Matematiska grunder för Artificiellt Medvetande

Storlek: px
Starta visningen från sidan:

Download "Matematiska grunder för Artificiellt Medvetande"

Transkript

1

2

3 Matematiska grunder för Artificiellt Medvetande Gästföreläsning på IT-universitetet 22/ av Ambjörn Naeve Computer Vision and Active Perception (CVAP) Centre for user-oriented IT Design (CID) Numerisk Analys och Datalogi (NADA) KTH web-sites: cid.nada.kth.se/il kmr.nada.kth.se

4 Gymnasiet: Mängdlära Geometri IT/KTH: Kategoriteori Geometrisk Algebra plato.stanford.edu/entries/category-theory/ modelingnts.la.asu.edu/gc_r&d.html Tillämpn: Artificellt Medvetande lea.hamradio.si/~s51em/artifico.html Scenanalys Rörelsealgoritmer Artificiellt medvetna robotar

5 Def: En Kategori består av en familj av objekt (A,B, ) med pilar (f, g, h, ) mellan vissa av objekten, så att: (i): pilar som ligger i följd kan sammansättas, dvs f g A B C g o f (ii): sammansättningen är associativ, dvs ho( gof) = ( hog) of 1 (iii): för varje objekt A finns en enhetspil A A A så att f o1 = A f och 1 A o k = k för alla pilar f, k som börjar resp. slutar i A.

6 Ex 1: Kategorin av mängder (Sets): Objekt = mängder. Pilar = funktioner mellan dessa. Ex 2: Kategorin av logiska påståenden (Logic): Objekt = logiska påståenden (P, Q, ). Pilar = implikationer mellan dessa (P => Q). Ex 3: Kategorin av alla beslutskomplex hos ett självorganiserande system (Cons): Objekt = delsystem med beroenden sinsemellan. Pilar = avbildningar som respekterar dessa.

7 Def: Ett objekt A i en kategori kallas initialt om det för varje objekt B finns exakt en pil A B Def: Ett objekt A i en kategori kallas finalt om det för varje objekt B finns exakt en pil B A Ex: I Sets är Ø initialt objekt och 1 finalt objekt. Ex: I Logic är varje obetingat falskt påstående initialt och varje obetingat sant påstående finalt. Notera: Definitionerna av initialt och finalt objekt är duala i den bemärkelsen att man får den ena ur den andra genom att byta riktning på pilarna.

8 Def: Med summan av objekten A och B i en kategori menas ett diagram A AC B B med följande egenskap : För varje diagram av typen finns en unik pil f sådan att f o a = x och f o b = y dvs sådan att diagrammet kommuterar. a x f Z b y

9 Ex: I Sets är summan AC B en mängd som består av elementen i A och elementen i B (disjunkta unionen) AC B= A. B Ex: I Logic är summan av två påståenden P och Q lika med deras disjunktion, dvs påståendet P eller Q PC Q= P Q Dualt gör vi följande

10 Def: Med produkten av objekten A och B i en kategori menas ett diagram A A B B med följande egenskap: För varje diagram av typen finns en unik pil f sådan att ao f = x och bo f = y dvs sådan att diagrammet kommuterar. x a f W b y

11 Ex: I Sets är produkten A B mängden av par av element i A och element i B (kartesiska produkten) A B= A B Ex: I Logic är produkten av två påståenden P och Q lika med deras konjunktion, dvs påståendet P och Q P Q= P Q

12 Summa och produkt definieras analogt för godtyckliga familjer F av objekt A k F = { A : k I}. k Man skriver C A k = A och A = C k I k k k I A k. Informellt beteckningssätt: Man säger att ett objekt Z ligger under familjen F, om det går exakt en pil för varje A A k Dualt säger man att ett objekt W sitter på familjen F om det går exakt en pil W för varje A F Z A k F k. k.

13 Summan av en familj objekt ligger initialt under familjen ty, för varje objekt Z som ligger under familjen, finns en unik pil från summan till Z så att diagrammet kommuterar... A i.. A j. C A k unik pil Z

14 Produkten av en familj objekt sitter finalt på familjen ty, för varje objekt W som sitter på familjen, finns en unik pil från W till produkten så att diagrammet kommuterar. C A k unik pil W.. A i.. A j.

15 Antag nu att det även finns pilar mellan objekten i vår familj (högst en pil mellan varje par av objekt) på ett sådant sätt att varje triangel kommuterar. A i f o f = f kj ji ki f ji A j A k f kj Def: En sådan familj av objekt kallas då ett system. Notera: Om man går olika (pil)vägar mellan två objekt i ett system S så blir den resulterande pilen alltid densamma, oberoende av vilken väg man väljer. Def: Man säger att systemet S har en intern koherens, dvs dess olika objekt (= delar) är koherenta med varandra.

16 Givet ett system S i en kategori. S A i A j A k Def: Ett objekt Z ligger koherent under S om Z ligger under S och pilarna från S till Z respekterar S interna koherens, dvs diagrammet kommuterar. Z

17 W Def: Ett objekt W sitter koherent på S om W sitter på S och pilarna från W till S A i respekterar S interna koherens, dvs diagrammet kommuterar S A j A j

18 Def: lim S (direkta limes av S) är det objekt som ligger initialt koherent under S, dvs lim S ligger koherent under S, och för varje objekt Z som också gör det, finns en unik pil lim S Z så att diagrammet kommuterar. S A i A j A j lim S unik pil Z

19 Def: lim S (inversa limes av S) är det objekt som sitter finalt koherent på S, dvs lim S sitter koherent på S, och för varje objekt W som också gör det, finns en unik pil W lim S så att diagrammet kommuterar. lim S unik pil W S A i A j A j

20 Notera: Om systemet S saknar pilar (dvs saknar växelverkan mellan sina olika delar), så övergår direkta och inversa limes i summa respektive produkt. lim S = C A k lim S = A k

21 Formell modell för artificiellt medvetande Siliconsciousness Def: Medvetandet hos ett system består av två delar: aktions-medvetandet (M act ) som styr dess handlingar, och perceptions-medvetandet (M react ) som styr dess upplevelser. Def: M act (S) = lim S M react (S) = lim S Eilenberg (1956), Binford (1987), Zeleznikar (1996) Referens:

22 M react (S) = lim S entydigt bestämd upplevelse M act (S) = lim S entydigt bestämd handling

23 Perceptions-medvetande = Samsyn = det vi är överens om lim S lim S Aktions-medvetande = Lydnad = det vi rättar oss efter

24 GEOMETRISK ALGEBRA (CLIFFORD ALGEBRA)

25

26

27 Fundamentala problem med den vanliga algebran (som används i s.k. analytisk geometri ) Geometriska operationer är (i allmänhet) ordningsberoende t.ex: Rot ( α) orot ( β) Rot ( β) orot ( α) A B B A medan algebran är ordningsoberoende (xy = yx). Detta leder bl.a. till att riktningsbegreppet blir endimensionellt (endast linjer kan tillordnas riktning på ett koordinatoberoende sätt) -a a koordinat system b + a

28 Grundläggande egenskaper hos den geometriska produkten [ a, b, c är vektorer, λ är ett reellt tal, e 1, e 2, e 3, är ON-bas ] Associativ: a(bc) = (ab)c Vänster-distributiv: a(b+c) = ab + ac Höger-distributiv: (b+c)a = ba + ca Anti-kommutativ på vinkelräta vektorer: ee = ee, i i k k i k Kommuterar med reella tal: aλ = λa Kvadraten på en vektor är ett reellt tal: a 2 = a 2

29 β 2 e 2 α 2 b= βe + β e a= α e + α e Räkneregler: e 2 1 ee 2 = e =1 2 = ee β 1 e 1 α 1 Definition: ab = ( α e + α e )( βe + β e ) = αβe + αβe + αβee + αβee = αβ + αβ + αβ αβ ( )ee 3 ab a b = 1 ( ab + ba) + 1 ( ab ba)

30 ab β 2 e 2 α 2 Slutsatser: b e 1 e 2 β 1 e 1 a α 1 a b relativ skalfaktor = ( αβ αβ) ee { riktad enhetsarea 678 e e 1 2 = 1 ( ee ee) = 1 ( ee + ee ) = ee 1 2 = ba ab = a b a b=0 ab ab = ba ab = a b ab =0 a b

31 Geometriska produkten - sammanfattning Storleken och den relativa riktningen hos två vektorer a och b är representerade i deras geometriska produkt ab : geometrisk produkt: inre produkt: yttre produkt: reellt tal 2-blad } } ab = a b + a b a b = 1 ( ab + ba) = b a 2 a b = 1 ( ab ba) = b a 2 a och b är parallella om och endast om: a and b är vinkelräta om och endast om: ab = a b ab = a b

32 Några ekvivalensoperationer på 2-blad b^ b a a a b = a b^ = ab^ b a b = a^ b = a^ b a^ b R b a R a R b R = a b a

33 Några ekvivalensoperationer på 2-blad (forts.) b A a A = a b

34 a c b c a c a b c c (a+b) c b a+b a c + b c = (a+b) c

35 a c a c= c a c a c a -c a a -c -c

36 Blad har en geometrisk tolkning blad av grad ekvivalensklasser av riktade samma riktning och 1 sträckor 2 ytor 3 3-dim regioner längd area volym k k-dim regioner k-volym

37 Notera att: ( ee ) 2 = eeee 1 2 } 2= eeee = Minns att: ab = αβ + αβ + ( αβ αβ) e e Inför: Har nu: Slutsats: z = ab= λ + λ ee w= µ + µ ee ( )( + ) zw= λ + λ ee µ µ ee = + ( ) λµ λµ λµ λµ λ 1 λ 2, ee ee ee ( ) + ( + ) = λµ λµ λµ λµ Re( zw) Im( zw) ee ab kan alltså tolkas som ett komplext tal!

38 Referenser: Grassmann, H., Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, Leipzig, Hestenes, D. & Sobczyk, G., Clifford Algebra to Geometric Calculus, Dordrecht/D. Reidel, Hestenes, D., New Foundations for Classical Mechanics, Dordrecht/D. Reidel, Hestenes, D., Universal Geometric Algebra, Simon Stevin, 63, pp , Hestenes, D. & Ziegler, R., Projective Geometry with Clifford Algebra, Acta Applicandae Mathematicae 23, pp , Naeve, A. & Svensson, L., Geo-Metric-Affine-Projective Unification, Ch. 5, pp , in Sommer (ed.), Geometric Computing with Clifford Algebras, Springer, 2001.

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

Explorativ övning Vektorer

Explorativ övning Vektorer Eplorativ övning Vektorer Syftet med denna övning är att ge grundläggande kunskaper om vektorräkning och dess användning i geometrin Liksom många matematiska begrepp kommer vektorbegreppet från fysiken

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl

Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

MVE520 Linjär algebra LMA515 Matematik, del C

MVE520 Linjär algebra LMA515 Matematik, del C MATEMATIK Chalmers tekniska högskola Tentamen MVE52 Linjär algebra LMA55 Matematik, del C Hjälpmedel: inga Datum: 28-8-29 kl 8 2 Telefonvakt: Sebastian Jobjörnsson ankn 6457 Examinator: Håkon Hoel Tentan

Läs mer

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element. Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer II Innehåll

Läs mer

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö

Läsanvisningar och övningsuppgifter i MAA150, period vt Erik Darpö Läsanvisningar och övningsuppgifter i MAA150, period vt1 2015 Erik Darpö ii 0. Förberedelser Nedanstående uppgifter är avsedda att användas som ett självdiagnostiskt test. Om du har problem med att lösa

Läs mer

Matrisexponentialfunktionen

Matrisexponentialfunktionen U.U.D.M. Project Report 206:2 Matrisexponentialfunktionen Neda Farzaneh Examensarbete i matematik, 5 hp Handledare: Martin Herschend Examinator: Jörgen Östensson Juni 206 Department of Mathematics Uppsala

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

September 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och

September 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och Fö : September 3, 205 Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har i en riktning, och ii en nollskild längd betecknad P Q. Man använder riktade sträckor

Läs mer

TAMS79: Föreläsning 10 Markovkedjor

TAMS79: Föreläsning 10 Markovkedjor TAMS79: Föreläsning 0 Markovkedjor Johan Thim december 08 0. Markovkedjor Vi ska nu betrakta en speciell tidsdiskret diskret stokastisk process, nämligen Markovkedjan. Vi börjar med en definition Definition.

Läs mer

Algebrans fundamentalsats

Algebrans fundamentalsats School of Science and Technology SE-701 8 Örebro, Sweden Algebrans fundamentalsats Ett linjäralgebraiskt bevis Andreas Thore Örebro Universitet Akademin för naturvetenskap och teknik Matematik C, 61 75

Läs mer

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)

Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element

Läs mer

DEL I 15 poäng totalt inklusive bonus poäng.

DEL I 15 poäng totalt inklusive bonus poäng. Matematiska Institutionen KTH TENTAMEN i Linjär algebra, SF604, den 5 december, 2009. Kursexaminator: Sandra Di Rocco Svaret skall motiveras och lösningen skrivas ordentligt och klart. Inga hjälpmedel

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

MYSTERIER SOM ÅTERSTÅR

MYSTERIER SOM ÅTERSTÅR Matematiska institutionen Stockholms universitet C.G. Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 6 MYSTERIER SOM ÅTERSTÅR Mysteriet med matrisinversen. Det

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer I Innehåll

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära

Föreläsningsanteckningar och övningar till logik mängdlära Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?

. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning? Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Föreläsning 3, Linjär algebra IT VT Skalärprodukt

Föreläsning 3, Linjär algebra IT VT Skalärprodukt Föreläsning 3, Linjär algebra IT VT2008 1 Skalärprodukt Denition 1 Låt u oh v vara två vektorer oh låt α vara minsta vinkeln mellan dem Då denierar vi skalärprodukten u v genom u v = u v os α Exempel 1

Läs mer

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN 9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar

Läs mer

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6

Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6 Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.

Läs mer

Imz. Rez. Bo E. Sernelius

Imz. Rez. Bo E. Sernelius KKKA 2005 Imz Rez Bo E. Sernelius Kort kurs i komplex analys Förord Den här kursen är avsedd som en kort introduktion till komplex analys för studenter som går på Fysikprogrammet. Avsikten är delvis att

Läs mer

Analys 2 M0024M, Lp

Analys 2 M0024M, Lp Analys 2 M0024M, Lp 4 2013 Lektion 1 Staffan Lundberg Luleå Tekniska Universitet 4 april 2013 Staffan Lundberg (LTU) Analys 2 M0024M, Lp 4 2013 4 april 2013 1 / 17 Kursinformation m.m. Examinator: Lennart

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera

Läs mer

14 september, Föreläsning 5. Tillämpad linjär algebra

14 september, Föreläsning 5. Tillämpad linjär algebra 14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

Abstrakt algebra för gymnasister

Abstrakt algebra för gymnasister Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Moment 4.2.1, 4.2.2, 4.2.3, 4.2.4 Viktiga exempel 4.4, 4.5, 4.6, 4.7, 4.13 Handräkning 4.1, 4.2, 4.3, 4.4, 4.5, 4.7 Datorräkning 1-9 i detta dokument Många av de objekt man arbetar med i matematiken och

Läs mer

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = =

MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET MED MATRISINVERSER = = = Matematiska institutionen Stockholms universitet CG Matematik med didaktisk inriktning 2 Problem i Algebra, geometri och kombinatorik Snedsteg 5 MULTIPLIKATION AV MATRISER, BASER I RUMMET SAMT FÖRSTA MÖTET

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper

Läs mer

x + y z = 2 2x + 3y + z = 9 x + 3y + 5z = Gauss-Jordan elemination ger: Area = 1 2 AB AC = 4. Span(1, 1 + x, x + x 2 ) = P 2.

x + y z = 2 2x + 3y + z = 9 x + 3y + 5z = Gauss-Jordan elemination ger: Area = 1 2 AB AC = 4. Span(1, 1 + x, x + x 2 ) = P 2. 1 Matematiska Institutionen KTH Exam for the course Linjär algebra, 5B1307, Januari 14, 008, 14:00-19:00 Kursexaminator: Sandra Di Rocco Minst 15 poäng ger betyg 3, minst poäng ger betyg 4 och mins 8 poäng

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer

LMA033/LMA515. Fredrik Lindgren. 4 september 2013

LMA033/LMA515. Fredrik Lindgren. 4 september 2013 LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:

Läs mer

Peanos axiomsystem för de naturliga talen

Peanos axiomsystem för de naturliga talen 5B1493, lekt 3, HT06 P1. Det finns ett naturligt tal 0. Peanos axiomsystem för de naturliga talen P2. Varje natutligt tal n har en s.k. efterföljare n +. P3. Om n + = m + så är n = m. P4. Inget naturligt

Läs mer

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag

Tentamen i TDDC75 Diskreta strukturer , lösningsförslag Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1

Läs mer

10.4. Linjära höljet LINJÄRA RUM

10.4. Linjära höljet LINJÄRA RUM 98 LINJÄRA RUM.4. Linjära höljet Definition.37. Mängden av alla linjärkombinationer av M = {v, v,...,v n } iett linjärt rum V kallas för linjära höljet av M betecknas [M], dvs [M] ={u V : u = λ v + λ v

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604 för D, den 5 juni 2010 kl 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF164 för D, den 5 juni 21 kl 9.- 14.. Examinator: Olof Heden. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att

Där a = (1, 2,0), b = (1, 1,2) och c = (0,3, 1) Problem 10. Vilket är det enda värdet hos x för vilket det finns a och b så att Här följer 3 problem att lösa. Längre bak i dokumentet finns utförliga penna-papper lösningar. Filen Föreläsning08.zip finns motsvarande lösningar utförda med Mathematica. Problem 1. Bestäm a så att avståndet

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

15 september, Föreläsning 5. Tillämpad linjär algebra

15 september, Föreläsning 5. Tillämpad linjär algebra 5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.

Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga. GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Sidor i boken Figur 1: Sträckor

Sidor i boken Figur 1: Sträckor Sidor i boken 37-39 Vektorer Det vi ska studera här är bara en liten del av den teori du kommer att stifta bekantskap med i dina fortsatta studier i kursen Linjär algebra. Många av de objekt man arbetar

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Dagens teman. Mängdlära forts. Relationer och funktioner (AEE 1.2-3, AMII K1.2) Definition av de naturliga talen, Peanos axiom.

Dagens teman. Mängdlära forts. Relationer och funktioner (AEE 1.2-3, AMII K1.2) Definition av de naturliga talen, Peanos axiom. Dagens teman Mängdlära orts. Relationer och unktioner (AEE 1.2-3, AMII K1.2) Deinition av de naturliga talen, Peanos axiom. Relationer och unktioner Relationer Generell deinition: En relation R på mängden

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e

1. Inledning. x y z. u = xe 1 + ye 2 + ze 3 = e . Inledning I Linjär algebra kommer vi att stdera olika objekt samt deras egenskaper. Dessa objekt kan ha geometrisk tolkning såsom geometriska vektorer men också inte som t.e. matriser. Vi har tidigare

Läs mer

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor

TENTAMEN. Linjär algebra och analys Kurskod HF1006. Skrivtid 8:15-13:00. Tisdagen 31 maj Tentamen består av 3 sidor TENTAMEN Linjär algebra och analys Kurskod HF1006 Skrivtid 8:15-13:00 Tisdagen 31 maj 2011 Tentamen består av 3 sidor Hjälpmedel: Mathematica samt allt tryckt material Tentamen består av 12 uppgifter,

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

MATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens

MATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens MATRISTEORI Pelle Pettersson ALLMÄN MATRISKUNSKAP MATRISER En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens element Exempel Matrisen 2 3 4 5 6 har två rader och

Läs mer

e = (e 1, e 2, e 3 ), kan en godtycklig linjär

e = (e 1, e 2, e 3 ), kan en godtycklig linjär Linjära avbildningar II Förra gången visade vi att givet en bas i rummet, e = (e 1, e 2, e 3 ), kan en godtycklig linjär avbildning F : R 3 R 3 representeras av en matris: Om vi betecknar en vektor u:s

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning.

Vektorer. Vektoriella storheter skiljer sig på ett fundamentalt sätt från skalära genom att de förutom storlek också har riktning. Vektorer. 3 / 18 Vektorer är ett mycket viktigt och användbart verktyg för att kunna beskriva sammanhang som innehåller riktade storheter, t.ex. kraft och hastighet. Vektoriella storheter skiljer sig på

Läs mer

Explorativ övning 9 RELATIONER OCH FUNKTIONER

Explorativ övning 9 RELATIONER OCH FUNKTIONER Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord

Läs mer

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n

Linjära avbildningar. Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. x 1 x 2. x = R n = x n Linjära avbildningar Låt R n vara mängden av alla vektorer med n komponenter, d.v.s. R n = { x = x x. x n } x, x,..., x n R. Vi räknar med vektorer x, y likandant som i planet och i rymden. vektorsumma:

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor

TENTAMEN. Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Onsdagen 25 september 2013 Tentamen består av 3 sidor TENTAMEN Matematik Kurskod HF903 Skrivtid 3:5-7:5 Onsdagen 5 september 03 Tentamen består av 3 sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av 3 uppgifter som totalt kan

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer