Reciproka ekvationer.
|
|
- Kerstin Axelsson
- för 8 år sedan
- Visningar:
Transkript
1 Reciproka ekvationer. Af Frans de Brun. Som bekant brukar man lösa synmetriska ekvationer af 4;de graden, genom att dividera med x % x i px i qx i px i=o, (i) och lösa i afseende på y x-. _ (2) Om emellertid diskriminanten till y ekv.,p 2 8 4g, blir negativ, är det tydligt, att de ^-värden, som då formellt erhållas vid lösandet af (2), komma att innehålla kvadratrötter ur imagära tal. Att sedan förenkla dem till formen a ifi kräfver ganska besvärliga räkningar. För detta fall skulle man möjligen med fördel kunna använda följande metod. Först är att märka, att, om en af rötterna till en synmetrisk ekv. är imaginär med absoluta beloppet olika enheten, xi==alp, (4) måste det finnas ännu tre imaginära rötter: a 6(3 x... s* = a _^,* 8 =, *.= ^. (4) Vi frånse i det följande det ointressanta specialfallet och antaga am<i- (5) Vid den vanliga lösningsmetoden kombinerar man de reciproka rötterna, således xi mecl xs och X2 med Xt. Nu
2 vilja vi i stället sammanföra konjugatkomplexerna d. v. s. x\ med X2 och X3 med Xi. Vi bestämma alltså fyra konstanter, a, b, c, d, genom identiteten x i p x 3 q x 2 p x i = (x* a x b) {x 2 cx d), (6) hvaraf a-\-c=p, ac b d=q, adbc=p, bd = i. (7) Den i:sta och 3-dje gifva a(d i)=c(l 6), som, med hjälp af den 4:de leder till b = -, d = -.. (8) c a Lösningen 6 = 1 tillhör naturligtvis den förut gifna metoden och frånses här. Om värdena på b och d ur (8) införas i den andra ekv. (7), erhålles, efter multiplikation med ac, a z a" c z c-'= qac, som kombinerad med den första, efter dess kvadrering,. gifver a 2 c 2 2 ac = qac p 2. Alltså har man «- * i - l A f ( 9 > ac=p. Uttrycket under rotmärket blir under det gjorda antagandet, p q<o, tydligen större än J q 4~42> 8=(f-s), och således blifva såväl ac som a c reella. Men äfven a och c själfva blifva reella, om minustecket tages framför roten ur iq p 2 i (9); plustecken åter leder till kom-
3 binationen xi med xs och Xi med, då koefficienterna blifva imaginära. Af (6) erhållas sedan rötterna xi ac 1 \ac 2 c ac l Xi = ac l x% = (4 ac) Sac (4 ac) Sac (4 ac) 2 a ac l\ac (4 ac) Xi = - 2 a > (11) Det behöfver väl knappast sägas, att denna lösningsmetod äfven kan användas, då reella rötter finnas. Eftersom man af en reciprok 4:de grads ekv. dels kan få rötterna som kvadratrötter ur imaginära tal, dels under formen a lfi, är det klart, att man omvändt med hjälp häraf kan draga ut kvadratroten ur imaginära tal. Också använder man som bekant en dylik metod härför (äfvensom för förenklande af dubbla radikaluttryck). Om man y antager p=o och inför rp= i stället för x, blir ekv. y i ky 2 m 2 = o y m. (y 2 ni) 2 =(2m k)y 2 (12).. y 2 m = _\zm k. y V2.'M k V 2m k V2m k l\2m k. v= = (13) Dö ses ekv. (12) åter först med af seende på y 2, fås yaa EJggL V _ t -dy) y f 2 2 r 2 2 Uttrycken (13) och (13*) äro således parvis identiska. Huru tecknen skola tagas, synes säkrast, om värdena kvadreras och jämföras. Vidare är klart, att, då man kan lösa dylika reciproka
4 ekvationer på två sätt, man också bör kunna lösa den ena af de uppkommande ekvationerna, om man kan lösa den andra. Häraf begagnar man sig faktiskt vid lösningen af,den allmänna 3:dje grads ekv. Man ser nämligen genast, att ekv. U s qu s = 0, (14) 27 som genom substitutionen M=»" / ^ kan återföras till P reciprok, blir oförändrad, om u bytes mot. Löses 3u ekv. såsom kvadratisk i afseende på u a, fås T 2 r 4 27 r< (15) 3«" 2 r 4 24 } där de öfre tecknen gälla samtidigt, de undre samtidigt samt g betecknar en af de tre kubikrötterna ur enheten. Dividerar man åter i ekv. (14) med u s och inför erhålles P x = u, (16) 3«x a px q=o, (17) hvars tre rötter på grund af (1.5) och (16) äro ' 2 F 4 27 T 2 F Det är gifvet, att denna metod med uppdelning i tvänne faktorer, hvilken redan Cartesius använde för lösningen af den allmänna 4:de grads ekv., jämväl kan generaliseras och brukas vid lösandet af högre graders synmetriska ekvationer. Vid den synmetriska ekv. af 8 de graden, x^ px 1 qx 6 rx 5 sx l rx s qx 2 px 1 = 0, (19)
5 kunna rötterna grupperas så vi förutsätta för enkelhets 1 ) skull en af rötterna imaginär med absoluta beloppet olika enheten att både konjugatkomplexer och inversa rötter sammanföras, således rötter af formen (4). De öfriga må vara 1 1,., %ä,x6,x7=,#8 =. (20) X5 xe Om då i enlighet med Cartesii metod vänstra membrum skrifves lika med produkten (x i pix' å qix 2 pix i) (x i p2x i q2x 2 p i x i), (21) och vi däri antaga, att xi, X2, x%, x& äro nollställena till den första parantesen, x&, xe, x-i, xs till den andra, så är det a priori klart, att samtliga koefficienter blifva reella tal. De erhållas af
6 som, om vi sätta ger u 2 =t, (25) (26) \2 8 2/ 4t \2 8 2 / 2 Denna ekv., som i allmännhet är af 3:dje graden, ger värdena på u, hvarefter v fås ur (24 x ) och koefficienterna pi, P2, qt, qz ur (23). Då man naturligtvis dessutom kan erhålla lösningen genom division med x 4, i ekv. (19), är det tydligt, att man bör kunna komma fram till en del identiteter mellan vissa radikaluttryck. Vill här endast behandla det enkla fall, då och ekv. (19) öfvergår i p=r=o (27) x? qx 6 sx* qx 2 1 =0. (28) Löses här i afseende på x 2, efter division med x i, erhålles ^9) x = ] / g, VgH8-45 1/ g «4-25gV^8l^7^ 4 4 r 8 där de öfre tecknen tagas samtidigt och de undre samtidigt framför de termer, som innehålla Vq som faktor, men tecknen för öfrigt varieras på alla möjliga sätt.. Bestämmes t ur ekv. (26), får man Vidare är hvaraf 1 = 4 fl± V8 82 4S. (30) v=o, (31)»1 = p-2= V4 q2^2 2<7 s I, s > (32) qi = qz = 2_\2-22 5, i och de åtta rötterna äro således
7 Här skola tecknen tagas lika framför z\q a 8 45 men för öfrigt varieras på alla tänkbara sätt. Uttrycken (29) och (29*) böra då parvis vara identiska, om tecknen bestämmas riktigt, hvilket bäst sker genom kvadrering och jämförelse. På samma sätt, som man erhåller lösningen af 3:dje gradsekvationen af en synmetrisk ekv., kan man äfveu lösa den allmänna 4:de gradsekvationen. Om vi i (10) dividera med x 4, och införa få vi yi p yb ( g _4) y 2 4- ( r 2p) y 2 2q s = o, (34) d. v. s. om y± Pyt QyZ Ry S = 0 (35) skall lösas, blifva rötterna de fyra summorna af två reciproka rötter till (21), då man har att skrifva i (22) (26) talen P, Q 4, R 3, S 2 Q 6 i stället, för p,q,r,s resp.
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Lathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
SEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är
OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,
Snabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Övningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Möbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Introduktion till Komplexa tal
October 26, 2015 Introduktion till Komplexa tal HT 2014 CTH Lindholmen 2 Index 1 Komplexa tal 5 1.1 Definition och jämförelse med R 2................ 5 1.1.1 Likheter mellan R 2 och C................ 5
Ekvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Har du förstått? I De här talen är primtal a) 29,49 och 61 b) 97, 83 och 89 c) 0, 2 och 3.
PASS 5. FAKTORISERING AV POLYNOM 5. Nyttan av faktorisering och faktorisering av heltal Har vi nytta av att kunna faktorisera polynom? Ja det har vi. Bra kunskaper i faktorisering av polynom möjliggör
x 2 + px = ( x + p 2 x 2 2x = ( x + 2
Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (
a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Något om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
SF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Exempel på tentamensuppgifter i LMA100, del 1
Exempel på tentamensuppgifter i LMA100, del 1 Diskret matematik 1. Givet är de 7 bokstäverna i ordet APPARAT. Hur många olika ord (= bokstavspermutationer) kan man bilda av dem med (a) 7 bokstäver (b)
Tillståndsmaskiner. 1 Konvertering mellan Mealy och Moore. Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08
Tillståndsmaskiner Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik 2014-05-08 Figur 2: En tillståndsgraf av Moore-typ för att markera var tredje etta i en insignalsekvens.
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:
3.1 Linjens ekvation med riktningskoefficient. y = kx + l.
Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1
Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
1 Navier-Stokes ekvationer
Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan
Lokal pedagogisk planering i matematik för årskurs 8
Lokal pedagogisk planering i matematik för årskurs 8 Arbetsområde 2. Algebra Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera över matematikens
Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.
KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan
Lösningar s. 8 Perspek9v s. 7
Källkri9k s. 11 Diskussion s. 2 Åsikter s. 3 Samarbete s. 10 Fördelar och nackdelar s. 4 ELEVHJÄLP Slutsatser s. 9 Konsekvenser s. 5 Lösningar s. 8 Perspek9v s. 7 Likheter och skillnader s. 6 1 Vad är
Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
SF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
Övningshäfte Algebra, ekvationssystem och geometri
Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning
DOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer.
1 Matematik som verktyg Antag att vi har en funktion som är en rät linje, y = 1 3x. Eftersom relationen mellan x och y är linjär räcker det med att vi hittar två punkter (två talpar) på linjen för att
Snapphanalegen. Firekángabogena. Spelregler. (4 spelare)
Snapphanalegen Firekángabogena Spelregler 1 800 (4 spelare) 800 är ett spel med anor från 1400-talet. Spelet ställer stora krav på spelarnas skicklighet. Fyra deltagare spelar ihop parvis. Spelet cirkulerar
Stratsys för landsting och regioner
Stratsys för landsting och regioner Agenda Kort presentationsrunda Förväntningar Vårdval (LOV) I och med Lagen om valfrihet ställs allt högre krav på landstingen och kommuner att göra informationen transparent
Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)
Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej
Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:
3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra
Modul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Volymer av n dimensionella klot
252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)
ATT KUNNA TILL. MA1050 Matte Grund. 2011-06-14 Vuxenutbildningen Dennis Jonsson
ATT KUNNA TILL MA1050 Matte Grund 2011-06-14 Vuxenutbildningen Dennis Jonsson Sida 2 av 5 Att kunna till prov G1 Kunna ställa upp och beräkna additions-, subtraktions-, multiplikations- och divisuionsuppgifter
Två konstiga klockor
strävorna C Två konstiga klockor resonemang geometri Avsikt och matematikinnehåll Det som kan göra det svårt för barn att avläsa en analog klocka är att förstå att den består av två skalor som är beroende
912 Läsförståelse och matematik behöver man lära sig läsa matematik?
912 Läsförståelse och matematik behöver man lära sig läsa matematik? Med utgångspunkt från min egen forskning kring läsförståelse av matematiska texter kommer jag att diskutera olika aspekter av läsning
Modell för diskontering av framtida kassaflöde att tillämpas för Trafikljuset
PROMEMORIA Datum 7-7- Författare Bengt von Bahr Modell för diskontering av framtida kassaflöde att tillämpas för Trafikluset Finansinspektionen P.O. Box 78 SE- 97 Stockholm [Brunnsgatan ] Tel 6 8 787 8
Webb-bidrag. Sök bidrag på webben www.solvesborg.se. Gäller från 2015-01-01
Sök bidrag på webben www.solvesborg.se Gäller från 2015-01-01 Innehåll Kontaktperson Fritids- och turismkontoret Sölvesborg kommun Inledning Följande bidrag går att söka på webben Logga in Dokumenthantering
Repetition av cosinus och sinus
Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det
någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av
Om någon skulle föreslå, att ur våra räkningar utesluta tecknet "j/, så att man t. ex. skulle skriva lösningen av andragradsekvationen.1 -f 2 där y' 2 = b, eller i st. f. x=y$-\-yj
Upplägg och genomförande - kurs D
Upplägg och genomförande - kurs D Provet består av fyra delprov: Läsa A och B Höra Skriva Tala Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel
Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov B ÅRSKURS
ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning
Nationella prov i årskurs 3 våren 2013
Utbildningsstatistik 1 (8) Nationella prov i årskurs 3 våren 2013 Syftet med de nationella proven är i huvudsak att dels stödja en likvärdig och rättvis bedömning och betygsättning i de årskurser där betyg
SVENSKA ÖVERGRIPANDE MÅL FÖR ÅR 6, 7, 8, 9: LYSSNA
SVENSKA ÖVERGRIPANDE MÅL FÖR ÅR 6, 7, 8, 9: Att DU kan LYSSNA, och förstå vad du hör. Att DU kan TALA, så man förstår vad du säger. Att DU kan LÄSA, och förstå vad du läser. Att DU kan SKRIVA, så man förstår
Ha det kul med att förmedla och utveckla ett knepigt område!
Kul med pizzabitar Första gången eleverna får materialet i handen bör dem få sin egen tid till att undersöka det på det viset blir dem bekanta med dess olika delar. Det kan också vara en god idé att låta
Energi & Miljötema Inrikting So - Kravmärkt
Energi & Miljötema Inrikting So - Kravmärkt 21/5 2010 Sofie Roxå 9b Handledare Torgny Roxå Mentor Fredrik Alven 1 Innehållsförteckning Inledning s. 3 Bakgrund s. 3 Syfte s. 3 Hypotes s. 3 Metod s. 4 Resultat
Elektronen och laddning
Detta är en något omarbetad version av Studiehandledningen som användes i tryckta kursen på SSVN. Sidhänvisningar hänför sig till Quanta A 2000, ISBN 91-27-60500-0 Där det har varit möjligt har motsvarande
Individuellt Mjukvaruutvecklingsprojekt
Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel
Boken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
Allmän teori, linjära system
KTH, Avdelningen för matematik F2, Stockholm, 2 april 2014 Lösningsbegreppet Begynnelsevärdesproblem Lösningsbegreppet Betrakta ekvationen Definition En lösning på ett intervall I är en funktion x 1 (t)
Omvandla Vinklar. 1 Mattematiskt Tankesätt
Omvandla Vinklar 1 Mattematiskt Tankesätt (Kan användas till mer än bara vinklar) 2 Omvandla med hjälp av Huvudräkning (Snabbmetod i slutet av punkt 2) 3 Omvandla med Miniräknare (Casio) Läs denna Först
Får nyanlända samma chans i den svenska skolan?
Får nyanlända samma chans i den svenska skolan? Sammanställning oktober 2015 De nyanlända eleverna (varit här högst fyra år) klarar den svenska skolan sämre än andra elever. Ett tydligt tecken är att för
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Punktskattning och kondensintervall Innehåll 1 Punktskattning och kondensintervall Population Punktskattning och kondensintervall Vi har en population vars någon mätbar egenskap X vi är intresserade
Du ska nu skapa ett litet program som skriver ut Hello World.
Tidigare har vi gjort all programmering av ActionScript 3.0 i tidslinjen i Flash. Från och med nu kommer vi dock att ha minst två olika filer för kommande övningar, minst en AS-fil och en FLA-fil. AS Denna
5. Motion om policy för besvarande av post yttrande Dnr 2015/465-109
SAMMANTRÄDESPROTOKOLL Kommunfullmäktige 13 (42) 2016-03-21 Kf 5. Motion om policy för besvarande av post yttrande Dnr 2015/465-109 Mariann Gustafsson (V) har 19 oktober 2015 väckt en motion om policy för
Tankar om elevtankar. HÖJMA-projektet
Tankar om elevtankar HÖJMA-projektet JAN UNENGE I förra numret av NÄMNAREN påbörjades en redogörelse från ett intressant forsknings- och utvecklingsarbete vid Lärarhögskolan i Jönköping. Den artikeln behandlade
Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt
KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande
Utdrag ur protokoll vid sammanträde 2013-10-15. Ändrad deklarationstidpunkt för mervärdesskatt. Förslaget föranleder följande yttrande av Lagrådet:
1 LAGRÅDET Utdrag ur protokoll vid sammanträde 2013-10-15 Närvarande: F.d. justitierådet Leif Thorsson samt justitieråden Gudmund Toijer och Olle Stenman. Ändrad deklarationstidpunkt för mervärdesskatt
Skriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska
Vi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som
Linjära system av differentialekvationer
CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor
Statistik 2015 - Äldre hjälpsökande hos Brottsofferjouren
Statistik 2015 - Äldre hjälpsökande hos Brottsofferjouren En rapport från Brottsofferjouren Sverige Sofia Barlind statistik@boj.se Innehåll Brottsofferjourens statistikföring... 2 Ärendemängd... 2 Äldre
Linjära system av differentialekvationer
CTH/GU STUDIO 6 MVE6 - /6 Matematiska vetenskaper Inledning Linjära system av differentialekvationer Vi har i studioövning sett på allmäna system av differentialekvationer med begynnelsevillkor u (t) =
Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?
Uppdrag: Huset Praktiskt arbete: (Krav) Göra en skiss över ditt hus. Bygga en modell av ett hus i en kartong med minst två rum. Koppla minst tre lampor och två strömbrytare till ditt hus. Visa både parallellkoppling
Facit åk 6 Prima Formula
Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan
Lösningar och kommentarer till uppgifter i 3.2
Lösningar och kommentarer till uppgifter i 3.2 Så har vi då nått fram till sista avsnittet före tentamen. Uppgifterna i detta avsnitt är ganska trevliga, därför att de ofta har en, åtminstone påhittad,
Avgifter i skolan. Informationsblad
Informationsblad 1 (8) Avgifter i skolan Här kan du läsa om hur Skolinspektionen bedömer avgifter i skolan i samband med tillsynen. Informationsbladet redogör för Skolinspektionens praxis. Här kan du även
Vad tycker de äldre om äldreomsorgen 2013? Verksamhetsresultat för Norr Särskilt boende
Vad tycker de äldre om äldreomsorgen 2013? Verksamhetsresultat för Norr Särskilt boende Resultaten för er verksamhet Här redovisas resultaten för er verksamhet från 2013 års nationella brukarundersökning
Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0
Del A: Digitala verktyg är tillåtna. Skriv dina lösningar på separat papper. 1) Summan av två tal är 38 och differensen mellan dem är 14. Vilka är talen? 2/0/0 2) Ställ upp ett ekvationssystem för situationen
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Tomi Alahelisten Lärare Idrott & Hälsa - Internationella Skolan Atlas i Linköping. Orientering
Orientering 1. Inledning Orientering härstammar från Norden i slutet på 1800-talet. Ursprungligen var orientering en militär övning, men tidigt såg man nyttan med att sprida denna kunskap till allmänheten
Särskilt stöd i grundskolan
Enheten för utbildningsstatistik 15-1-8 1 (1) Särskilt stöd i grundskolan I den här promemorian beskrivs Skolverkets statistik om särskilt stöd i grundskolan läsåret 1/15. Sedan hösten 1 publicerar Skolverket
Repetitivt arbete ska minska
Repetitivt arbete ska minska Ett repetitivt arbete innebär att man upprepar en eller några få arbetsuppgifter med liknande arbetsrörelser om och om igen. Ofta med ett högt arbetstempo. Ett repetitivt arbete
Sammanfattning på lättläst svenska
Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när
RP 305/2010 rd. I propositionen föreslås att lagen om besvärsnämnden. intressen skyddas genom sekretessen. Besvärsinstansernas
RP 305/2010 rd Regeringens proposition till Riksdagen med förslag till lag om ändring av 17 i lagen om besvärsnämnden för social trygghet och 21 i lagen om försäkringsdomstolen PROPOSITIONENS HUVUDSAKLIGA
Lab 31 - Lauekamera TFFM08 - Experimentell Fysik
Lab 31 - Lauekamera TFFM08 - Experimentell Fysik Joakim Lindén, Gustaf Winroth 3 oktober 2005 Applied Physics and Electrical Engineering c Lindén, Winroth 2005 1 Inledning - Syfte Laborationen med en lauekamera
DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING
DE FYRA RÄKNESÄTTEN (SID. 11) 1. Benämn med korrekt terminologi talen som: adderas. subtraheras. multipliceras. divideras.. Addera 10 och. Dividera sedan med. Subtrahera 10 och. Multiplicera sedan med..
Hur skapar man formula r
Hur skapar man formula r Gamla jämfört med nya sättet Förord Att skapa olika typer av dokument är styrkan i ett ordbehandlingsprogram, såsom Microsoft Word. Dock är denna flexibilitet även till en nackdel.
729G04 - Hemuppgift, Diskret matematik
79G04 - Hemuppgift, Diskret matematik 5 oktober 015 Dessa uppgifter är en del av examinationen i kursen 79G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt.
SKOGLIGA TILLÄMPNINGAR
STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig
KYRKOVALSSIFFROR. Jämtlands partidistrikt
KYRKOVALSSIFFROR Jämtlands partidistrikt Läs detta först! Här följer en läsanvisning till de följande diagrammen och tabellerna. Diagram I häftet finns två diagram. Båda handlar om den så viktiga mobiliseringsgraden.
Handbok Blinken. Danny Allen Översättare: Stefan Asserhäll
Danny Allen Översättare: Stefan Asserhäll 2 Innehåll 1 Inledning 5 2 Använda Blinken 6 2.1 Starta ett spel........................................ 7 2.2 Skriva in nya högsta poäng................................
Projekt benböj på olika belastningar med olika lång vila
Projekt benböj på olika belastningar med olika lång vila Finns det några skillnader i effektutveckling(kraft x hastighet) mellan koncentriskt och excentriskt arbete på olika belastningar om man vilar olika
David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.
Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet
Tentamen SSY041 Sensorer, Signaler och System, del A, Z2
Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens
Flervariabelanalys E2, Vecka 2 Ht08
Omfattning och innehåll Flervariabelanalys E2, Vecka 2 Ht08 12.2 Gränsvärden och kontinuitet. 12.3 Partiella derivator, tangentplan och normaler till funktionsytor. 12.4 Högre ordningens derivator. 12.5
Design by. Manual Jossan.exe. Manual. till programmet. Jossan.exe. E-post: petter@sarkijarvi.se
Manual till programmet 1 Inledning Programmet är döpt efter Josefine Mattsson och har utvecklats av Josefines pappa Petter Särkijärvi i Pajala. Man kan köra/styra programmet med antingen mus, tangentbord,
BibliotekMitt.se. Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm
BibliotekMitt.se Riktlinjer för Boktips, Artiklar, Arrangemang, Utställningar Arrangemang mm Här hittar du speciella riktlinjer för BibliotekMitt. Vill du ha mer detaljerat om varje funktion så finns en
Nämnarens adventskalendern 2007
Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.
4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
För övrigt fullständig överensstämmelse kvalitativt sett för båda proverna. Alla lab som analyserat P-CCP ak på prov 18/D rapporterar ett starkt
2011-18 Förväntat svar/utfall för P-RF (ej isotypspec) var bestämt utifrån nefelometrisk metod. På prov 18/C med förväntat negativt utslag fick ett annat lab som också använder nefelometri dock ett svagt
Bered en buffertlösning. Niklas Dahrén
Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också
Lunds tekniska högskola Matematikcentrum Matematisk statistik
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS0: MATEMATISK STATISTIK AK FÖR V EXEMPEL PÅ DUGGAUPPGIFTER, AVSNITT SANNOLIKHETSTEORI UPPGIFTER Kortare uppgifter. På en arbetsplats skadas
Väga paket och jämföra priser
strävorna 2AC 3AC Väga paket och jämföra priser begrepp rutinuppgifter tal geometri Avsikt och matematikinnehåll Den huvudsakliga avsikten med denna aktivitet är att ge elever möjlighet att utveckla grundläggande