Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1

Storlek: px
Starta visningen från sidan:

Download "Krafts olikhet. En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om. 2 l i. 1 i=1"

Transkript

1 Datakompression fö 2 p.1 Krafts olikhet En momentant avkodbar kod (prefixkod) med kodordslängderna l 1,...,l N existerar om och endast om N 2 l i 1 Bevis: Antag att vi har en trädkod. Låt l max =max{l 1,...,l N }. Utvidga trädet så att alla grenar har djupet l max. Ett kodord på djupet l i har 2 l max l i löv under sig på djupet l max. Mängderna av löv är disjunkta. Det totala antalet löv under kodord är mindre än eller lika med 2 l max. Vi har alltså N 2 l max l i 2 l max N 2 l i 1

2 Datakompression fö 2 p.2 Krafts olikhet, forts. Omvänt kan vi, givet kodordslängder l 1,...,l N som uppfyller Krafts olikhet, alltid konstruera en trädkod. Börja med ett fullständigt träd där alla grenar har djup l max. Antag, utan att förlora i generalitet, att kodordslängderna är sorterade i stigande ordning. Välj någon ledig nod på djup l 1 för det första kodordet och ta bort alla dess avkomlingar. Gör likadant för l 2 och kodord 2, o.s.v. tills vi har placerat ut alla kodorden.

3 Datakompression fö 2 p.3 Krafts olikhet, forts. Uppenbarligen kan vi placera ut ett kodord på djup l 1. För att algoritmen ska vara möjligt måste det i steg i finnas lediga löv på maxdjupet l max. Antalet kvarvarande löv är 2 l max i 1 j=1 2 l max l j =2 l max (1 i 1 j=1 2 l j ) > 2 l max (1 N 2 l j ) 0 j=1 där vi utnyttjat att Krafts olikhet är uppfylld. Det finns alltså lediga löv i varje steg, alltså kan vi konstruera en prefixkod med de givna kodordslängderna.

4 Datakompression fö 2 p.4 Kraft-McMillans olikhet Krafts olikhet kan visas gälla för alla unikt avkodbara koder, inte bara prefixkoder. Den benämns då Kraft-McMillans olikhet: En unikt avkodbar kod med kodordslängderna l 1,...,l N existerar om och endast om N 2 l i 1 Betrakta ( N 2 l i ) n, där n är ett godtyckligt heltal. N ( 2 l i ) n = N N i 1 =1 i n =1 2 (l i l i n )

5 Datakompression fö 2 p.5 Kraft-McMillans olikhet, forts. l i l in är längden av n stycken kodord från koden. Det minsta värde denna exponent kan ta är n, som skulle hända om alla kodord hade längden 1. Det största värdet exponenten kan ta är nl där l är den maximala kodordslängden. Summationen kan då skrivas om som N ( 2 l i ) n = nl k=n A k 2 k där A k är antalet kombinationer av n kodord som har den kombinerade längden k. Det finns maximalt 2 k binära sekvenser av längden k. Eftersom koden är unikt avkodbar, måste det gälla att för att vi ska kunna avkoda. A k 2 k

6 Datakompression fö 2 p.6 Kraft-McMillans olikhet, forts. Vi har alltså Vilket ger oss ( N 2 l i ) n nl k=n 2 k 2 k = nl n +1 N 2 l i (n(l 1) + 1) 1/n Detta gäller för alla n, inklusive när vi låter n gå mot oändligheten, vilket alltså slutligen ger oss N 2 l i 1 Omvändningen till olikheten har vi redan, genom att vi kan konstruera en prefixkod med givna kodordslängder om de uppfyller Krafts olikhet.

7 Datakompression fö 2 p.7 Godhetsmått Det godhetsmått vi har för att mäta hur bra en kod är är medeldatatakten R (oftast bara kallad datatakten eller takten). R = E{# bitar i kodordet} E{# symboler per kodord} [bitar/symbol] Eftersom det är datakomprimering vi sysslar med, så vill vi att våra koder ska ha så låg takt som möjligt. Om vi till att börja med antar att vi har en minnesfri källa X j och kodar en symbol i taget med en prefixkod, så ges R av R = l = p i l i [bitar/symbol] där L är storleken på alfabetet och p i sannolikheten för symbol i. l är kodens kodordsmedellängd [bitar/kodord].

8 Datakompression fö 2 p.8 Teoretisk nedre gräns Givet att vi har en minnesfri källa X j och vi kodar en symbol i taget med en prefixkod. Då begränsas kodordsmedellängden l (dvs datatakten) nedåt av L l p i log 2 p i = H(X j ) H(X j ) kallas för källans entropi.

9 Datakompression fö 2 p.9 Teoretisk nedre gräns, forts. Betrakta skillnaden mellan entropin och kodordsmedellängden H(X j ) l = = p i log p i p i l i = p i (log 1 log 2 l i )= p i 1 ln 2 1 (1 1) = 0 ln 2 p i (log 1 l i ) p i p i log 2 l i p i ( 2 l i p i 1) = 1 ln 2 ( L där vi utnyttjat ln x x 1 samt Krafts olikhet p i 2 l i p i )

10 Datakompression fö 2 p.10 Shannons informationsmått Vi vill ha ett mått I på information som är kopplat till sannolikheterna för händelser. Några önskvärda egenskaper: Informationen I(A) för en händelse A ska bara bero på sannolikheten P (A) för händelsen. Ju lägre sannolikhet för en händelse, desto större information. Om sannolikheten för en händelse är 1, så ska informationen vara 0. Informationen ska vara en kontinuerlig funktion av sannolikheten. Om två oberoende händelser A och B inträffar så ska informationen vara summan av informationerna I(A)+I(B) Detta leder till informationen ska vara ett logaritmiskt mått.

11 Datakompression fö 2 p.11 Informationsteori Informationen I(A; B) som erhålls om en händelse A, då händelse B inträffar definieras som I(A; B) = log b P (A B) P (A) där vi antar att P (A) 0och P (B) 0. I fortsättningen antar vi, om inget annat anges, att b =2. Enheten för information kallas då bit. (Omb = e kallas enheten nat.) I(A; B) är symmetrisk i A och B: I(A; B) =log P (A B) P (A) =log P (AB) P (A)P (B) = =log P (B A) P (B) = I(B; A) Därför kallas informationen även för ömsesidig information.

12 Datakompression fö 2 p.12 Informationsteori, forts. Vidare gäller I(A; B) log P (A) med likhet till vänster om P (A B) =0och likhet till höger om P (A B) =1. I(A; B) =0innebär att händelserna A och B är oberoende. log P (A) är den informationsmängd som behövs för att vi ska kunna slå fast att händelsen A inträffat. I(A; A) =log P (A A) P (A) = log P (A) Vi definierar självinformationen hos händelsen A som I(A) = log P (A)

13 Datakompression fö 2 p.13 Informationsteori, forts. Tillämpar vi definitionerna på händelserna {X = x} och {Y = y} får vi I(X = x) = log p X (x) och I(X = x; Y = y) =log p X Y (x y) p X (x) Dessa är reellvärda funktioner av den stokastiska variabeln X resp. den stokastiska variabeln (X, Y ), så deras medelvärden är väldefinierade. H(X) = E{I(X = x)} = p X (x i )logp X (x i ) kallas för entropin (eller osäkerheten) för den stokastiska variabeln X.

14 Datakompression fö 2 p.14 Informationsteori, forts. I(X; Y ) = E{I(X = x; Y = y)} = = M j=1 p XY (x i,y j )log p X Y (x i y j ) p X (x i ) kallas för (medelvärdet av) den ömsesidiga informationen mellan de stokastiska variablerna X och Y.

15 Datakompression fö 2 p.15 Informationsteori, forts. Om (X, Y ) betraktas som en stokastisk variabel får vi H(X, Y )= M p XY (x i,y j )logp XY (x i,y j ) j=1 Då följer att medelvärdet av den ömsesidiga informationen kan skrivas som I(X; Y ) = E{log p X Y } = E{log p XY } p X p X p Y = E{log p XY log p X log p Y } = E{log p XY } E{log p X } E{log p Y } = H(X)+H(Y ) H(X, Y )

16 Datakompression fö 2 p.16 Informationsteori, forts. Användbar olikhet ( IT-olikheten ) log r (r 1) log e med likhet om och endast om r =1. Kan också skrivas ln r r 1 Om X antar värden i {x 1,x 2,...,x L } så gäller att 0 H(X) log L med likhet till vänster om och endast om det finns något i sådant att p X (x i )=1och med likhet till höger om och endast om p X (x i )=1/L för alla i =1,...,L.

17 Datakompression fö 2 p.17 Informationsteori, forts. Bevis vänster olikhet: p X (x i ) log p X (x i ) =0, p X (x i )=0 > 0, 0 <p X (x i ) < 1 =0, p X (x i )=1 Således gäller att H(X) 0 med likhet om och endast om p X (x i ) är antingen 0 eller 1 för varje i, men då gäller att p X (x i )=1för exakt ett i.

18 Datakompression fö 2 p.18 Informationsteori, forts. Bevis höger olikhet: H(X) log L = = = ( p X (x i )logp X (x i ) log L p X (x i )log 1 L p X (x i ) 1 p X (x i )( L p X (x i ) L 1 L = (1 1) log e =0 p X (x i )) log e 1) log e med likhet omm p X (x i )= 1 L för alla i =1,...,L

19 Datakompression fö 2 p.19 Informationsteori, forts. Den betingade entropin hos X givet händelsen Y = y j är H(X Y = y j ) = p X Y (x i y j )logp X Y (x i y j ) Det gäller att 0 H(X Y = y j ) log L Den betingade entropin för X givet Y definieras som H(X Y ) = E{ log px Y } = = M p XY (x i,y j )logp X Y (x i y j ) j=1 Det gäller att 0 H(X Y ) log L

20 Datakompression fö 2 p.20 Informationsteori, forts. Vi har även H(X Y )= M p XY (x i,y j )logp X Y (x i y j ) j=1 = M p Y (y j )p X Y (x i y j )logp X Y (x i y j ) j=1 = M p Y (y j ) j=1 p X Y (x i y j )logp X Y (x i y j ) = M p Y (y j )H(X Y = y j ) j=1

21 Datakompression fö 2 p.21 Informationsteori, forts. Vi har p X1 X 2...X N = p X1 p X2 X 1 p XN X 1...X N 1 vilket leder till den s.k. kedjeregeln H(X 1 X 2...X N )= H(X 1 )+H(X 2 X 1 )+ + H(X N X 1...X N 1 ) Vi har även att I(X; Y ) = H(X) H(X Y )= = H(Y ) H(Y X)

22 Datakompression fö 2 p.22 Informationsteori, forts. Fler intressanta olikheter H(X Y ) H(X) med likhet om och endast om X och Y är oberoende. I(X; Y ) 0 med likhet om och endast om X och Y är oberoende. Om f(x) är en funktion på X, så gäller H(f(X)) H(X) H(f(X) X) =0 H(X, f(x)) = H(X)

23 Datakompression fö 2 p.23 Entropi för källor Entropin, eller entropitakten (entropy rate) för en stationär stokastisk källa X n definieras som lim n lim n 1 n H(X 1...X n )= 1 n (H(X 1)+H(X 2 X 1 )+...+ H(X n X 1...X n 1 )) = lim H(X n X 1...X n 1 ) n För en minnesfri källa är entropin lika med första ordningens entropi H(X n ).

24 Datakompression fö 2 p.24 Entropi för en markovkälla Entropin för en markovkälla X n av ordning k ges av men kan också räknas ut som H(X n X n 1...X n k ) L k j=1 w j H(S n+1 S n = s j ) dvs ett viktat medelvärde av entropin för de utgående sannolikheterna från varje tillstånd.

Källkodning. Egenskaper hos koder. Några exempel

Källkodning. Egenskaper hos koder. Några exempel Källkodning Källkodning innebär att vi avbildar sekvenser av symboler ur en källas alfabet på binära sekvenser (kallade kodord). Mängden av alla kodord kalls för en kod. (Man kan förstås tänka sig att

Läs mer

FLAC (Free Lossless Audio Coding)

FLAC (Free Lossless Audio Coding) Datakompression fö 9 p.1 FLAC (Free Lossless Audio Coding) Distorsionsfri kodning av ljud Ljudsignalen delas in i block (typiskt några tusen sampel). Koda summa/skillnad av de två stereokanalerna om det

Läs mer

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts.

Optimala koder. Övre gräns för optimala koder. Gränser. Övre gräns för optimala koder, forts. Datakompression fö 3 p.3 Datakompression fö 3 p.4 Optimala koder Övre gräns för optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning)

Läs mer

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or.

Optimala koder. Det existerar förstås flera koder som har samma kodordsmedellängd. Enklaste fallet är att bara byta 0:or mot 1:or. Datakompression fö 3 p.1 Optimala koder En prefixkod kallas optimal om det inte existerar någon annan kod (för samma alfabet och sannolikhetsfördelning) som har lägre kodordsmedellängd. Det existerar förstås

Läs mer

TSBK04 Datakompression. Övningsuppgifter

TSBK04 Datakompression. Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

TSBK04 Datakompression Övningsuppgifter

TSBK04 Datakompression Övningsuppgifter TSBK04 Datakompression Övningsuppgifter Innehåll 1 Informationsteoretiska begrepp........................ 1 2 Källkodning................................... 4 Copyright c 2004 Bildkodningsgruppen, Linköpings

Läs mer

Shannon-Fano-Elias-kodning

Shannon-Fano-Elias-kodning Datakompression fö 5 p.1 Shannon-Fano-Elias-kodning Antag att vi har en minnesfri källa X i som tar värden i {1, 2,...,L}. Antag att sannolikheterna för alla symboler är strikt positiva: p(i) > 0, i. Fördelningsfunktionen

Läs mer

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12

Aritmetisk kodning. F (0) = 0 Exempel: A = {1, 2, 3} k=1. Källkodning fö 5 p.1/12 Aritmetisk kodning Vi identifierar varje sekvens av källsymboler med ett tal i intervallet [0, 1). Vi gör det med hjälp av fördelningsfunktionen (cumulative distribution function) F. För enkelhets skull

Läs mer

Datakompression. Harald Nautsch ISY Bildkodning, Linköpings universitet.

Datakompression. Harald Nautsch ISY Bildkodning, Linköpings universitet. Datakompression fö 1 p.1 Datakompression Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk04/ ISY Bildkodning, Linköpings universitet Datakompression fö 1 p.2 Kursinnehåll Källmodellering:

Läs mer

Kursinnehåll. Datakompression. Föreläsningar, preliminärt program. Examination

Kursinnehåll. Datakompression. Föreläsningar, preliminärt program. Examination Datakompression fö 1 p.3 Datakompression fö 1 p.4 Kursinnehåll Datakompression Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk04/ ISY Bildkodning, Linköpings universitet Källmodellering:

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer. Khalid Sayood, Introduction to Data Compression TSBK35 fö 1 p.3 TSBK35 fö 1 p.4 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Bildkodning, Linköpings universitet Khalid Sayood,

Läs mer

TSBK35 Kompression av ljud och bild

TSBK35 Kompression av ljud och bild TSBK35 Kompression av ljud och bild Övningshäfte 0 februari 013 Innehåll I Problem 1 1 Informationsteori................................ 1 Källkodning................................... 3 3 Kvantisering...................................

Läs mer

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga.

Skurlängdskodning. aaaabbbbbbbccbbbbaaaa. Man beskriver alltså sekvensen med ett annat alfabet än det ursprungliga. Datakompression fö 4 p1 Skurlängdskodning Ibland har man källor som producerar långa delsekvenser av samma symbol Det kan då vara praktiskt att istället för att beskriva sekvensen som en följd av enstaka

Läs mer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer

Kurslitteratur. Kompression av ljud och bild. Föreläsningar, preliminärt program. Laborationer TSBK35 källkodning p.3/89 TSBK35 källkodning p.4/89 Kurslitteratur Kompression av ljud och bild Harald Nautsch harna@isy.liu.se http://www.icg.isy.liu.se/courses/tsbk35/ ISY Informationskodning, Linköpings

Läs mer

Kompression av ljud och bild

Kompression av ljud och bild Kompression av ljud och bild Harald Nautsch harna@isy.liu.se ISY Informationskodning, Linköpings universitet http://www.icg.isy.liu.se/courses/tsbk35/ Kurslitteratur Rekommenderad bok: Khalid Sayood, Introduction

Läs mer

Föreläsninsanteckningar till föreläsning 3: Entropi

Föreläsninsanteckningar till föreläsning 3: Entropi Föreläsninsanteckningar till föreläsning 3: Entropi Johan Håstad, transkriberat av Pehr Söderman 2006-01-20 1 Entropi Entropi är, inom kryptografin, ett mått på informationsinnehållet i en slumpvariabel.

Läs mer

Adaptiv aritmetisk kodning

Adaptiv aritmetisk kodning Datakompression fö 8 p.1 Adaptiv aritmetisk kodning Aritmetisk kodning är väldigt enkel att göra adaptiv, eftersom vi bara behöver göra en adaptiv sannolikhetsmodell, medan själva kodaren är fix. Till

Läs mer

Informationsteori. Repetition Kanalkapaciteten C. Repetition Källkodhastigheten R 2. Repetition Kanalkodhastigheten R 1. Huffmans algoritm: D-när kod

Informationsteori. Repetition Kanalkapaciteten C. Repetition Källkodhastigheten R 2. Repetition Kanalkodhastigheten R 1. Huffmans algoritm: D-när kod Informationsteori Repetition Kanalkapaciteten C Källkodare Kanalkodare X Kanal Mats Cedervall Mottagare vkodare Kanalavkodare Y Kanalkodningssatsen C =supi(x; Y ) p(x) Informationsteori, fl#7 1 Informationsteori,

Läs mer

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning)

Ordbokskodning. Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Datakompression fö 6 p.1 Ordbokskodning Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar en ordbok som innehåller 2 b olika sekvenser av symboler

Läs mer

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts.

Exempel, minnesfri binär källa. Ordbokskodning. Lempel-Zivkodning. Lempel-Zivkodning, forts. Datakompression fö 6 p.3 Datakompression fö 6 p.4 Ordbokskodning Exempel, minnesfri binär källa Enkel variant av kodning med variabelt antal insymboler och fixlängds kodord. (Jfr tunstallkodning) Man skapar

Läs mer

Detta ger oss att kanalkapaciteten för den ursprungliga kanalen är C = q 1 C 1 + q 2 C C =1 h ( ) 0.30.

Detta ger oss att kanalkapaciteten för den ursprungliga kanalen är C = q 1 C 1 + q 2 C C =1 h ( ) 0.30. Lösning på problem a) Kanalen är symmetrisk och vi gör nedanstående uppdelning av den. Vi får två starkt symmetriska kanaler vilkas kanalkapacitet ges av C och C 2. Kanalerna väljes med sannolikheterna

Läs mer

Träd och koder. Anders Björner KTH

Träd och koder. Anders Björner KTH 27 Träd och koder Anders Björner KTH 1. Inledning. Det är i flera sammanhang viktigt att representera information digitalt (d.v.s omvandla till sviter av nollor och ettor). Beroende på vilka villkor som

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Lab 3 Kodningsmetoder

Lab 3 Kodningsmetoder Lab 3. Kodningsmetoder 15 Lab 3 Kodningsmetoder Starta Matlab och ladda ner följande filer från kurswebben till er lab-katalog: lab3blocks.mdl okodat.mdl repetitionskod.mdl hammingkod.mdl planet.mat Denna

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Föreläsning 7. Felrättande koder

Föreläsning 7. Felrättande koder Föreläsning 7 Felrättande koder Antag att vi vill skicka ett meddelande som består av bokstäver a,b,c,d. Vi kan koda a,b,c,d. Antag att det finns en viss sannolikhet att en bit i ett meddelande som skickas

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010

TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 TAMS14/36 SANNOLIKHETSLÄRA GK Poissonprocessen (komplettering) Torkel Erhardsson 14 maj 2010 1 1 Stokastiska processer Definition 1.1 En stokastisk process är en familj {X(t);t T } (kan även skrivas {X

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Att beräkna t i l l v ä x t takter i Excel

Att beräkna t i l l v ä x t takter i Excel Att beräkna t i l l v ä x t takter i Excel Detta kapitel är en liten matematisk vägledning om att beräkna tillväxttakten i Excel. Här visas exempel på potenser och logaritmer och hur dessa funktioner beräknas

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 10 Anton Grensjö grensjo@csc.kth.se 9 november 2017 1 Idag En konstruktionsreduktion Fler bevis av NP-fullständighet 2 Teori Repetition Ett problem tillhör

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Aritmetik i digitala system Speciella egenskaper: Systemet

Läs mer

Burrows-Wheelers transform

Burrows-Wheelers transform Datakompression fö 7 p.1 Burrows-Wheelers transform Transformen själv ger ingen kompression, men gör det lättare att koda signalen med en enkel kodare. Antag att vi vill koda en sekvens av längd n. Skapa

Läs mer

Digital- och datorteknik

Digital- och datorteknik Digital- och datorteknik Föreläsning #7 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Speciella egenskaper: Systemet arbetar med kodord (s k

Läs mer

Kodning med distorsion

Kodning med distorsion Kodning med distorsion Vi har en signal x n, n = 1... N som ska kodas. Alfabetet är en delmängd av de reella talen A R. Alfabetet kan vara kontinuerligt. Om vi inte har kravet att den avkodade signalen

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Föresläsningsanteckningar Sanno II

Föresläsningsanteckningar Sanno II Föresläsningsanteckningar 1 Gammafunktionen I flera av våra vanliga sannolikhetsfördelningar ingår den s.k. gamma-funktionen. Γ(p) = 0 x p 1 e x dx vilken är definierad för alla reella p > 0. Vi ska här

Läs mer

Föreläsningsanteckningar F6

Föreläsningsanteckningar F6 Föreläsningsanteckningar F6 Martin Andersson & Patrik Falkman Kortaste vägen mellan en nod och alla andra noder Detta problem innebär att givet en graf G = (E,V) hitta den kortaste vägen över E från en

Läs mer

Lösningsförslag till övningsuppgifter, del V

Lösningsförslag till övningsuppgifter, del V Lösningsförslag till övningsuppgifter, del V Obs! Preliminär version! Ö.1. (a) Vi kan lösa uppgiften genom att helt enkelt räkna ut avståndet mellan vart och ett av de ( 7 ) = 1 paren. Först noterar vi

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Teoretisk del. Facit Tentamen TDDC (6)

Teoretisk del. Facit Tentamen TDDC (6) Facit Tentamen TDDC30 2014-08-29 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för

Läs mer

LMA222a. Fredrik Lindgren. 17 februari 2014

LMA222a. Fredrik Lindgren. 17 februari 2014 LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Läsanvisningar till kapitel

Läsanvisningar till kapitel Läsanvisningar till kapitel 2.3 2.5 2.3 Analytiska funktioner Analytiska funktioner, eller holomorfa funktioner som vi kommer kalla dem, är de funktioner som vi komer studera så gott som resten av kursen.

Läs mer

Föreläsning 5: Kardinalitet. Funktioners tillväxt

Föreläsning 5: Kardinalitet. Funktioners tillväxt Föreläsning 5: Kardinalitet. Funktioners tillväxt A = B om det finns en bijektion från A till B. Om A har samma kardinalitet som en delmängd av naturliga talen, N, så är A uppräknelig. Om A = N så är A

Läs mer

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl

Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga

Läs mer

19.1 Funktioner av stokastiska variabler

19.1 Funktioner av stokastiska variabler 9. Funktioner av stokastiska variabler 9.. Oberoende stokastiska variabler Som vi minns innebär P(A B) = P(A) P(B) att händelserna A och B är oberoende. Låt A vara händelsen att X < x och B vara händelsen

Läs mer

Satsen om total sannolikhet och Bayes sats

Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 12 Anton Grensjö grensjo@csc.kth.se 10 december 2015 Anton Grensjö ADK Övning 12 10 december 2015 1 / 19 Idag Idag Komplexitetsklasser Blandade uppgifter

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.08.09 08.30 0.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002

Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart

Läs mer

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005

Teoretisk statistik. Gunnar Englund Matematisk statistik KTH. Vt 2005 Teoretisk statistik Gunnar Englund Matematisk statistik KTH Vt 2005 Inledning Vi skall kortfattat behandla aspekter av teoretisk statistik där framför allt begreppet uttömmande (ibland kallad tillräcklig

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

x 23 + y 160 = 1, 2 23 = ,

x 23 + y 160 = 1, 2 23 = , Matematiska Institutionen KTH Lösningar till några övningar, inför tentan moment B, på de avsnitt som inte omfattats av lappskrivningarna, Diskret matematik för D2 och F, vt08.. Ett RSA-krypto har n =

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler

Speciell användning av heltalsvariabler. Heltalsprogrammering. Antingen-eller-villkor: Exempel. Speciell användning av heltalsvariabler Heltalsprogrammering Speciell användning av heltalsvariabler max z = då c j x j j= a ij x j b i j= x j 0 x j heltal i =,..., m j =,..., n j =,..., n ofta x j u j j =,..., n Oftast c, A, b heltal. Ibland

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Anteckningar för kursen "Analys i en Variabel"

Anteckningar för kursen Analys i en Variabel Anteckningar för kursen "Analys i en Variabel" Simone Calogero Vecka 4 Viktig information. Dessa anteckningar är inte avsedda som en ersättning för kurs litteratur men bara som en kort sammanfattning av

Läs mer

Monte Carlo-metoder. Bild från Monte Carlo

Monte Carlo-metoder. Bild från Monte Carlo Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Fö relä sning 1, Kö system vä ren 2014

Fö relä sning 1, Kö system vä ren 2014 Fö relä sning 1, Kö system vä ren 2014 Här följer en mycket kort sammanfattning av det viktigaste i Föreläsning 1. Observera att dessa anteckningar inte kan ersätta läroboken, de är alltför kortfattade

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 3 Johan Lindström 4 september 7 Johan Lindström - johanl@maths.lth.se FMSF7/MASB F3 /3 fördelningsplot log- Johan Lindström - johanl@maths.lth.se

Läs mer

Stokastiska signaler. Mediesignaler

Stokastiska signaler. Mediesignaler Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF625 Envariabelanalys Lösningsförslag till tentamen 206-0- DEL A. Betrakta funktionen f som ges av f(x) = x 2 arctan x. A. Bestäm definitionsmängden till f. B. Bestäm de intervall där f är växande respektive

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

Facit Tentamen TDDC (7)

Facit Tentamen TDDC (7) Facit Tentamen TDDC30 2014-03-18 1 (7) Teoretisk del 1. (3p) "Snabba frågor" a) Varför kan man tänkas vilja dölja metoder och variabler med private? (0.5p) Svar:För att skydda interna variabler från ändringar

Läs mer

Inledande programmering med C# (1DV402) Summera med while"-satsen

Inledande programmering med C# (1DV402) Summera med while-satsen Summera med while"-satsen Upphovsrätt för detta verk Inledande programmering med C# (1DV402) Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl

Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna

Läs mer

Föreläsning 9: NP-fullständighet

Föreläsning 9: NP-fullständighet Föreläsning 9: NP-fullständighet Olika typer av problem: 1. Beslutsproblem: A(x) =Ja. 2. Optimeringsproblem: A(x) =m Vanligen max/min. 3. Konstruktionsproblem: A(x) =En struktur. Vanligen lösningen till

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-23 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Djupet först-sökning. Minsta uppspännande träd Träd (utan rot)

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer