Teoretisk del. Facit Tentamen TDDC (6)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Teoretisk del. Facit Tentamen TDDC (6)"

Transkript

1 Facit Tentamen TDDC (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för alla klasser. private: Dold för alla klasser förutom andra av samma klass. protected: Endast nåbar för andra av samma klass, eller klasser som ligger i samma paket, eller klasser som ärver från klassen som innehåller variabeln eller metoden som är protected. b) Vad innebär det att en algoritm har tidskomplexitet O(n 2 ) och rymdskomplexitet O(n) i värsta fallet? (2p) Svar:Tidskomplexitet O(n 2 ) innebär att tiden algoritmen tar att köra i värsta fallet alltid är beroende av mängden indata n med förhållandet n 2, för alla n över en viss storlek. Algoritmen kommer alltså aldrig vara långsammare än så från och med det n. För rymdskomplexiteten O(n) är resonemanget detsamma, förutom att här är det mängden minnesutrymme algoritmen tar upp som är beroende av mängden indata n med förhållandet n, för alla n över en viss storlek. Algoritmen kommer alltså aldrig ta upp mer minnesutrymme än så från och med det n. c) Vad är skillnaden mellan en instansvariabel och en klassvariabel? (1p) Svar:En klass som innehåller en instansvariabel får en separat sådan variabel i varje instans. En klass som innehåller en klassvariabel(dvs. en statisk) har dock bara en sådan, som alla instanser av den klassen istället delar på. d) Vad är syftet med ett interface? (1p) Svar:Att ange vilka metoder klassen som implementerar detta interface måste tillhandahålla, utan att specificera den exakta koden för implementationen. Implementationen lämnas istället till klassen som implementerar interfacet. e) Vad innebär polymorfi? (1p) Svar:Att en gemensam typ kan representera flera olika undertyper, baserade på den gemensamma bastypen, och att man i undertyperna kan definiera eller omdefiniera('skriver över') metoder från bastypen för att ändra beteendet.

2 Facit Tentamen TDDC (6) 2. (6p) "Datastrukturer" a) Är trädet ovan ett binärt sökträd? Motivera svaret! (1p) Svar:Nej, då 3 ligger till vänster under 4, men 9 ligger till vänster under 8. Detta stämmer inte med någon form av binärt sökträd. b) Organisera om siffrorna i trädet ovan så att trädet utgör antingen en binär minheap eller en binär maxheap. Svara med en bild. Ange också vilken typ av heap du valde, och motivera varför trädet utgör antingen en maxheap eller minheap. (3p) ( Organisera om siffrorna innebär att pilarna och noderna förblir på samma plats, endast siffrorna får byta plats i bilden.) Svar:Trädet nedan är en maxheap. Detta kan motiveras av att samtliga föräldrar är mindre än sina respektive barn. (Obs: Trädet nedan saknar den fullständighet som binära heapar normalt har, pga. att strukturen från det första trädet följdes.) c) Ange i vilken ordning värdena i trädet ovan skulle lagras i fältet, om hela trädet representerades som ett fält. Markera odefinierade värden i fältet med ett frågetecken. (2p) Svar:[ ? 5 6???? 9??? ] 8

3 Facit Tentamen TDDC (6) 3. (6p) "Tidskomplexitet" a) Antag att det finns ett osorterat fält med tillhörande remove-metoder för att ta bort enskilda värden. Ange tidskomplexiteten för varje remove-metod, samt motivera varför, för: (4p) 1) En remove-metod som alltid tar bort det första värdet i fältet. Svar:O(n), då första värdet som tas bort måste skrivas över genom att flytta alla övriga värden ett steg till vänster, dvs. n-1 förflyttningar. 2) En remove-metod som alltid tar bort det sista värdet i fältet. Svar:O(1), då sista värdet kan hittas direkt och tas bort utan att övriga värden måste flyttas. (Antagande: Värden kan tas bort utan att skapa ett helt nytt fält och kopiera över värden, genom att hålla reda på antalet värden som finns lagrade i fältet i en separat int-variabel.) 3) En remove-metod som tar bort ett visst värde från fältet, värdet som ska tas bort angivet när metoden anropas. Finns flera kopior av det värdet, tas bara det första som hittas bort. Svar:O(n), då värdet först måste hittas genom en linjär sökning, och efter att det hittats, måste skrivas över genom att flytta övriga värden till vänster. (Om ditt svar bygger på något antagande som du är osäker på, ange även det antagandet.) b) Förenkla följande tre uttryck för tidskomplexitet: (2p) Svar: 1) O(7) + O(3n) => O(n) 2) O(7) O(1 + 3n + n) => O(n) 3) O(5n 3 ) O(5n 3 ) => O(n 6 )

4 Facit Tentamen TDDC (6) 4. (6p) "Algoritmer" a) Sortera värdena [ ] med selectionsort. Gör detta genom att byta plats på värden inom fältet, dvs. in-place. Sorteringen ska leda till stigande ordning, dvs 1, 2, 3, osv. Ange tydligt i svaret hur hela fältet ser ut innan varje platsbyte, samt vilka index som är på väg att byta plats, med maximalt ett byte per steg. (2p) Svar:[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] b) Sortera värdena [ ] med quicksort. Gör detta genom att byta plats på värden inom fältet, dvs. in-place. Sorteringen ska leda till stigande ordning, dvs 1, 2, 3, osv. Ange tydligt i svaret hur hela fältet ser ut innan varje platsbyte, samt vilka index som är på väg att byta plats, med maximalt ett byte per steg. Förklara även hur pivot-strategin du använde väljer pivot-element. (2p) Svar:Pivot-strategi, välj alltid det högraste elementet bland de värden som sorteras. [ ] [ ] [ ] [ ] [ ] [ ] c) Kan de två sorteringsalgoritmerna ovan implementeras stabila? Ange separat svar för varje algoritm, samt motivera varför. (2p) Svar:Selectionsort Nej, då varje gång den flyttar in ett värde i rätt plats så måste den flytta ut det existerande värdet..vilket då kan leda till en flytt som bryter mot stabilitets-kriteriet. Exempel: [ ] Quicksort Nej, då förflyttningar för att balansera värden kring pivot-elementet kan leda till förflyttningar som bryter mot stabilitets-kriteriet. Exempel: [ ]

5 Facit Tentamen TDDC (6) Praktisk del 5. (8p) Läxhögen Nu när skolan börjar dra igång på allvar har Anna börjat planera hur hon ska lägga upp sina studier. I år ska allt göras i tur och ordning, har hon bestämt. En sak i taget, ordning och reda. För att få lite struktur på det hela plockar hon fram sina programmeringsfärdigheter och sätter igång på ett litet program som ska lösa detta med hjälp av en stack! Importera Annas projekt från given_files, och hjälp henne med programmet enligt nedan. a) Anna minns något vagt om en speciell metod klasser bör ha och hur inkapsling innebär privata klassvariabler, men hon har inte riktigt hunnit fixa klart detta. Skriv klart Node-klassen åt Anna så att den är korrekt inkapslad, och uppdatera övrig kod så att den fortfarande fungerar. (3p) (Denna deluppgift kan lösas oberoende från övriga deluppgifter.) b) Några viktiga metoder saknas fortfarande i Stack-klassen. Skriv klart dessa åt Anna så att de följer specifikationen i kommentarerna. (5p) (Denna deluppgift kan lösas oberoende från övriga deluppgifter.)

6 Facit Tentamen TDDC (6) 6. (10p) Kurskodsträdet Stefan har börjat titta på alla kurser han kommer läsa fram till sommaren, och har kommit fram till att det är rätt många att hålla reda på. Det vore bra om han kunde hitta något sätt att organisera dessa så att han inte glömmer bort något. Som en blixt från klar himmel inser han att det här är ett prima läge för lite studieflykt, och han sätter sig prompt ned och börjar skriva ett Java-program för att göra detta. Planen är ett binärt träd, där han lagrar alla kurser som strängar baserat på kurskod och namn, och låter det binära trädet sortera därefter. En nod från Stefans binära träd: Värde Importera Stefans projekt från given_files, och hjälp honom med programmet enligt nedan. a) Stefan behöver en metod för att stoppa in värden i det binära trädet. Skriv klart add-metoden enligt specifikationen i den tillhörande kommentaren. Åt vilket håll det binära trädet är sorterat väljer du själv. Att sortera strängar kan verka knepigt, men Stefan vet att i Java har strängar en compareto-metod som kan användas för att jämföra två strängar lexikografiskt. Lös den här uppgiften med hjälp av den. (6p) (Denna deluppgift kan lösas oberoende från övriga deluppgifter.) (Ett Javadoc-utdrag om String.compareTo finns bifogat i slutet av tentamen.) b) Det vore bra om Stefan kunde kontrollera att föregående metod fungerar som den ska. Det brukar dock bli lite knepigt att kontrollera det för hand, men lite ytlig insikt kan han få genom att helt enkelt kontrollera att en ny nod stoppats in efter varje add-anrop. Till detta behöver han en size-metod. Hjälp honom skriva klart denna. Denna metod får inte använda sig av en räknevariabel i klassen som räknar antalet gånger add anropas, utan måste räkna antalet noder som faktiskt finns i trädet för att producera svaret. (4p) (Denna deluppgift kan lösas oberoende från övriga deluppgifter, men blir svårare att testa utan att ha gjort a) först.)

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2015-03-19 Sal Tid 14:00 18:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2016-03-21 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer Tentamen i... TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2011-12-19 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Datastrukturer. föreläsning 6. Maps 1

Datastrukturer. föreläsning 6. Maps 1 Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Arv: Fordonsexempel. Arv. Arv: fordonsexempel (forts) Arv: Ett exempel. En klassdefinition class A extends B {... }

Arv: Fordonsexempel. Arv. Arv: fordonsexempel (forts) Arv: Ett exempel. En klassdefinition class A extends B {... } En klassdefinition class A extends B {... Arv definierar en klass A som ärver av B. Klassen A ärver alla fält och metoder som är definierade för B. A är en subklass till B. B är en superklass till A. class

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma

Läs mer

UML. Klassdiagr. Abstraktion. Relationer. Överskugg. Överlagr. Aktivitetsdiagram Typomv. Typomv. Klassdiagr. Abstraktion. Relationer.

UML. Klassdiagr. Abstraktion. Relationer. Överskugg. Överlagr. Aktivitetsdiagram Typomv. Typomv. Klassdiagr. Abstraktion. Relationer. Översikt Klasshierarkier UML klassdiagram Relation mellan klasser mellan klasser och objekt Association ning ing andling Programmering tillämpningar och datastrukturer 2 UML UML Unified Modeling Language

Läs mer

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning. Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer

Läs mer

Laboration 1 - Grunderna för OOP i Java

Laboration 1 - Grunderna för OOP i Java Uppdaterad: 2006-08-31 Laboration 1 - Grunderna för OOP i Java Inledning Laborationen går ut på att lära sig grunderna för objektorienterad programmering, samt motsvarande språkkonstruktioner i Java. Labben

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Tentamen TEN1 HI1029 2014-05-22

Tentamen TEN1 HI1029 2014-05-22 Tentamen TEN1 HI1029 2014-05-22 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Vad har vi pratat om i kursen?

Vad har vi pratat om i kursen? Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet

Läs mer

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1 Inlämningsuppgift : Finn 2D1418 Språkteknologi Christoffer Sabel E-post: csabel@kth.se 1 1. Inledning...3 2. Teori...3 2.1 Termdokumentmatrisen...3 2.2 Finn...4 3. Implementation...4 3.1 Databasen...4

Läs mer

DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18

DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18 KTH, Nada, Alexander Baltatzis DD1321, Tentamen i tillämpad programmering och datalogi Lördagen den 18 dexember 2010 kl 13 18 Maxpoäng 100p, godkänt 50p. Bonus max 10p adderas. Resultatet anslås på mina

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande

Läs mer

Kort om klasser och objekt En introduktion till GUI-programmering i Java

Kort om klasser och objekt En introduktion till GUI-programmering i Java Kort om klasser och objekt En introduktion till GUI-programmering i Java Klasser En klass är en mall för hur man ska beskriva på något. Antag att vi har en klass, Bil. Den klassen innehåller en lista på

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att

Läs mer

DD1320 Tillämpad datalogi. Lösnings-skiss till tentamen 2010-10-18

DD1320 Tillämpad datalogi. Lösnings-skiss till tentamen 2010-10-18 DD1320 Tillämpad datalogi Lösnings-skiss till tentamen 2010-10-18 1. Mormors mobil 10p M O R M O R S M O B I L M O R M O R S M O B I L i 1 2 3 4 5 6 7 8 9 10 11 12 next[i] 0 1 1 0 1 1 4 0 1 3 1 1 Bakåtpilarna/next-värde

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar

Läs mer

Föreläsning 2 Objektorienterad programmering DD1332. Typomvandling

Föreläsning 2 Objektorienterad programmering DD1332. Typomvandling metoder Föreläsning 2 Objektorienterad programmering DD1332 Array [modifierare] String metodnamn (String parameter) Returtyp (utdata typ) i detta fall String Indata typ i detta fall String 1 De får man

Läs mer

Programmering fortsättningskurs

Programmering fortsättningskurs Programmering fortsättningskurs Philip Larsson 2013 03 09 Innehåll 1 Träd 1 1.1 Binära träd........................................ 1 1.2 Strikt binärt träd..................................... 1 1.3 Binärt

Läs mer

Föreläsning 13. Rekursion

Föreläsning 13. Rekursion Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet

Tommy Färnqvist, IDA, Linköpings universitet Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings

Läs mer

UML. Översikt UML. Relationer mellan klasser. A är ett aggregerat av B:n. Kontor aggregat av Enheter. 12 olika diagramtyper, bl.a.

UML. Översikt UML. Relationer mellan klasser. A är ett aggregerat av B:n. Kontor aggregat av Enheter. 12 olika diagramtyper, bl.a. Översikt UML Sekvensdiagram (dynamic structure) Informationsflöde genom programmet Användningsfall (use cases) Aktörers interaktion med systemet Paketdiagram Beroenden mellan paket abstrakta klasser Multipel

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

Objektorienterad Programkonstruktion

Objektorienterad Programkonstruktion Objektorienterad Programkonstruktion Föreläsning 9 Projektuppgift Collection, Iterator, Composite Christian Smith ccs@kth.se 1 Projektuppgift IM, skickar meddelanden mellan datorer En lite större labbuppgift,

Läs mer

Introduktion. Klasser. TDP004 Objektorienterad Programmering Fö 2 Objektorientering grunder

Introduktion. Klasser. TDP004 Objektorienterad Programmering Fö 2 Objektorientering grunder Introduktion TDP004 Objektorienterad Programmering Fö 2 Objektorientering grunder OO är den mest använda programmeringsparadigmen idag, viktigt steg att lära sig och använda OO. Klasser är byggstenen i

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

Sätt att skriva ut binärträd

Sätt att skriva ut binärträd Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer

Läs mer

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5. Laboration 4 Lådplanering Exempel på layout, ett GUI-baserat program Frågor

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5. Laboration 4 Lådplanering Exempel på layout, ett GUI-baserat program Frågor TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5 Laboration 4 Lådplanering Exempel på layout, ett GUI-baserat program Frågor 1 Laboration 5 - Introduktion Syfte: Öva på självständig

Läs mer

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4

Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4 Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara

Läs mer

Övning 4. Hashning, sortering, prioritetskö, bästaförstsökning. Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen?

Övning 4. Hashning, sortering, prioritetskö, bästaförstsökning. Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen? Per Sedholm DD1320 (tilda12) 2012-09-20 Övning 4 Hashning, sortering, prioritetskö, bästaförstsökning 1. Perfekt hashfunktion Hitta på en perfekt hashfunktion för atomer. Hur stor blir hashtabellen? Vi

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1

Läs mer

Vad är ett objekt? Tillstånd och beteende. Vad är ett objekt? Exempel

Vad är ett objekt? Tillstånd och beteende. Vad är ett objekt? Exempel Objekt Instansvariabler Instansmetoder Klassvariabler Klassmetoder Inkapsling Föreläsning 6 Vad är ett objekt? Ett objekt har egenskaper, som kallas för objektets attribut Egenskaperna beskriver tillsammans

Läs mer

Imperativ programmering. Föreläsning 4

Imperativ programmering. Föreläsning 4 Imperativ programmering 1DL126 3p Föreläsning 4 Imperativa paradigmer Ostrukturerad programmering Strukturerad programmering Procedurell programmering Objektorienterad programmering Klassbaserad programmering

Läs mer

Tentamen Datastrukturer D DAT 036/DIT960

Tentamen Datastrukturer D DAT 036/DIT960 Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =

Läs mer

Datastrukturer och algoritmer. Innehåll. Trie. Informell specifikation. Organisation av Trie. Föreläsning 13 Trie och Sökträd.

Datastrukturer och algoritmer. Innehåll. Trie. Informell specifikation. Organisation av Trie. Föreläsning 13 Trie och Sökträd. Datastrukturer och algoritmer Föreläsning 13 rie och ökträd Innehåll rie rådar rie ökträd tterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat

Läs mer

LÖSNINGSFÖRSLAG Programmeringsteknik För Ing. - Java, 5p

LÖSNINGSFÖRSLAG Programmeringsteknik För Ing. - Java, 5p UMEÅ UNIVERSITET Datavetenskap 010530 LÖSNINGSFÖRSLAG Programmeringsteknik För Ing. - Java, 5p Betygsgränser 3 21,5-27 4 27,5-33,5 5 34-43 Uppgift 1. (4p) Hitta de fel som finns i nedanstående klass (det

Läs mer

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 3

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 3 TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 3 Laboration 3 Visualisering (och implementering) av sortering Exempel på grafik (med Swing-paketet) Frågor 1 Laboration 3 Visualisering

Läs mer

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5. Laboration 4 Lådplanering Exempel på grafik, ett avancerat program Frågor

TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5. Laboration 4 Lådplanering Exempel på grafik, ett avancerat program Frågor TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 5 Laboration 4 Lådplanering Exempel på grafik, ett avancerat program Frågor 1 Laboration 4 - Introduktion Syfte: Öva på självständig problemlösning

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Klasser och objekt. Henrik Johansson. August 20, 2008

Klasser och objekt. Henrik Johansson. August 20, 2008 Föreläsning 5 Klasser och objekt Henrik Johansson August 20, 2008 Ett objekt är en modell av ett fysisikt eller ett tänkt ting. Objektet och det som vi kan göra med det beskrivs av en mall, en klass. Ett

Läs mer

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.

Tentamen. 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14. Tentamen 2D4135 vt 2004 Objektorienterad programmering, design och analys med Java Torsdagen den 3 juni 2004 kl 9.00 14.00, sal D31 Tentan har en teoridel och en problemdel. På teoridelen är inga hjälpmedel

Läs mer

EnKlass. Instans 3 av EnKlass. Instans 2 av EnKlass

EnKlass. Instans 3 av EnKlass. Instans 2 av EnKlass Övningstillfälle 4 Klasser och objekt (s. 221 ff.) Syfte 1: En naturlig fortsättning på koncepten abstraktion och inkapsling! Funktion (återanvändning av skyddad, säker och testad kod) Modul (återanvändning

Läs mer

TENTAMEN I DATAVETENSKAP

TENTAMEN I DATAVETENSKAP Umeå Universitet Datavetenskap Marie Nordström Thomas Johansson Jürgen Börstler 030124 TENTAMEN I DATAVETENSKAP PROGRAMMERINGSMETODIK OCH PROGRAMMERING I JAVA, 5P. (TDBA63) Datum : 030124 Tid : 9-15 Hjälpmedel

Läs mer

TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET

TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET UMEÅ UNIVERSITET Datavetenskap 010824 TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET Datum : 010824 Tid : 9-15 Hjälpmedel : Inga Antal uppgifter : 7 Totalpoäng : 40 (halva poängtalet krävs normalt

Läs mer

725G61 - Laboration 7 Implementation av ett API. Johan Falkenjack

725G61 - Laboration 7 Implementation av ett API. Johan Falkenjack 725G61 - Laboration 7 Implementation av ett API Johan Falkenjack December 13, 2013 1 Inledning Hittills i kursen har vi tittat på grundläggande programmering och grundläggande objektorientering. I den

Läs mer

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.

Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper. Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något

Läs mer

Programmering för språkteknologer II, HT2014. evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/

Programmering för språkteknologer II, HT2014. evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Hashtabeller

Läs mer

Objektorienterad programmering Föreläsning 6. Mer om klasser och typer Namnrymder Inkapsling Synlighet Statiska variabler Statiska metoder

Objektorienterad programmering Föreläsning 6. Mer om klasser och typer Namnrymder Inkapsling Synlighet Statiska variabler Statiska metoder Objektorienterad programmering Föreläsning 6 Copyright Mahmud Al Hakim mahmud@dynamicos.se www.webbacademy.se Agenda Mer om klasser och typer Namnrymder Inkapsling Synlighet Statiska variabler Statiska

Läs mer

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom: 6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt

Läs mer

Interfacen Set och Map, hashtabeller

Interfacen Set och Map, hashtabeller Föreläsning 0 Innehåll Hashtabeller implementering, effektivitet Interfacen Set och Map ijava Interfacet Comparator Undervisningsmoment: föreläsning 0, övningsuppgifter 0-, lab 5 och 6 Avsnitt i läroboken:

Läs mer

Introduktion Schenker-BTL AB, Stab IT Beskrivning över informationsintegreringmed Schenker, metodbeskrivning version 1.

Introduktion Schenker-BTL AB, Stab IT Beskrivning över informationsintegreringmed Schenker, metodbeskrivning version 1. Schenker har interna system som handhar information som är av intresse för våra kunder/partners. Idag finns ett flertal av dem tillgängliga via Internet, sk Online-tjänster. Dessa erbjuder inte bara hämtning

Läs mer

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm. Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills

Läs mer

Kurskod D0010E Datum 2012-05-15 Skrivtid 5tim

Kurskod D0010E Datum 2012-05-15 Skrivtid 5tim LULEÅ TEKNISKA UNIVERSITET Tentamen i Objektorienterad programmering och design Totala antalet uppgifter: 5 Lärare: Håkan Jonsson, 491000, 073-820 1700 Resultatet o entliggörs senast: 2012-05-29. Tillåtna

Läs mer

Dagens program. Programmeringsteknik och Matlab. Objektorienterad programmering. Vad är vitsen med att ha både metoder och data i objekten?

Dagens program. Programmeringsteknik och Matlab. Objektorienterad programmering. Vad är vitsen med att ha både metoder och data i objekten? Programmeringsteknik och Matlab Övning 4 Dagens program Övningsgrupp 2 (Sal Q22/E32) Johannes Hjorth hjorth@nada.kth.se Rum 4538 på plan 5 i D-huset 08-790 69 02 Kurshemsida: http://www.nada.kth.se/kurser/kth/2d1312

Läs mer

Objektorienterad Programkonstruktion, DD1346 FACIT. Tentamen 20150613, kl. 9.00-12.00

Objektorienterad Programkonstruktion, DD1346 FACIT. Tentamen 20150613, kl. 9.00-12.00 Skolan för datavetenskap och kommunikation Objektorienterad Programkonstruktion, DD1346 FACIT Tentamen 20150613, kl. 9.00-12.00 Tillåtna hjälpmedel: Papper, penna och radergummi. Notera: Frågorna i del

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi

Läs mer

Träd. Rot. Förgrening. Löv

Träd. Rot. Förgrening. Löv Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent

Läs mer

Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden

Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden Sortering Brute-force Sortering Ordna element enligt relation mellan nyckelvärden Flera olika algoritmer med olika fördelar Brute-force Gå igenom alla permutationer och hitta den där elementen ligger i

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Introduktion till algoritmer - Lektion 3 Matematikgymnasiet, Läsåret 2014-2015. Lektion 3

Introduktion till algoritmer - Lektion 3 Matematikgymnasiet, Läsåret 2014-2015. Lektion 3 Introduktion till algoritmer - Lektion 3 Matematikgymnasiet, Läsåret 014-015 Lektion 3 Denna lektion är temat hur man effektivt ska organisera den data som en algoritm använder för att åtkomsten till datan

Läs mer

Laboration 13, Arrayer och objekt

Laboration 13, Arrayer och objekt Laboration 13, Arrayer och objekt Avsikten med denna laboration är att du ska träna på att använda arrayer. Skapa paketet laboration13 i ditt laborationsprojekt innan du fortsätter med laborationen. Uppgift

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn D0017E Inledande programmering för ingenjörer Datum 2014-10-31 Material Tentamen Kursexaminator Betygsgränser Tentamenspoäng 3 14; 4??; 5?? 25/25

Läs mer

TTIT33 Scenario för Tema 3 i Termin 3

TTIT33 Scenario för Tema 3 i Termin 3 LINKÖPINGS UNIVERSITET Institutionen för datavetenskap / Matematiska institutionen TTIT33 Scenario för Tema 3 i Termin 3 Du befinner dig vid företaget Posten Data AB, där man löpande uppmärksammar behov

Läs mer

TDDC74 - Projektspecifikation

TDDC74 - Projektspecifikation TDDC74 - Projektspecifikation Projektmedlemmar: Namn Efternamn abcde123@student.liu.se Namn Efternamn abcde123@student.liu.se Handledare: Handledare handledare@ida.liu.se eller handledare@student.liu.se

Läs mer

Labb LABB 1. Databassagan och en rundtur i databasers märkliga värld. Plushögskolan Frågeutveckling inom MSSQL - SU14

Labb LABB 1. Databassagan och en rundtur i databasers märkliga värld. Plushögskolan Frågeutveckling inom MSSQL - SU14 Labb LABB 1 Databassagan och en rundtur i databasers märkliga värld Plushögskolan Frågeutveckling inom MSSQL - SU14 I Microsoft SQL-Server Management Studio kan man arbeta på olika sätt. Antingen via användargränssnittet

Läs mer

Kopiering av objekt i Java

Kopiering av objekt i Java 1 (6) Kopiering av objekt i Java Först När du läser detta papper bör du samtidigt studera dokumentationen för klasserna Object, Cloneable (java.lang) och ArrayList (java.util). Mycket blir klarare genom

Läs mer

C++ Lektion Tecken och teckenfält

C++ Lektion Tecken och teckenfält C++ Lektion Tecken och teckenfält Teori Hittills har alla variabler du jobbat med varit olika typer av tal, men du kan också deklarera variabler som håller bokstavstecken. Denna variabeltyp kallas för

Läs mer

Tentamen *:58/ID100V Programmering i C Exempel 3

Tentamen *:58/ID100V Programmering i C Exempel 3 DSV Tentamen *:58/ID100V Sid 1(5) Tentamen *:58/ID100V Programmering i C Exempel 3 Denna tentamen består av fyra uppgifter som tillsammans kan de ge maximalt 22 poäng. För godkänt resultat krävs minst

Läs mer

Lösningsförslag till tentamen 150317

Lösningsförslag till tentamen 150317 Uppgift 1 Lösningsförslag till tentamen 150317 1) Sant 2) Falskt. I ett RAM-minne är åtkomsttiden densamma för alla minnesadresser.) 3) Falskt. Det är TCP som använder sig av en fast kommunikationsförbindelse.)

Läs mer

Bankkonto - övning. Övning 2 Skriv en metod, geträntan, som returnerar räntan.

Bankkonto - övning. Övning 2 Skriv en metod, geträntan, som returnerar räntan. Bankkonto - övning Övningar att göra efter lärardemostration. Filen bankkonto.zip innehåller ett projekt med klassen Bankkonto. Zippa upp denna fil och öppna projektet i BlueJ och skriv vidare på klassen

Läs mer

DELPROV 1 I DATAVETENSKAP

DELPROV 1 I DATAVETENSKAP Umeå Universitet Datavetenskap Marie Nordström 070502 DELPROV 1 I DATAVETENSKAP Uppgift (poäng) 1 () 2 () 3 () 4 () 5 () 6 () Summa (xx) Inlämnad Poäng Kurs : Datum : 070502 Namn (texta) : Personnummer

Läs mer

Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008

Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008 Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008 Christian 27 maj 2008 Uppgift 1 Flera av dem jag talade med efter tentan hade blivit förskräckta när

Läs mer

Föreläsning 15: Repetition DVGA02

Föreläsning 15: Repetition DVGA02 Föreläsning 15: Repetition DVGA02 Vad handlar kursen om? Kursen kan i grova drag delas upp i tre delar: 1. Objekt-orienterad programmering 2. Grafiska användargränssnitt 3. Datastrukturer Dessutom genomsyras

Läs mer

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation

Innehåll. Föreläsning 11. Organisation av Trie. Trie Ytterligare en variant av träd. Vi har tidigare sett: Informell specifikation Innehåll Föreläsning 11 Trie Sökträd Trie och Sökträd 356 357 Trie Ytterligare en variant av träd. Vi har tidigare sett: Oordnat träd där barnen till en nod bildar en mängd Ordnat träd där barnen till

Läs mer

TENTAMEN. Kurs: Objektorienterad programmeringsmetodik 5DV133 Ansvarig lärare: Anders Broberg. VT-13 Datum: 13-06-05 Tid: kl 16.00-20.

TENTAMEN. Kurs: Objektorienterad programmeringsmetodik 5DV133 Ansvarig lärare: Anders Broberg. VT-13 Datum: 13-06-05 Tid: kl 16.00-20. Umeå Universitet Datavetenskap Anders Broberg 130605 TENTAMEN Kurs: Objektorienterad programmeringsmetodik 5DV133 Ansvarig lärare: Anders Broberg VT-13 Datum: 13-06-05 Tid: kl 16.00-20.00 Namn: Personnummer:

Läs mer

Diagnostiskt Prov. Antaganden Om förutsättningar saknas I en uppgift skall rimliga antaganden göras och nedtecknas.

Diagnostiskt Prov. Antaganden Om förutsättningar saknas I en uppgift skall rimliga antaganden göras och nedtecknas. .0.0 DIAGNOSTISKT PROV Tid Klockan 09.00-2.00 Hjälpmedel Inga Antaganden Om förutsättningar saknas I en uppgift skall rimliga antaganden göras och nedtecknas. Rättning Tentamen omfattar 6 poäng Denna tentamen

Läs mer

Lite om felhantering och Exceptions Mer om variabler och parametrar Fält (eng array) och klassen ArrayList.

Lite om felhantering och Exceptions Mer om variabler och parametrar Fält (eng array) och klassen ArrayList. Institutionen för Datavetenskap Göteborgs universitet HT2009 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Föreläsning 3 Innehåll Lite om felhantering och Exceptions Mer om variabler och parametrar

Läs mer

Sortering. Om du följt dessa steg korrekt så ska böckerna nu vara sorterade.

Sortering. Om du följt dessa steg korrekt så ska böckerna nu vara sorterade. Sortering Den sorteringsalgoritm som vi använder oss kallas selection sort (urvalssortering) och är en av många existerande sorteringsalgoritmer. Dess funktionssätt beskrivs kanske bäst genom ett konkret

Läs mer

getsmart Grå Regler för:

getsmart Grå Regler för: (x²) 1 2 Regler för: getsmart Grå Algebra 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det rekommenderas att man börjar

Läs mer

Föreläsning 10. ADT:er och datastrukturer

Föreläsning 10. ADT:er och datastrukturer Föreläsning 10 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad

Läs mer

Uppgift 1a (Aktiekurser utan poster)

Uppgift 1a (Aktiekurser utan poster) Uppgift 1a (Aktiekurser utan poster) Vi har lite olika upplägg i de kurser vi håller och i vissa kurser finns det med något som vi kallar "poster" (eng. "record"). I andra har vi inte med detta. Vi har

Läs mer

Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga)

Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga) Grundläggande programmering med C# Provmoment: Ladokkod: Tentamen ges för: 7,5 högskolepoäng TEN1 NGC011 Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga) (Ifylles av student) (Ifylles av student)

Läs mer

SORTERING OCH SÖKNING

SORTERING OCH SÖKNING Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm

Läs mer

Exempel på listor (klassen ArrayList). Ett exempel med fält. Avbildning är en speciell typ av lista HashMap.

Exempel på listor (klassen ArrayList). Ett exempel med fält. Avbildning är en speciell typ av lista HashMap. Institutionen för Datavetenskap Göteborgs universitet HT2008 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Innehåll Föreläsning 4 Exempel på listor (klassen ArrayList). Ett exempel med fält.

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 5 ADT Map/Dictionary, hashtabeller TDDI16: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 16 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 5.1 Innehåll Innehåll

Läs mer

Kursplanering Objektorienterad programmering

Kursplanering Objektorienterad programmering Kursplanering Objektorienterad programmering Fakta Ämne Programmering Poäng 40 Yh-poäng Kurskod YSYS-OOP Klass Systemutvecklare.NET 2 Syfte och koppling till yrkesrollen Syftet är att få en stabil grund

Läs mer

7 Programmeringsteknik

7 Programmeringsteknik 7 Programmeringsteknik Att skriva ett program innebär att man skriver en plan för hur bearbetningen av data ska utföras. Vilken typ av data och vilken typ av bearbetning, som ska göras, ska vara bestämt

Läs mer

Föreläsning 8. Arv. Arv (forts) Arv och abstrakta klasser

Föreläsning 8. Arv. Arv (forts) Arv och abstrakta klasser Föreläsning 8 Arv och abstrakta klasser Arv Definierar en klass utifrån en redan existerande klass Den nya klassen utökar den ärvda klassen (extends) Den nya klassen behåller alla egenskaper som den gamla

Läs mer

Omtentamen (del 1, 6 högskolepoäng) i Programkonstruktion och datastrukturer (1DL201)

Omtentamen (del 1, 6 högskolepoäng) i Programkonstruktion och datastrukturer (1DL201) Omtentamen (del 1, 6 högskolepoäng) i Programkonstruktion och datastrukturer (1DL201) Lars-Henrik Eriksson Fredag 5 april 2013, kl 14:00 17:00, i Polacksbackens skrivsal Hjälpmedel: Inga. Inte heller elektronisk

Läs mer