729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann

Storlek: px
Starta visningen från sidan:

Download "729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann"

Transkript

1 729G43 Artificiell intelligens / 2015 Maskininlärning 3 Marco Kuhlmann

2 Förra gången: Perceptroninlärning

3 Beslutsregel predicerat y-värde

4 Exempel: AND Välj parametrar θ 0, θ 1, θ 2 sådana att perceptronen beräknar följande: x0 x1 x2 y

5 Beslutsgräns θ klass 0 klass 1

6 Perceptroninlärning Börja med att sätta θ 0 (nollvektorn). För varje särdragsvektor x och målvärde y i träningsmängden: 1. Beräkna h(x): h(x) f(θ x) 2. Uppdatera parametervektorn: θ θ (h(x) y)x Upprepa tills klassifikationsfelet är tillräckligt litet.

7 Begränsningar av perceptronen x 2 x x x 1 linjär separerbar inte linjär separerbar

8 Nya särdrag till hjälp! x x 3 x 3 = 0 0 x 1

9 Nya särdrag till hjälp! x x x 1 x 3 = 1 om x 1 = x 2, annars 0

10 Nya särdrag till hjälp! Nästan alla problem blir linjärt separerbara om man bara kan hitta på bra särdrag. Detta mappar det ursprungliga problemet till en ny särdragsrymd. Problemet är att man måste hitta på dessa särdrag för hand. feature engineering En Support Vector Machine är en klassificerare som automatiskt lär sig nya särdrag som gör problemet linjärt separerbart. Lite andra tricks också; läs Jurafsky och Martin 18.9.

11 Logistisk regression

12 Logistisk regression kombinerar den linjära modellen med den logistiska funktionen ,25 1,5 0,75 + = 0,5 0,75 0,5 0,75 0,25 0, ,5 1 1,5 2 2, ,5 1 1,5 2 2,5 3

13 Linjär regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

14 Logistisk regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

15 Den logistiska funktionen 1 0,75 0,5 0, ,5-3 -1,5 0 1,5 3 4,5 6

16 Neuronmodell x 1 θ 1 Σ f h(x) x 2 θ 2 1. Beräkna den viktade summan av alla in-signaler: z = θ x. 2. Beräkna ut-signalen med den logistiska funktionen: h(x) = σ(z).

17 Logistisk regression som probabilistisk modell Vi kan tolka värdet h(x) som sannolikheten att x tillhör klass 1. Vad är då sannolikheten att x tillhör klass 0? Logistisk regression ger oss en probabilistisk modell: Hur sannolikt är det att den stokastiska variabeln y tar värdet 1, givet särdragsvektorn x och modellparametrarna θ?

18 Klassifikation med logistisk regression värde mellan 0 och 1 mittvärde

19 Felfunktion för logistisk regression I samband med linjär regression mätte vi felet för en enskild datapunkt som det kvadrerade avståndet mellan det predicerade värdet h(x) och målvärdet y. Hur ser denna kurva ut för logistisk regression? fel 2 1,5 1 0,5 0-1,25 0 1,25 avstånd

20 Felfunktion för logistisk regression Vid logistisk regression är det maximala avståndet mellan det predicerade värdet h(x) och målvärdet y, och därmed även det maximala felet, lika med 1. Detta eftersom både predicerat värde och målvärde är tal mellan 0 och 1. fel 2 1,5 1 0,5 0-1,25 0 1,25 avstånd

21 Felfunktion för logistisk regression 3 3 2,25 2,25 fel 1,5 fel 1,5 0,75 0, ,25 0,5 0, ,25 0,5 0,75 1 h(x) h(x) y = 1 y = 0

22 Uppdateringsregeln för gradientsökning Vi får exakt samma uppdateringsregel för gradientsökning! (Trots att vi ändrat både modellen och felfunktionen!)

23 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens gradient i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av gradienten. Multiplicera med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.

24 Varianter på gradientsökning Minibatch gradient descent Uppdatera baserat på mindre delar av träningsdatan. Kan öka hastigheten med vilken inlärningsprocessen konvergerar. Stochastic gradient descent Kasta omkull träningsdatan slumpmässigt efter varje iteration. Kan förhindra att inlärningsprocessen fastnar i lokala optima.

25 Olika felfunktioner 0/1-fel (L0) L 0 (p, y) = 0 om p = y, annars 1 Absolut avstånd (L1) L 1 (p, y) = p y Kvadrerat avstånd (L2) L 2 (p, y) = (p y) 2 Felfunktionen för logistisk regression

26 Artificiella neurala nätverk

27 Generisk neuronmodell x 0 θ 0 Σ f h(x) x n θ n 1. Beräkna den viktade summan av alla in-signaler: z = θ x 2. Beräkna ut-signalen med aktiveringsfunktionen: h(x) = f(z)

28 Linjär neuron aktiveringsfunktion: identitetsfunktionen 3 2,25 1,5 0,

29 Perceptron aktiveringsfunktion: tröskelfunktionen 1 0,75 0,5 0,

30 Rectified Linear Unit aktiveringsfunktion: tröskelfunktionen 6 4,5 3 1, ,5-3 -1,5 0 1,5 3 4,5 6

31 Sigmoid-neuron aktiveringsfunktion: den logistiska funktionen 1 0,75 0,5 0, ,5-3 -1,5 0 1,5 3 4,5 6

32 Tanh-neuron aktiveringsfunktion: tangens hyperbolicus 1 0,5 0-0, ,5-3 -1,5 0 1,5 3 4,5 6

33 Neuronnät Ett neuronnät kopplar ihop flera neuroner till en större struktur. Precis som en enskild neuron kan ett neuronnät ses som en funktion som mappar indata till utdata. Det finns många olika arkitekturer för neuronnät som skiljer sig med avseende på vilka funktioner de kan modellera. Men också med avseende på hur svårt det är att träna dem.

34 Feedforward-nät in-lager dolt lager ut-lager

35 Feedforward-nät Ett feedforward-nät (FF-nät) består av flera lager av neuroner: ett in-lager, ett ut-lager, och ett eller flera dolda lager. Kallas djupa om det finns fler än ett dolt lager. Informationen flyter i ett enda svep från in-lagret genom alla dolda lager till ut-lagret. FF-nät är fullt anslutna: Neuronerna i varje lager skickar sina utdata till alla neuroner i nästa lagret.

36 Exempel: Sifferigenkänning Vi vill bygga ett feedforward-nät som tar in en bild på en handskriven siffra och predicerar vilken siffra det rör sig om. Vilken typ av inlärningsproblem är detta?

37 FF-nät för sifferigenkänning en neuron för varje pixel en neuron för varje siffra

38 Hur man använder nätet Varje bild översätts till en vektor x med komponenter där komponent x i är gråvärdet för pixel i i bilden. Gråvärdet är ett flyttal mellan 0 (svart) och 1 (vitt). För att presentera nätet med en bild aktiverar vi varje neuron i inlagret med respektive värde ur särdragsvektorn. Då kommer nätet aktivera varje neuron i ut-lagret i någon grad. Den siffra vars ut-neuron får högst aktivering vinner.

39 Varför behöver vi dolda neuroner? Neuronnät utan dolda neuroner kan endast modellera enkla sammanhang mellan indata och utdata. Ett sätt att göra neuronnät kraftfullare är att lägga till lager med extra särdrag; men att hitta bra särdrag är en konst. Nya särdrag måste skapas för varje specifik tillämpning. Neuronnät med dolda neuroner kan lära sig själv vilka särdrag som kan vara användbara.

40 Vad är det nätet lär sig? Källa: Kylin-Xu

41 Djupa nät hittar olika typer av särdrag Källa: NVIDIA

42 Rekursiva nät En neuron kan skicka utdata till sig själv, kanske via omvägar.

43 Hur tränar man nätet? En stor fördel med sigmoid-neuroner är att vi kan använda gradientsökning för att träna upp dem. Detta eftersom den logistiska funktionen är deriverbar. Detta gäller även om vi har långa kedjor av sigmoid-neuroner som är kopplade till varandra, som i ett FF-nät. kedjeregeln för derivator Standardalgoritmen för att räkna ut alla gradienter på ett effektivt sätt heter backpropagation-algoritmen.

44 Backpropagation Presentera nätet med ett träningsexempel och låta det predicera den siffra som bilden föreställer. Hur ska vi förändra vikterna på kopplingarna mellan neuronerna för att vandra ner i felets dal? vikterna = θ Idee: Räkna ut gradienterna för vikterna i det yttersta lagret. Använd sedan resultatet för nästa lager, och så vidare. backwards

45 Backpropagation (skiss)

46 Backpropagation (skiss)

47 Att träna sifferigenkänningsnätet För att träna nätet använder vi MNIST-databasen, som består av handskrivna siffror tillsammans med ett facit för varje bild. Varje facitsiffra översätts till en vektor y med 10 komponenter där komponent y i är 1 om siffran är lika med i och 0 annars. Exempel: För siffran 3 är y 3 = 1, alla andra noll För att träna nätet med en facitsiffra sätter vi målvärdet för varje neuron i ut-lagret till respektive värde ur särdragsvektorn.

48 Maskininlärning Introduktion till maskininlärning Linjär regression med en variabel Linjär regression med flera variabler Perceptroninlärning Logistisk regression Artificiella neurala nätverk

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 3 Marco Kuhlmann Institutionen för datavetenskap Modell med vektornotation parametervektor särdragsvektor Perceptron kombinerar linjär regression med

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 2 Marco Kuhlmann Institutionen för datavetenskap Förra gången: Gradientsökning tangentens lutning i punkt θ steglängdsfaktor Översikt Introduktion

Läs mer

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 2 Marco Kuhlmann Förra gången: Linjär regression Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna

Läs mer

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap ARTIFICIELLA NEURALA NÄT MARCO KUHLMANN Institutionen för datavetenskap Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full

Läs mer

729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 1 Marco Kuhlmann Introduktion Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå naturligt språk kontrollera maskiner,

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 1 Marco Kuhlmann Institutionen för datavetenskap Introduktion Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät Artificiella Neuronnät 1 Karaktäristiska egenskaper Användningsområden Klassiska exempel Biologisk bakgrund 2 Begränsningar Träning av enlagersnät 3 Möjliga avbildningar Backprop algoritmen Praktiska problem

Läs mer

Artificiella Neuronnät

Artificiella Neuronnät Artificiella Neuronnät 2 3 4 2 (ANN) Inspirerade av hur nervsystemet fungerar Parallell bearbetning Vi begränsar oss här till en typ av ANN: Framåtkopplade nät med lagerstruktur 3 4 Fungerar i princip

Läs mer

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA 729G43 Artificiell intelligens Maskininlärning Arne Jönsson HCS/IDA Maskininlärning Introduktion Beslutsträdsinlärning Hypotesinlärning Linjär regression Vektorer Perceptroner Artificiella Neurala Nät

Läs mer

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit.

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit. 2D1432 Artificiella Neuronnät och andra lärande system Lösningsförslag till Tentamen 2003-03-06 Inga hjälpmedel. Uppgift 1 Vilka av följande påståenden är sanna? Korrigera de som är fel. 1. Potentialen

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University Neurala nätverk och språk Henli807!1 Neurala nätverk och språkigenkänning Henrik Linnarsson Linköping University Neurala nätverk och språk Henli807!2 RNN, LSTM och språkigenkänning Inledning Idag är språkigenkänning

Läs mer

Artificiell Intelligens Lektion 7

Artificiell Intelligens Lektion 7 Laboration 6 Artificiell Intelligens Lektion 7 Neurala nätverk (Lab 6) Probabilistiska resonemang Vad? Mönsterigenkänning Lära ett neuralt nätverk att känna igen siffror Varför? Få ökad förståelse för

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Att programmera en Beethoven

Att programmera en Beethoven Linköpings universitet Att programmera en Beethoven Fördjupning inom Neurala nätverk och LSTM 2018-01-03 Innehåll 1 Inledning- Musik och artificiell intelligens... 2 1.1 Historia... 2 1.2 Bakgrund AIVA...

Läs mer

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs...

Fråga 5 (1 poäng) För att definiera ett sökproblem krävs... OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Vad behövs för att skapa en tillståndsrymd?

Vad behövs för att skapa en tillståndsrymd? OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder.

Asymptotisk analys innebär att... man försöker uppskatta vad som händer för stora indatamängder. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad för att man skall

Läs mer

de var svåra att implementera och var väldigt ineffektiva.

de var svåra att implementera och var väldigt ineffektiva. OBS! För flervalsfrågorna gäller att flera alternativ eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad. Totalt kan

Läs mer

Linköpings universitet

Linköpings universitet Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning 4 Informationsbearbetningsmodeller Vad är kognitionsvetenskap? Kort bakgrund/historik Representation och bearbetning av information Vetenskapliga

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Niklas Blomstrand Linköpings Universitet Inledning Att veta vilken ordklass ett ord tillhör är en viktig del i bearbetning

Läs mer

HKGBB0, Artificiell intelligens

HKGBB0, Artificiell intelligens HKGBB0, Artificiell intelligens Kortfattade lösningsförslag till tentan 3 november 2005 Arne Jönsson 1. Vad karaktäriserar dagens AI-forskning jämfört med den AI-forskning som bedrevs perioden 1960-1985.

Läs mer

Optimering av hyperparametrar till artificiella neurala nätverk med genetiska algoritmer.

Optimering av hyperparametrar till artificiella neurala nätverk med genetiska algoritmer. Optimering av hyperparametrar till artificiella neurala nätverk med genetiska algoritmer. Simon Stensson Juni 6, 2016 Abstract This master thesis explores the feasibility of using genetic algorithms in

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

ANN fk. Örjan Ekeberg. Framåtkopplade Nät. återkopplade nät. Olika arkitekturer. BackPropagation through Time. Kalman-Filter tekniker

ANN fk. Örjan Ekeberg. Framåtkopplade Nät. återkopplade nät. Olika arkitekturer. BackPropagation through Time. Kalman-Filter tekniker Hantering av Tid Återkopplade Återkopplade Återkopplade t Återkopplade Återkopplade Temporala signaler är svåra Gör om temporal signal till spatial t 1 t 2 t 3 t 4 Återkopplade t Enklaste formen Neuronal

Läs mer

Ett Neuralt Nätverk Tittar På Kläder

Ett Neuralt Nätverk Tittar På Kläder [Skriv här] [Skriv här] [Skriv här] 2019 Ett Neuralt Nätverk Tittar På Kläder ETT KONVOLUTIONELLT NEURALT NÄTVERK KATEGORISERAR FASHION MNIST DATASETET WILHELM BRODIN, WILBR797 1.1 Inledning En människas

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning Marco Kuhlmann Institutionen för datavetenskap Ordklasstaggning Tagga varje ord i en sekvens av ord (oftast en mening) med dess korrekta

Läs mer

1(15) Bilaga 1. Av Projekt Neuronnätverk, ABB Industrigymnasium, Västerås Vt-05

1(15) Bilaga 1. Av Projekt Neuronnätverk, ABB Industrigymnasium, Västerås Vt-05 1(15) Bilaga 1 2(15) Neuronnätslaboration Räknare Denna laboration riktar sig till gymnasieelever som går en teknisk utbildning och som helst har läst digitalteknik samt någon form av styrteknik eller

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Word2Vec. Högkvalitativa vektorrepresentationer av ord tränat på stora mängder data. Innehåll LINKÖPINGS UNIVERSITET. 1. Inledning...

Word2Vec. Högkvalitativa vektorrepresentationer av ord tränat på stora mängder data. Innehåll LINKÖPINGS UNIVERSITET. 1. Inledning... LINKÖPINGS UNIVERSITET Innehåll 1. Inledning... 2 2. Terminologi... 3 3. Allmänt om Word2Vec... 3 4. Continous Skip-gram model... 4 Word2Vec Högkvalitativa vektorrepresentationer av ord tränat på stora

Läs mer

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN LARS ULVELAD HOPFIELDÄTVERK FÖR IGEKÄIG AV DEGRADERADE BILDER OCH HADSKRIVA TECKE E PROJEKTRAPPORT FÖR PROJEKTKURSE I BILDAALYS HT 02 Teori för Hopfieldnätverk Hopfieldmodellen är en typ av neuronnät,

Läs mer

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Neuronnätsbaserad agent

Neuronnätsbaserad agent 2001-10-05 Torbjörn Bäckmark Sammanfattning Jag har undersökt möjligheten att utveckla en agent som använder neurala nätverk för övervakning av börssystem. Jag har tittat på sambandet mellan köp- och säljvolymer

Läs mer

Härledning av Black-Littermans formel mha allmänna linjära modellen

Härledning av Black-Littermans formel mha allmänna linjära modellen Härledning av Black-Littermans formel mha allmänna linjära modellen Ett sätt att få fram Black-Littermans formel är att formulera problemet att hitta lämpliga justerade avkastningar som ett skattningsproblem

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

Kandidatuppsats. Jämförelse mellan neurala nätverk baserad AI och state-of-the-art AI i racing spel. Simon Karlsson, Christopher Jensen

Kandidatuppsats. Jämförelse mellan neurala nätverk baserad AI och state-of-the-art AI i racing spel. Simon Karlsson, Christopher Jensen Kandidatuppsats Jämförelse mellan neurala nätverk baserad AI och state-of-the-art AI i racing spel Simon Karlsson, Christopher Jensen Sammanfattning Denna rapport jämför prestandan mellan state-of-the-art

Läs mer

Kognitiv Modellering

Kognitiv Modellering Kognitiv Modellering Mårten Szymanowski 20 januari 2004 Innehåll 1 Kognitiv Modellering 2 1.1 Varför?................................ 2 2 Grundläggande psykologiska fenomen 3 2.1 Stimulusgeneralisering........................

Läs mer

Modeller och simulering av språkprocessning

Modeller och simulering av språkprocessning Modeller och simulering av språkprocessning Seriell processmodell + parallell processmodell Parallell modell med 2-vägsförbindelser Artificiellt neuralt nätverk (ANN) Interaktiv aktiverings-modell (IAM)

Läs mer

Träning av Artificiella Neuronnät med Motexempel Utvalda av Expertpanel (HS-IDA-EA )

Träning av Artificiella Neuronnät med Motexempel Utvalda av Expertpanel (HS-IDA-EA ) Träning av Artificiella Neuronnät med Motexempel Utvalda av Expertpanel (HS-IDA-EA-01-109) Christer Larsson (a98chrla@student.his.se) Institutionen för datavetenskap Högskolan i Skövde, Box 408 S-54128

Läs mer

Liswi948, Lisa Widerberg, liswi948 Fördjupningsarbete Linköpings Universitet 729G43, Artificiell Intelligens

Liswi948, Lisa Widerberg, liswi948 Fördjupningsarbete Linköpings Universitet 729G43, Artificiell Intelligens Lisa Widerberg, liswi948 Fördjupningsarbete Linköpings Universitet 729G43, Artificiell Intelligens 2018-01-11 Innehållsförteckning 1 Inledning 1 1.1 Bakgrund 1 1.2 Bilder som tredimensionella matriser

Läs mer

Matcha rätt hjärta till rätt patient med AI. Dennis Medved

Matcha rätt hjärta till rätt patient med AI. Dennis Medved Matcha rätt hjärta till rätt patient med AI Dennis Medved Översikt Introduktion IHTSA LuDeLTA Sammanfattning Framtida arbete Introduktion Hjärttransplantation Livräddande operation för patienter med hjärtsvikt

Läs mer

Vektorer, matriser, nätverk - några elementa

Vektorer, matriser, nätverk - några elementa Vektorer, matriser, nätverk - några elementa Innehåll: Vektorer Radvektorer och kolumnvektorer Operationer med vektorer Input- och outputvektorer i neurala nätverk Utvikning om kompetitiva nät Matriser

Läs mer

NEURAL MASKINÖVERSÄTTNING

NEURAL MASKINÖVERSÄTTNING Linköpings universitet 729G43 NEURAL MASKINÖVERSÄTTNING Moa Wallin Inledning Manuell översättning är en mycket tidskrävande process som kräver stor kunskap och bred kompetens och behovet av översättning

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift

Läs mer

Bestämning av tryckfallsfunktioner för T-stycke i T-system med mätdata

Bestämning av tryckfallsfunktioner för T-stycke i T-system med mätdata Bestämning av tryckfallsfunktioner för T-stycke i T-system med mätdata Uppdrag för Lindab Ventilation AB Lars Jensen Avdelningen för installationsteknik Institutionen för bygg- och miljöteknologi Lunds

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Algoritmer och maskininlärning

Algoritmer och maskininlärning Algoritmer och maskininlärning Olof Mogren Chalmers tekniska högskola 2016 De här företagen vill Tjäna pengar Hitta mönster i stora datamängder Göra förutsägelser Klassificera data Förstå människan Maskininlärning

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

Självlärande Othello-spelare

Självlärande Othello-spelare Självlärande Othello-spelare Kan en dator lära sig att spela Othello? KLAS BJÖRKQVIST och JOHAN WESTER Examensarbete Stockholm, Sverige 2010 Självlärande Othello-spelare Kan en dator lära sig att spela

Läs mer

Objective:: Linjärt beroende och oberoende version 1.0

Objective:: Linjärt beroende och oberoende version 1.0 DEFINITIONEN AV LINJÄRT BEROENDE MED EXEMPEL Objective:: Linjärt beroende och oberoende version. Definitionen av linjärt beroende med exempel Vi börjar med ett inledande exempel för att motivera definitionen

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016 Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16

Läs mer

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013

Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013 Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process

Läs mer

Digitalt lärande och programmering i klassrummet. Introduktionsworkshop - Interaktiva berättelser med Twine

Digitalt lärande och programmering i klassrummet. Introduktionsworkshop - Interaktiva berättelser med Twine Digitalt lärande och programmering i klassrummet Introduktionsworkshop - Interaktiva berättelser med Twine Introduktion Twine är en spelmotor gjord för textbaserade spel och interaktiva berättelser. I

Läs mer

Predicted Future - att förutsäga aktiekurser med artificiella neuronnät

Predicted Future - att förutsäga aktiekurser med artificiella neuronnät Predicted Future - att förutsäga aktiekurser med artificiella neuronnät Kandidatarbete inom Data- och informationsteknik LINUS FÄRNSTRAND OSCAR SÖDERLUND NIKLAS LÖNNERFORS EMIL BERNERSKOG TOBIAS AXELL

Läs mer

Vinjetter TDDC91 Datastrukturer och algoritmer

Vinjetter TDDC91 Datastrukturer och algoritmer Vinjetter TDDC91 Datastrukturer och algoritmer 17 augusti 2015 2 Scenario 1 Man har inom Posten Logistik AB skrivit programvara för sortering av kundinformation och vill standardisera användningen av sorteringsalgoritmer.

Läs mer

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)

1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c) 1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren

Läs mer

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén,

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, Sub-symbolisk kognition & Konnektionism Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, mats.andren@liu.se 1 Konnektionism Neutrala nät baseras på en (förenklad) modell av hur hjärnan fungerar.

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska

Läs mer

DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR

DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR Mattias Persson (Ph.D.) 1 Oktober 2018 RISE Research Institutes of Sweden Measurement technology Agenda Bakgrund Målet med projektet

Läs mer

Strukturoptimering baserad på metamodeller

Strukturoptimering baserad på metamodeller Solid Mechanics Strukturoptimering baserad på metamodeller Larsgunnar Nilsson CEO Engineering Research Nordic AB Linköping larsgunnar.nilsson@erab.se Professor Div Solid Mechanics Linköping University

Läs mer

Regression med Genetiska Algoritmer

Regression med Genetiska Algoritmer Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet

Läs mer

Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen

Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen Hemtentamen består av 5 uppgifter. Totalpoängen är 25 och varje uppgift ger 5 poäng. För godkänt krävs minst 10 poäng. Det är givetvis tillåtet

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

!"# $ $ $ % & ' $ $ ( ) *( + $', - &! # %. ( % / & ) 0

!# $ $ $ % & ' $ $ ( ) *( + $', - &! # %. ( % / & ) 0 !"#$ $ $ % & '$$( )*(+$',- &! # %.( %/& )0 = + = ϕ θ + #" $! = $ $ (! ) = % "! "!! = R( )! =! + ) ( &&) ( &&* ) [ ] ( ) $ ( ) Π + ( &-&) ","& Π 2 ( ) (& ' = '." % % Π % % / = = % % % = 01(&*&* = 7" "6""

Läs mer

Optimering och simulering: Hur fungerar det och vad är skillnaden?

Optimering och simulering: Hur fungerar det och vad är skillnaden? Optimering och simulering: Hur fungerar det och vad är skillnaden? Anders Peterson, Linköpings universitet Andreas Tapani, VTI med inspel från Sara Gestrelius, RIS-SIS n titt i KAJTs verktygslåda Agenda

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

SELF- ORGANIZING MAPS

SELF- ORGANIZING MAPS LINKÖPINGS UNIVERSITET Kognitionsvetenskapliga Programmet Examinator: Arne Jönsson SELF- ORGANIZING MAPS - Ett fördjupningsarbete inom Artificiell Intelligens Fack 52 katwa676@student.liu.se Sammanfattning

Läs mer

Optimering med bivillkor

Optimering med bivillkor Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C

Läs mer

Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1

Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1 Datakompression fö 2 p.1 Krafts olikhet En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om N 2 l i 1 Bevis: Antag att vi har en trädkod. Låt l max =max{l

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys 1 Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Neuronnätsbaserad identifiering av processparametrar vid tillverkning av pappersmassa

Neuronnätsbaserad identifiering av processparametrar vid tillverkning av pappersmassa Neuronnätsbaserad identifiering av processparametrar vid tillverkning av pappersmassa Examensarbete utfört vid Bildbehandling Tekniska Högskolan i Linköping THORD ANDERSSON MIKAEL KARLSSON Reg nr: LiTH-ISY-EX-1709

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.)

av envariabelfunktionen g(t) och flervariabelfunktionen t = h(x, y) = x 2 + e y.) Lösningsskisser till TATA69 Flervariabelanalys 16-1- 1 Stationära punkter ges av f (4x 3 + 4x, 3y + 6z, z + 6y (,,, dvs (x, y, z (,, eller (x, y, z (, 6, 18 Ur andraderivatorna fås de kvadratiska formerna

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

kl Tentaupplägg

kl Tentaupplägg Tentaupplägg TIPS 1: Läs igenom ALLA uppgifterna. Välj den du känner är lättast först. Det kan gärna ta 10-20 minuter. Försök skriva saker som kan vara problem i uppgifterna. Är det något du absolut kommer

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012

Stokastiska Processer och ARIMA. Patrik Zetterberg. 19 december 2012 Föreläsning 7 Stokastiska Processer och ARIMA Patrik Zetterberg 19 december 2012 1 / 22 Stokastiska processer Stokastiska processer är ett samlingsnamn för Sannolikhetsmodeller för olika tidsförlopp. Stokastisk=slumpmässig

Läs mer

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg

För studenter i Flervariabelanalys Flervariabelanalys MA012B ATM-Matematik Mikael Forsberg ATM-Matematik Mikael Forsberg 74-4 För studenter i Flervariabelanalys Flervariabelanalys MAB 8 Skrivtid: 9:-4:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler bifogas

Läs mer

Uppgift 1 ( Betyg 3 uppgift )

Uppgift 1 ( Betyg 3 uppgift ) 2008-03-25.kl.14-19 Uppgift 1 ( Betyg 3 uppgift ) Du skall skriva ett program (en funktion), my_plot_figure, som läser in ett antal sekvenser av koordinater från tangentbordet och ritar ut dessa till en

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

Tänk på följande saker när du skriver tentan:

Tänk på följande saker när du skriver tentan: Ämne: AI med inriktning mot kognition och design Kurskod: KOGB05 / TDBB21 Datum: 2005-04-01 Antal uppgifter: 12 Skrivtid: 09:00 15:00 Max poäng: 54 Betygsgränser: 27 x

Läs mer