära operationer. Föreläsning Några elementära operationer. Ett skalärfält är en reellvärd eller komplexvärd funktion Φ(x, y, z). Ett vektorfält är en vektorvärd funktion A(x, y, z). I ett kartesiskt koordinatsystem kan

Läs mer

Tentamen TNM061, 3D-grafik och animering för MT2. Onsdag 20/ kl SP71. Inga hjälpmedel

Tentamen TNM061, 3D-grafik och animering för MT2. Onsdag 20/ kl SP71. Inga hjälpmedel Tentamen TNM061, 3D-grafik och animering för MT2 Onsdag 20/8 2014 kl 14-18 SP71 Inga hjälpmedel Tentamen innehåller 7 uppgifter, vilka tillsammans kan ge maximalt 50 poäng. För betyg G (registreras som

Läs mer

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts. 5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Analys på en torus. MatematikCentrum LTH

Analys på en torus. MatematikCentrum LTH Analys på en torus Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi diskutera differentialgeometri på en torus, både inbäddad som en badring i rummet och

Läs mer

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar

Läs mer

--x T Kx. Ka = f. K( a a i. = f f i. r i. = a a i. Ke i. a i 1. p i. Ka i. p i Kai α i

--x T Kx. Ka = f. K( a a i. = f f i. r i. = a a i. Ke i. a i 1. p i. Ka i. p i Kai α i CHALMERS FinitElementmetod M3 illämpad mekanik Föreläsning 18, 15/1 014 91. Lösningen till ekvationssystemet Gradient och konjugerad gradientmetod. a f (1) minimerar den kvadratiska funktionen Π( x) 1

Läs mer

7 Extremvärden med bivillkor, obegränsade områden

7 Extremvärden med bivillkor, obegränsade områden Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

LEGO Robot programmering och felsökning Hur svårt ska det vara att följa den svarta linjen?

LEGO Robot programmering och felsökning Hur svårt ska det vara att följa den svarta linjen? ICT LEGO Robot programmering och felsökning Hur svårt ska det vara att följa den svarta linjen? Daniel Lindfors 12/9/07 dlindf@kth.se Introduktionskurs i datateknik II1310 Sammanfattning Denna laboration

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

Föreläsning 9-10: Bildkvalitet (PSF och MTF)

Föreläsning 9-10: Bildkvalitet (PSF och MTF) 1 Föreläsning 9-10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Två vanliga mått är PSF (punktspridningsfunktionen)

Läs mer

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi

Tekniska beräkningar. Vad är tekn beräkningar? Vad är beräkningsvetenskap? Informationsteknologi. Informationsteknologi Tekniska beräkningar stefan@it.uu.se Vad är tekn beräkningar? Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska

Läs mer

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.

TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser. TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några eempel som du har gjort i gymnasieskolan: a) b) c) 5 5 Alltså et av ett tal är lika med själva talet om talet är positivt eller lika med et av är lika med det motsatta talet om är negativt

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14

TAOP61 Projekt 2. Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober / 14 TAOP61 Projekt 2 Kaj Holmberg (LiU) TAOP61 Optimering 28 oktober 2016 1 / 14 TAOP61 Projekt 2 Optimering av elmotorutnyttjandet i en laddhybrid med hjälp av dynamisk programmering. Kaj Holmberg (LiU) TAOP61

Läs mer

De fysikaliska parametrar som avgör periodtiden för en fjäder

De fysikaliska parametrar som avgör periodtiden för en fjäder De fysikaliska parametrar som avgör periodtiden för en fjäder Teknisk Fysik, Chalmers tekniska högskola, Sverige Robin Andersson Email: robiand@student.chalmers.se Alexander Grabowski Email: alegra@student.chalmers.se

Läs mer

1 Vektorer och tensorer

1 Vektorer och tensorer Föreläsning 1. 1 Vektorer och tensorer Vi kommer att använda två olika beteckningar för vektorer. Enligt det första systemet använder vi fet stil för en vektor i typsatt text och ett vektorstreck då vi

Läs mer

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation.

x f x + y f y x. 2 Funktionen f(x, y) uppfyller alltså given differentialekvation. SF1626 Flervariabelanalys Svar och lösningsförslag till Tentamen 14 mars 211, 8. - 13. 1) Visa att funktionen f, y) = y4 y ) 2 +2 sin är en lösning till differentialekvationen f + y f y = 2f. Lösning:

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin

Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.

Läs mer

Programmering = modellering

Programmering = modellering Programmering = modellering Ett datorprogram är en modell av en verklig eller tänkt värld. Ofta är det komplexa system som skall modelleras I objektorienterad programmering består denna värld av ett antal

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic

H1009, Introduktionskurs i matematik Armin Halilovic H009, Introduktionskurs i matematik Armin Halilovic ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) b) 0 =0 c) 5 5 Alltså x Absolutbeloppet av ett tal x är lika med själva talet x om

Läs mer

Jordbävningar en enkel modell

Jordbävningar en enkel modell 9 september 05 FYTA Simuleringsuppgift 3 Jordbävningar en enkel modell Handledare: André Larsson Email: andre.larsson@thep.lu.se Telefon: 046-34 94 Bakgrund Jordbävningar orsakar fruktansvärda tragedier

Läs mer

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016 Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16

Läs mer

Omtentamen. TNM077 3D-datorgrafik och animering kl 8-12 Inga hjälpmedel. (samt även TNM008 3D-datorgrafik och VR)

Omtentamen. TNM077 3D-datorgrafik och animering kl 8-12 Inga hjälpmedel. (samt även TNM008 3D-datorgrafik och VR) Omtentamen TNM077 3D-datorgrafik och animering (samt även TNM008 3D-datorgrafik och VR) 2005-06-10 kl 8-12 Inga hjälpmedel Denna tentamen innehåller 7 uppgifter som tillsammans kan ge maximalt 40 poäng.

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RMC] Elektrodynamik, ht 005, Krister Henriksson 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets

Läs mer

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp)

Simulering av Poissonprocesser Olle Nerman, Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Simulering av Poissonprocesser Olle Nerman, 2015-09-28 Grupprojekt i MSG110,GU HT 2015 (max 5 personer/grupp) Frågeställning: Hur åstadkommer man en realisering av en Poissonprocess på ett tidsintervall

Läs mer

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1) 18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två

Läs mer

TMA226 datorlaboration

TMA226 datorlaboration TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,

Läs mer

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18

TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 TDDC74 Programmering: Abstraktion och modellering Tentamen, onsdag 9 juni 2016, kl 14 18 Läs alla frågorna först, och bestäm dig för i vilken ordning du vill lösa uppgifterna. Skriv tydligt och läsligt.

Läs mer

TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL

TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL Materialteknik, Jens Bergström 2016-01-21 TENTAMEN MTGC12, MATERIALTEKNIK II / MTGC10 MATERIALVAL Tid: Måndagen 25 januari, 2016 Tentamen omfattar genomgånget kursmaterial. Hjälpmedel: Kalkylator Poängsättning:

Läs mer

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015

SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 SF1669 Matematisk och numerisk analys II Bedömningskriterier till tentamen Torsdagen den 4 juni 2015 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen

Repetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från

Läs mer

Symboler och abstrakta system

Symboler och abstrakta system Symboler och abstrakta system Warwick Tucker Matematiska institutionen Uppsala universitet warwick@math.uu.se Warwick Tucker, Matematiska institutionen, Uppsala universitet 1 Vad är ett komplext system?

Läs mer

Segmentering av celler med hjälp av aktiva konturer och level sets

Segmentering av celler med hjälp av aktiva konturer och level sets Segmentering av celler med hjälp av aktiva konturer och level sets - Modifiering av befintlig algoritm Abstrakt Detta projekt är en modifiering av en redan befintlig algoritm med en hypotes att kunna segmentera

Läs mer

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN

EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKUM Fysikum 21 mars 2005 Stockholms universitet EXPERIMENTELLA METODER LABORATION 2 UPPTÄCK ETT SAMBAND BALKEN FYSIKLINJEN ÅK1 Vårterminen 2005 Mål I den här laborationen skall du börja med att ställa

Läs mer

Jeep-problemet. Kjell Elfström

Jeep-problemet. Kjell Elfström F r å g a L u n d o m m a t e m a t i k Matematikcentrum Matematik NF Jeep-problemet Kjell Elfström Problemet En jeep kan sammanlagt ta 200 liter bensin i tanken och i lösa dunkar. Jeepen kan gå 2,5 km

Läs mer

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning

LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Diskussionsproblem för Statistik för ingenjörer

Diskussionsproblem för Statistik för ingenjörer Diskussionsproblem för Statistik för ingenjörer Måns Thulin Rolf Larsson rolf.larsson@math.uu.se Jesper Rydén jesper.ryden@math.uu.se Senast uppdaterad 27 januari 2016 Diskussionsproblem till Lektion 3

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Växlar - Underhålls strategi slipning av växlar - Med eller utan rörlig korsnings spets?

Växlar - Underhålls strategi slipning av växlar - Med eller utan rörlig korsnings spets? Växlar - Underhålls strategi slipning av växlar - Med eller utan rörlig korsnings spets? Varför Växel slipning? -Växlar genererar en störning i tåg gången => Utmattnings skador, RCF -Dynamisk belastnings

Läs mer

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010

Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010 Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...

Läs mer

Obligatoriska uppgifter i MATLAB

Obligatoriska uppgifter i MATLAB Obligatoriska uppgifter i MATLAB Introduktion Följande uppgifter är en obligatorisk del av kursen och lösningarna ska redovisas för labhandledare. Om ni inte använt MATLAB tidigare är det starkt rekommenderat

Läs mer

Parametriserade kurvor

Parametriserade kurvor CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs

Läs mer

Föreläsning 9 10: Bildkvalitet (PSF och MTF)

Föreläsning 9 10: Bildkvalitet (PSF och MTF) 1 Föreläsning 9 10: Bildkvalitet (PSF och MTF) Att mäta bildkvalitet Bildkvaliteten påverkas av både aberrationer och diffraktion, men hur ska vi mäta den? Enklast är att avbilda ett objekt beskriva hur

Läs mer

Beräkningsvetenskap introduktion. Beräkningsvetenskap I

Beräkningsvetenskap introduktion. Beräkningsvetenskap I Beräkningsvetenskap introduktion Beräkningsvetenskap I Kursens mål För godkänt betyg ska studenten kunna redogöra för de nyckelbegreppen som ingår i kursen* utföra enklare analys av beräkningsproblem och

Läs mer

Projekt i Bildanalys: Mönsterigenkänning inom bioinformatik

Projekt i Bildanalys: Mönsterigenkänning inom bioinformatik Projekt i Bildanalys: Mönsterigenkänning inom bioinformatik 2001-11-30 av Jonas Hjelm (F98) och Åsa Jönsson (F98) Handledare: Henrik Malm Jonas Hjelm f98jhj@efd.lth.se Åsa Jönsson f98ajo@efd.lth.se Inledning

Läs mer

The Brachistochrone problem

The Brachistochrone problem The Brachistochrone problem Andreas Olsén Karlstads Universitet HT-16 Kurs: Analytisk Mekanik 7,5 hp i FYGL07 Kursansvarig: Jürgen Fuchs 2017-01-07 Innehållsförteckning 1. Inledning... 1 1. 1 Problembeskrivning...

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z.

har ekvation (2, 3, 4) (x 1, y 1, z 1) = 0, eller 2x + 3y + 4z = 9. b) Vi söker P 1 = F (1, 1, 1) + F (1, 1, 1) (x 1, y 1, z 1) = 2x + 3y + 4z. Institutionen för Matematik, KTH Torbjörn Kolsrud SF163, ifferential- och integralkalkyl II, del, flervariabel, för F1. Tentamen onsdag 7 maj 9, 1.-19. 1. Låt F (x, y, z) sin(x + y z) + x + y + 6z. a)

Läs mer

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

SF1626 Flervariabelanalys Tentamen 14 mars 2011,

SF1626 Flervariabelanalys Tentamen 14 mars 2011, SF1626 Flervariabelanalys Tentamen 14 mars 2011, 08.00-13.00 Skrivtid: 5 timmar Inga tillåtna hjälpmedel Eaminator: Hans Thunberg Tentamen består av nio uppgifter som vardera ger maimalt fyra poäng. På

Läs mer

Spiralkurvor på klot och Jacobis elliptiska funktioner

Spiralkurvor på klot och Jacobis elliptiska funktioner Spiralkurvor på klot och Jacobis elliptiska funktioner Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com I den här artikeln ska vi ta en titt på en tillämpning av Jacobis elliptiska

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR ABSOLUTBELOPP Några exempel som du har gjort i gymnasieskolan: a) = b) 0 =0 c) 5 = 5 Alltså x 0 et av ett tal x är lika med själva talet x om talet är positivt eller lika med 0 et av x är lika med det

Läs mer

Mekanik FK2002m. Kinetisk energi och arbete

Mekanik FK2002m. Kinetisk energi och arbete Mekanik FK2002m Föreläsning 6 Kinetisk energi och arbete 2013-09-11 Sara Strandberg SARA STRANDBERG P. 1 FÖRELÄSNING 6 Introduktion Idag ska vi börja prata om energi. - Kinetisk energi - Arbete Nästa gång

Läs mer

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)?

Sekantens riktningskoefficient (lutning) kan vi enkelt bestämma genom. k = Men hur ska vi kunna bestämma tangentens riktningskoefficient (lutning)? I figuren ser vi grafen till funktionen f(x) x + Inritad finns dels en sekant, som skär kurvan i punkterna ( 1, 7) oc (4, ). Dessutom finns en tangent som tangerar kurvan i (, 10) Sekantens riktningskoefficient

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER

UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER UPPGIFTER KAPITEL 2 ÄNDRINGSKVOT OCH DERIVATA KAPITEL 3 DERIVERINGSREGLER 1. Figuren visar grafen till funktionen f där f(x) = x 3 3x 2. I punkter där xkoordinaterna är 1 respektive 3 är tangenter till

Läs mer

Tentamen i Systemteknik/Processreglering

Tentamen i Systemteknik/Processreglering Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 22 augusti 2011 kl 14 19 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams

Belastningsanalys, 5 poäng Balkteori Moment och tvärkrafter. Balkböjning Teknisk balkteori Stresses in Beams Balkböjning Teknisk balkteori Stresses in Beams Som den sista belastningstypen på en kropps tvärsnitt kommer vi att undersöka det böjande momentet M:s inverkan. Medan man mest är intresserad av skjuvspänningarna

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier

Arv. Fundamental objekt-orienterad teknik. arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Arv Fundamental objekt-orienterad teknik arv i Java modifieraren protected Lägga till och modifiera metoder med hjälp av arv Klass hierarkier Programmeringsmetodik -Java 165 Grafisk respresentation: Arv

Läs mer

För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar

För elever i gymnasieskolan är det inte uppenbart hur derivata relaterar Thomas Lingefjärd, Djamshid Farahani & Güner Ahmet En motorcykels färd kopplad till derivata Gymnasieelevers erfarenhet av upplevda hastighetsförändringar ligger till grund för arbete med begreppet derivata.

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet (fylls i av ansvarig) Datum för tentamen Sal Tid Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter i tentamen Antal sidor på

Läs mer

Övningsuppgift. Repeterbara citat. Steg 2. Författare: Mats Loock Kurs: Inledande programmering med C# Kurskod:1DV402

Övningsuppgift. Repeterbara citat. Steg 2. Författare: Mats Loock Kurs: Inledande programmering med C# Kurskod:1DV402 Övningsuppgift Repeterbara citat Steg 2 Författare: Mats Loock Kurs: Inledande programmering med C# Kurskod:1DV402 Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande

Läs mer

Structuring Two Dimensional Space

Structuring Two Dimensional Space Structuring Two Dimensional Space Structuring Two Dimensional Space Vi tar in mönster mestadels som tvådimensionella plan utan djup. Dessa tvådimensionella mönster är viktiga av två anledningar; 1. De

Läs mer

Tentamen TNM061, 3D-grafik och animering för MT2. Tisdag 3/ kl 8-12 TP51, TP52, TP54, TP56, TP41, TP43. Inga hjälpmedel

Tentamen TNM061, 3D-grafik och animering för MT2. Tisdag 3/ kl 8-12 TP51, TP52, TP54, TP56, TP41, TP43. Inga hjälpmedel Tentamen TNM061, 3D-grafik och animering för MT2 Tisdag 3/6 2014 kl 8-12 TP51, TP52, TP54, TP56, TP41, TP43 Inga hjälpmedel Tentamen innehåller 8 uppgifter, vilka tillsammans kan ge maximalt 50 poäng.

Läs mer

Flervariabelanalys E2, Vecka 5 Ht08

Flervariabelanalys E2, Vecka 5 Ht08 Omfattning och innehåll Flervariabelanalys E2, Vecka 5 Ht08 15.1 Vektorfält och skalärfält 15.2 Konservativa vektorfält (t.o.m. exempel 5) 15.3 Kurvintegraler 15.4 Kurvintegral av vektorfält 15.5 Ytor

Läs mer

IT OCH PROGRAMMERING I SKOLAN. Jan Erik Moström Peter Vinnervik

IT OCH PROGRAMMERING I SKOLAN. Jan Erik Moström Peter Vinnervik IT OCH PROGRAMMERING I SKOLAN Jan Erik Moström Peter Vinnervik VILKA ÄR VI OCH VAD KOMMER VI ATT PRATA OM? Jan Erik Moström - undervisar på institutionen för datavetenskap Peter Vinnervik - doktorand vid

Läs mer

Fysik (TFYA14) Fö 5 1. Fö 5

Fysik (TFYA14) Fö 5 1. Fö 5 Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:

Läs mer

Manual för ett litet FEM-program i Matlab

Manual för ett litet FEM-program i Matlab KTH HÅLLFASTHETSLÄRA Manual för ett litet FEM-program i Matlab Programmet består av en m-fil med namn SMALL_FE_PROG.m och en hjälp-fil för att plotta resultat som heter PLOT_DEF.m. Input För att köra programmet

Läs mer

Föreläsning 5: Grafer Del 1

Föreläsning 5: Grafer Del 1 2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första

Läs mer

Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer

Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer 2 mars 2017 Matematisk analys för ingenjörer Matlabövning 3 Numerisk lösning av differentialekvationer Syftet med denna matlab-övning är att studera differentialekvationer och introducera hur man använder

Läs mer

Strålningsfält och fotoner. Våren 2016

Strålningsfält och fotoner. Våren 2016 Strålningsfält och fotoner Våren 2016 1. Fält i rymden Vi har lärt oss att beräkna elektriska fält utgående från laddningarna som orsakar dem Kan vi härleda nånting åt andra hållet? 2 1.1 Gauss lag Låt

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

Sensorteknik Ex-tenta 1

Sensorteknik Ex-tenta 1 Elektrisk mätteknik LTH Sensorteknik Ex-tenta 1 Tillåtna hjälpmedel: Kalkylator och/eller tabell. Anvisningar: De 16 första frågorna bör besvaras relativt kortfattat, t.ex. genom en enkel ritning och en

Läs mer

Kompendium om. Mats Neymark

Kompendium om. Mats Neymark 960L09 MATEMATIK FÖR SKOLAN, Lärarlftet 2009-02-24 Matematiska institutionen Linköpings universitet 1 Inledning Kompendium om KÄGELSNITT Mats Nemark Detta kompendium behandlar parabler, ellipser och hperbler

Läs mer

Parabeln och vad man kan ha den till

Parabeln och vad man kan ha den till Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

Dimensioner och fraktal geometri. Johan Wild

Dimensioner och fraktal geometri. Johan Wild Dimensioner och fraktal geometri Johan Wild 9 februari 2010 c Johan Wild 2009 johan.wild@europaskolan.se Får gärna användas i undervisning, kontakta i så fall författaren. 9 februari 2010 1 Inledning och

Läs mer

9. Magnetisk energi Magnetisk energi för en isolerad krets

9. Magnetisk energi Magnetisk energi för en isolerad krets 9. Magnetisk energi [RM] Elektrodynamik, vt 013, Kai Nordlund 9.1 9.1. Magnetisk energi för en isolerad krets Arbetet som ett batteri utför då det för en laddning dq runt en krets, från batteriets anod

Läs mer