Tommy Färnqvist, IDA, Linköpings universitet
|
|
- Ingvar Hermansson
- för 6 år sedan
- Visningar:
Transkript
1 Föreläsning 8 Sortering och urval TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 1 oktober 2013 Tommy Färnqvist, IDA, Linköpings universitet 8.1 Innehåll Innehåll 1 Sortering Introduktion Insättningssortering Urvalssortering Divide-and-conquer Quick-sort Urval Introduktion Quick-select Sortering 1.1 Introduktion Sorteringsproblemet Indata: En lista L innehållande data med nycklar från en linjärt ordnad mängd K Utdata: En lista L innehållande samma data sorterat i stigande ordning m.a.p. nycklarna Exempel [8,2,9,4,6,10,1,4] [1,2,4,4,6,8,9,10] Aspekter på sortering in-place vs använda extra minne internt vs externt minne stabil vs icke stabil jämförelsebaserad vs digital Strategier Sortering genom insättning Titta efter rätt plats att sätta in varje nytt element som ska läggas till i den sorterade sekvensen... linjär insättning, Shell-sort,... Sortering genom urval Sök i varje iteration i den osorterade sekvensen efter det minsta kvarvarande datat och lägg det till slutet av den sorterade sekvensen... rakt urval, Heap-sort,... Sortering genom platsbyten Sök fram och tillbaka i något mönster och byt plats på par i fel inbördes ordning så fort ett sådant upptäcks... Quick-sort, Merge-sort,
2 1.2 Insättningssortering (Linjär) insättningssortering Algoritmen är in-place! Dela arrayen som ska sorteras A[0,...,n 1] i två delar A[0,...,i 1] som är sorterad A[i,...,n 1] ej ännu sorterad Initialt är i = 1, i vilket fall A[0,...,0] (trivialt) är sorterad procedure INSERTIONSORT(A[0,...,n 1]) for i = 1 to n 1 do sätt in A[i] i rätt (=sorterad) position i A[0,...,i 1] 8.6 Exempel: Visualisering av Insertion-sort Värstafallsanalys av Insertion-sort 1: procedure INSERTIONSORT(A[0,...,n 1]) 2: for i = 1 to n 1 do 3: j i; x A[i] 4: while j 1 and A[ j 1] > x do 5: A[ j] A[ j 1]; j j 1 6: A[ j] x t 2 : n 1 pass t 3 : n 1 pass t 4 : Låt I vara antalet iterationer i värsta fallet av innerloopen: I = (n 1) = n(n 1)/2 = (n 2 n)/2 t 5 : I pass t 6 : n 1 pass Totalt: t 2 +t 3 +t 4 +t 5 +t 6 = 3(n 1)+(n 2 n) = n 2 +2n 3 Alltså O(n 2 ) i värsta fallet... men bra om sekvensen nästan sorterad Urvalssortering (Rak) urvalssortering Algoritmen är in-place! Dela arrayen som ska sorteras A[0,...,n 1] i två delar A[0,..., i 1] som är sorterad (alla element mindre än eller lika med A[i,..., n 1]) A[i,...,n 1] ej ännu sorterad Initialt är i = 0, d.v.s. den sorterade delen är tom (och trivialt sorterad) procedure SELECTIONSORT(A[0,...,n 1]) for i = 0 to n 2 do hitta ett minimalt element A[ j] i A[i,...,n 1] byt plats på A[i] och A[ j] 8.9 2
3 Exempel: Visualisering av Selection-sort Värstafallsanalys av Selection-sort 1: procedure SELECTIONSORT(A[0,...,n 1]) 2: for i = 0 to n 2 do 3: s i 4: for j i + 1 to n 1 do 5: if A[ j] < A[s] then s j 6: SWAP(A[i], A[s]) t 2 : n 1 pass t 3 : n 1 pass t 4 : Låt I vara antalet iterationer i värsta fallet av innerloopen: I = (n 2) + (n 3) = (n 1)(n 2)/2 = (n 2 3n + 2)/2 t 5 : I pass t 6 : n 1 pass Totalt: t 2 +t 3 +t 4 +t 5 +t 6 = 3(n 1) + (n 2 3n + 2) = n 2 1 O(n 2 ) Divide-and-conquer Principen söndra-och-härska för algoritmkonstruktion söndra: dela upp problemet i mindre, oberoende, delproblem härska: lös delproblemen rekursivt (eller direkt om trivialt) kombinera lösningarna till delproblemen till en lösning till ursprungsproblemet Eng. divide-and-conquer 8.12 Exempel: Söndra-och-härska
4 Exempel: Söndra-och-härska Quick-sort Quick-sort Quick-sort är en randomiserad sorteringsalgoritm baserad på paradigmet söndra-och-härska söndra: välj slumpvist ett element x (kallat pivot) och partitionera S till L element mindre än x E element lika med x G element större än x härska: sortera L och G kombinera L, E och G x x L E G x 8.15 Partitionering Vi partitionerar indata-sekvensen på följande vis: Vi tar bort, i tur och ordning, varje element y från S och Vi sätter in y i L, E eller G beroende på resultatet av jämförelsen med pivotelementet x Varje insättning och borttagning är i början eller slutet av en sekvens och tar alltså O(1) tid Alltså tar partitionerings-steget i quick-sort O(n) tid function PARTITION(S, p) L, E, G tomma sekvenser x S.REMOVE(p) while S.ISEMPTY() do y S.REMOVE(S.FIRST()) if y < x then L.INSERTLAST(y) else if y = x then E.INSERTLAST(y) else G.INSERTLAST(y) return L, E, G
5 Quick-sortträdet Exekveringen av quick-sort kan visualiseras som ett binärt träd Varje nod representerar ett rekursivt anrop till quick-sort och lagrar Osorterad sekvens före exekveringen och dess pivot Sorterad sekvens efter exekveringen Roten är ursprungsanropet Löven är anrop på delsekvenser av storlek 0 eller Exempel: Exekvering av quick-sort Val av pivot Exempel: Exekvering av quick-sort Partitionering, rekursivt anrop, val av pivot
6 Exempel: Exekvering av quick-sort Partitionering, rekursivt anrop, basfall Exempel: Exekvering av quick-sort Rekursivt anrop,..., basfall, kombinera Exempel: Exekvering av quick-sort Rekursivt anrop, val av pivot
7 Exempel: Exekvering av quick-sort Partitionering,..., rekursivt anrop, basfall Exempel: Exekvering av quick-sort Kombinera, kombinera Exekveringstid i värsta fallet Värsta fallet för quick-sort uppkommer när pivotelementet är ett unikt minimalt eller maximalt element en av L eller G har storlek n 1 och den andra har storlek 0 Exekveringstiden blir proportionell mot summan n + (n 1) Alltså, värstafallstiden för quick-sort är O(n 2 ) 8.25 Exekveringstid i värsta fallet 7
8 djup 0 1 tid n n-1 n Betrakta ett rekursivt anrop till quick-sort på en sekvens av storlek s Bra anrop: storlekarna av L och G är båda < 3s/4 Dåligt anrop: en av L och G har storlek 3s/ Bra anrop Dåligt anrop Ett anrop är bra med sannolikhet 1/2 Hälften av alla möjliga pivotelement orsakar bra anrop: Dåliga Bra pivotel. Dåliga 8.27 Probabilistiskt faktum: Det förväntade antalet slant-singlingar som behövs för att få klave k gånger är 2k För en nod på djup i förväntar vi oss att i/2 förfädrar är bra anrop storleken på indatasekvensen för det aktuella anropet är som mest (3/4) i/2 n Alltså har vi att För en nod på djup 2log 4/3 n är den förväntade storleken på indata 1 Den förväntade höjden på quick-sortträdet är O(logn) Mängden arbete som utförs i noderna på samma djup är O(n) Alltså är den förväntade exekveringstiden för quick-sort O(nlogn)
9 förväntad höjd s(r) tid per nivå O(n) s(a) s(b) O(n) O(log n) s(c) s(d) s(e) s(f) O(n) förväntad total tid: O(n log n) 8.29 Quick-sort med konstant extra minne Quick-sort kan implementeras för att köra in-place I partitioneringssteget använder vi ersättningsoperationer för att arrangera om elementen i indatasekvensen så att elementen mindre än pivotelementet har rank mindre än h elementen lika med pivotelementet har rank mindre mellan h och k elementen större än pivotelementet har rank större än k L E G h k 8.30 Algoritm för quick-sort med konstant extra minne procedure INPLACEQUICKSORT(S, l, r) if l r then return i slumpvist heltal mellan l och r x S.ELEMATRANK(i) (h, k) INPLACEPARTITION(x) INPLACEQUICKSORT(S, l, h 1) INPLACEQUICKSORT(S, k + 1, r) 8.31 Partitionering med konstant extra minne Utför partitioneringen m.h.a. två index för att dela S i L och E G (en liknande metod kan användas för att dela E G i E och G) h Upprepa till h och k möts/korsar varandra: Svep h åt höger till ett element pivotelementet hittas Svep k åt vänster till ett element < pivotelementet hittas Byt plats på elementen vid platserna h och k h k (pivot = 6) k
10 2 Urval 2.1 Introduktion Urvalsproblemet Givet ett heltal i och n element x 1,x 2,...,x n tagna från en totalordning, hitta det i:te minsta elementet i sekvensen. Vi kan sortera sekvensen i O(nlogn) tid och sedan indexera det i:te elementet i konstant tid. i= Kan vi lösa urvalsproblemet snabbare? Quick-select Quick-select Quick-Select är en randomiserad urvalsalgoritm baserat på paradigmet prune-and-search: Prune: välj x slumpmässigt och partitionera S till L element mindre än x E element lika med x G element större än x Search: beroende på i finns antingen svaret i E eller så behöver vi fortsätta rekursivt i någon av L eller G x x L i < L E G i > L + E i = i L E L < i < L + E (klart) 8.34 Partitionering Vi partitionerar indata-sekvensen som i algoritmen för quick-sort: Vi tar bort, i tur och ordning, varje element y från S och Vi sätter in y i L, E eller G beroende på resultatet av jämförelsen med pivotelementet x Varje insättning och borttagning är i början eller slutet av en sekvens och tar alltså O(1) tid Alltså tar partitioneringssteget i quick-select O(n) tid function PARTITION(S, p) L, E, G tomma sekvenser x S.REMOVE(p) while S.ISEMPTY() do y S.REMOVE(S.FIRST()) if y < x then L.INSERTLAST(y) else if y = x then E.INSERTLAST(y) else G.INSERTLAST(y) return L, E, G
11 Visualisering av Quick-select Exekveringen av quick-select kan visualiseras m.h.a. en rekursionsstig Varje nod representerar ett rekursivt anrop till quick-select och lagrar i och den kvarvarande sekvensen S i=5, S=( ) i=2, S=( ) i=2, S=( ) i=1, S=(7 6 5) Betrakta ett rekursivt anrop till quick-select på en sekvens av storlek s Bra anrop: storlekarna av L och G är båda < 3s/4 Dåligt anrop: en av L och G har storlek 3s/ Bra anrop Ett anrop är bra med sannolikhet 0.5 Hälften av alla möjliga pivotelement orsakar bra anrop: Dåligt anrop Dåliga pivotelement Bra pivotelement Dåliga pivotelement 8.37 Probabilistiskt faktum: Det förväntade antalet slantsinglingar som behövs för att få klave en gång är två Probabilistiskt faktum: Väntevärdet är en linjär funktion: E(X +Y ) = E(X) + E(Y ) E(cX) = ce(x) för varje konstant c Låt T (n) vara den förväntade exekveringstiden för quick-select Av det andra faktumet får vi T (n) b n g(n) + T (3n/4) där b är någon konstant g(n) är det förväntade antalet anrop innan ett bra anrop inträffar Alltså T (n) b n g(n) + T (3n/4) Genom det första faktumet får vi T (n) 2 b n + T (3n/4) D.v.s. T (n) är en geometrisk serie: T (n) 2 b n + 2 b n (3/4) + 2 b n (3/4) b n (3/4) Alltså gäller T (n) O(n) Vi kan lösa urvalsproblemet i förväntad tid O(n) (värstafallstiden är O(n 2 ))
Magnus Nielsen, IDA, Linköpings universitet
Föreläsning 7 Introduktion till sortering TDDC91,TDDE22,725G97: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 24 september 2018 Magnus Nielsen, IDA, Linköpings universitet 7.1 1
Föreläsning 11 Datastrukturer (DAT037)
Föreläsning 11 Datastrukturer (DAT037) Fredrik Lindblad 1 4 december 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tommy Färnqvist, IDA, Linköpings universitet. 1 Sortering Heap-sort Merge-sort Sammanfattning... 10
Föreläsning 9 Heap-sort, merge-sort. Undre gränser för sortering. Sortering i linjär tid? TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 4 oktober 2013 Tommy Färnqvist,
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,
Föreläsning 11 Innehåll
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift
Några svar till TDDC70/91 Datastrukturer och algoritmer
Några svar till TDDC70/91 Datastrukturer och algoritmer 2011--18 Följande är lösningsskisser och svar till uppgifterna på tentan. Lösningarna som ges här ska bara ses som vägledning och är oftast inte
Sortering. Intern/ extern? Antaganden. Vad kan vi kräva? Rank sort. Rank sort. På en nod/ distribuerad? Jämförelsebaserad/ icke jämförelsebaserad?
Sortering Föreläsning : Sorteringsalgoritmer Sortering: att ordna data i någon sekventiell ordning Sortering förekommer som del i många applikationer Kanonisk form för sorterat data? Skall den sorterade
Föreläsning 9. Sortering
Föreläsning 9 Sortering Föreläsning 9 Sortering Sortering och Java API Urvalssortering Instickssortering Söndra och härska Shellsort Mergesort Heapsort Quicksort Bucketsort Radixsort Läsanvisningar och
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 HT 2017 1 / 38 Sortering Varför
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning Metoder för algoritmdesign TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 7 december 015 Tommy Färnqvist, IDA, Linköpings universitet.1
Föreläsning 12. Söndra och härska
Föreläsning 12 Söndra och härska Föreläsning 12 Söndra och härska Maximal delsekvens Skyline Closest pair Växel Uppgifter Söndra och härska (Divide and conquer) Vi stötte på dessa algoritmer när vi tittade
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 10 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Lägre gräns för sortering Count sort,
TDDI16 Datastrukturer och algoritmer. Algoritmanalys
TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att
Föreläsning 12. Söndra och härska
Föreläsning 12 Söndra och härska Föreläsning 12 Söndra och härska Maximal delsekvens Skyline Closest pair Växel Söndra och härska (Divide and conquer) Vi stötte på dessa algoritmer när vi tittade på sortering.
Föreläsning 12 Innehåll
Föreläsning 12 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Datavetenskap (LTH) Föreläsning 12 VT 2018 1 / 40 Sortering Varför
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Sökning och sortering
Sökning och sortering Programmering för språkteknologer 2 Sara Stymne 2013-09-16 Idag Sökning Analys av algoritmer komplexitet Sortering Vad är sökning? Sökning innebär att hitta ett värde i en samling
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 1 Algoritmiska paradigm TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 15 oktober 013 Tommy Färnqvist, IDA, Linköpings universitet 1.1 Innehåll Innehåll 1 Dekomposition
Programmering för språkteknologer II, HT2014. Rum
Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer
Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2
Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1
SORTERING OCH SÖKNING
Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6
Datastrukturer, algoritmer och programkonstruktion (DVA104, VT 2015) Föreläsning 6? DAGENS AGENDA Komplexitet Ordobegreppet Komplexitetsklasser Loopar Datastrukturer Några nyttiga regler OBS! Idag jobbar
Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering
Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd
Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära
Vad har vi pratat om i kursen?
Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016
Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035
Tentamen med lösningsförslag Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.)
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-11-16 Idag Mängder, avbildningar. Hashtabeller. Sortering. Pseudokod Blandning av programmeringsspråk, matematisk notation och naturligt
Teoretisk del. Facit Tentamen TDDC (6)
Facit Tentamen TDDC30 2013-06-05 1 (6) Teoretisk del 1. (3p) "Snabba frågor" Alla svar motiveras väl. a) Vad skiljer en statisk metod från en icke-statisk? (0.5p) Svar:En statisk metod är associerad till
Föreläsning 7 Innehåll. Rekursion. Rekursiv problemlösning. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursion. Rekursivt tänkande:
Föreläsning 7 Innehåll Rekursion Rekursivt tänkande: Hur många år fyller du? Ett år mer än förra året! Rekursion Rekursiv problemlösning Binärsökning Generiska metoder Rekursiv problemlösning: Dela upp
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare
Prov i DAT 312: Algoritmer och datastrukturer för systemvetare Jacek Malec Datavetenskap, LU 11 april 2003 Datum 11 april 2003 Tid 14 19 Ansvarig lärare Jacek Malec (tel. 03 9890431) Hjälpmedel inga Antal
Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9
Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Omega, Theta Selectionsort, Shellsort,
Teoretisk del. Facit Tentamen TDDC (6)
Facit Tentamen TDDC30 2014-08-29 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för
Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering
Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer.
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 januari 2006 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem som
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT07) Fredrik Lindblad 1 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat07 1 Innehåll
Föreläsning 10 Innehåll. Prioritetsköer och heapar. ADT Prioritetskö. Interface för Prioritetskö. Exempel på vad du ska kunna
Föreläsning Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Implementering med lista ar Implementering av prioritetskö med heap Sortering
Föreläsning 6 Innehåll. Rekursion. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursiv problemlösning. Rekursion. Rekursivt tänkande:
Föreläsning 6 Innehåll Rekursion Begreppet rekursion Rekursiv problemlösning Samband mellan rekursion och induktion Söndra-och-härska-algoritmer Dynamisk programmering Undervisningsmoment: föreläsning
Algoritmer, datastrukturer och komplexitet
Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:
Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.
Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer
TDDI16 Datastrukturer och algoritmer Övningsuppgifter hösten 2014
TDDI16 Datastrukturer och algoritmer Övningsuppgifter hösten 2014 19 augusti 2014 Förord Detta är en samling av typiska problem rekommenderade för lektionerna i TDDI16 Datastrukturer och algoritmer Samlingen
Föreläsning 5 Innehåll
Föreläsning 5 Innehåll Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Datavetenskap (LTH) Föreläsning 5 VT 2019 1 / 39 Val av algoritm och datastruktur
Datastrukturer och algoritmer
Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att
Översikt. Stegvis förfining. Stegvis förfining. Dekomposition. Algoritmer. Metod för att skapa ett program från ett analyserat problem
Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS-regeln Procedurell dekomposition DRY-regeln Algoritmer Sortering och sökning Stegvis förfining Metod för att skapa ett program från
Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd
Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:
Linjär sökning. Föreläsning 12. Binär sökning. Exempel: Binära sökträd. Binärt sökträd
Föreläsning 2 Sökning, Sökträd och Sortering Linjär sökning Starta från början och sök tills elementet hittat eller sekvensen slut. Komplexitet Elementet finns: I medel gå igenom halva listan, O(n) Elementet
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Föreläsning 13 Innehåll
Föreläsning 13 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Heapar Implementering av prioritetskö med heap Klassen PriorityQueue i java.util Programexempel LPT-algoritmen
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-08-28 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är syftet med ett interface? (1p) Svar:Att ange vilka metoder som ska finnas, utan
Föreläsning 5: Dynamisk programmering
Föreläsning 5: Dynamisk programmering Vi betraktar en typ av problem vi tidigare sett: Indata: En uppsättning intervall [s i,f i ] med vikt w i. Mål: Att hitta en uppsättning icke överlappande intervall
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.'
Tentamen'('Datastrukturer,'algoritmer'och'programkonstruktion.' Skrivtid: 08.30 13.30 Hjälpmedel: Inga Lärare: Betygsgränser DVA104' Akademin)för)innovation,)design)och)teknik) Onsdag)2014:01:15) Caroline
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 14:00-19:00
TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 170117 kl. 14:00-19:00 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilagarna. *** OBS *** Betygsgräns:
Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek
Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt
Algoritmer och datastrukturer TDA143
Algoritmer och datastrukturer TDA143 2017 02 15 Uno Holmer Algoritmer och datastrukturer, TDA143, HT17, UH Algoritm Informell beskrivning: Ett antal steg som beskriver hur en uppgift utförs. Formell beskrivning:
Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet
Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter
Lösningsförslag till tentamen Datastrukturer, DAT037,
Lösningsförslag till tentamen Datastrukturer, DAT037, 2018-04-05 1. q.dequeue() tar O(1) (eventuellt amorterat) s.contains(x) tar O(1) pq.add(x) tar O(log i) I värsta fall exekveras innehållet i if-satsen.
Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering
2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:
Föreläsning 6. Sökträd: AVL-träd, Multi-Way -sökträd, B-träd TDDC70/91: DALG. Innehåll. Innehåll. 1 AVL-träd
Föreläsning 6 Sökträd: AVL-träd, Multi-Wa -sökträd, B-träd DDC7/9: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer september omm Färnqvist, IDA, Linköpings universitet 6. Innehåll
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, träd Weiss, avsnitt 4.7, 11.5, 12.2, etc.
Ännu mera träd: 2-3-träd, B-träd, rödsvarta träd, 2-3-4-träd Weiss, avsnitt 4.7, 11.5, 12.2, etc. Peter Ljunglöf DAT036, Datastrukturer 30 nov 2012 1 2-3-träd [inte i kursboken] Ett 2-3-träd har två sorters
Teoretisk del. Facit Tentamen TDDC kl (6) 1. (6p) "Snabba frågor" Alla svar motiveras väl.
Facit Tentamen TDDC30 2015-03-19 kl 08-12 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Varför väljer man ofta synligheten private hellre än public för medlemsvariabler i en klass?
Tentamen Datastrukturer D DAT 036/INN960
Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen
Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett
Datastrukturer D. Föreläsning 2
Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Föreläsning 5 TDDC91,TDDE22,725G97: DALG. Föreläsning i Datastrukturer och algoritmer 18 september 2018
Föreläsning 5 TDDC91,TDDE22,725G97: DALG Föreläsning i Datastrukturer och algoritmer 18 september 2018 Institutionen för datavetenskap Linköpings universitet 5.1 Introduktion find,insert och remove i ett
Lösning av några vanliga rekurrensekvationer
1 (8) Lösning av några vanliga rekurrensekvationer Rekursiv beräkning av X n En rekursiv funktion som beräknar x n genom upprepad multiplikation, baserat på potenslagarna X 0 = 1 X n+1 = X X n float pow(float
TDDC70/TDDC91 Datastrukturer och algoritmer Övningsuppgifter hösten 2013
TDDC70/TDDC91 Datastrukturer och algoritmer Övningsuppgifter hösten 2013 16 september 2013 Förord Detta är en samling av typiska problem rekommenderade för lektionerna i TDDC70/TDDC91 Datastrukturer och
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 5 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Algoritmanalys Tidskomplexitet, Rumskomplexitet
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas 22 september 2015 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av problem
Exempeltentafrågor i TDDD86 Datastrukturer, algoritmer och programmeringsparadigm
Exempeltentafrågor i TDDD86 Datastrukturer, algoritmer och programmeringsparadigm 5 december 2014 1. Bevisa eller motbevisa följande påståenden genom att använda definitionerna. (a) (n + 1) 2 O(n 3 ) (b)
Föreläsning 10 Datastrukturer (DAT037)
Föreläsning 10 Datastrukturer (DAT037) Fredrik Lindblad 1 29 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Tommy Färnqvist, IDA, Linköpings universitet
öreläsning 3 Stackar, köer och listor TDDC70/91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 10 september 2013 Tommy ärnqvist, IDA, Linköpings universitet 31 Innehåll Introduktion
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2015-08-28 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Programmering för språkteknologer II. OH-serie: Sökning och sortering. Algoritm
Programmering för språkteknologer II OH-serie: Sökning och sortering Mats Dahllöf Sökning och sortering Sökning: lokalisera objekt i samlingar. Finns ett visst värde? I så fall: var? Sortering: placera
Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden
Sortering Brute-force Sortering Ordna element enligt relation mellan nyckelvärden Flera olika algoritmer med olika fördelar Brute-force Gå igenom alla permutationer och hitta den där elementen ligger i
Föreläsning 9 Innehåll. Söndra och härska. Fibonaccitalen. Söndra och härska. Divide and conquer teknik för att konstruera rekursiva algoritmer.
Föreläsning 9 Innehåll Mer om rekursion söndra-och-härska-algoritmer dynamisk programmering backtracking Orientering om versionshantering med git Söndra och härska Divide and conquer teknik för att konstruera
DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011
DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.
Föreläsning 13. Rekursion
Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)
Asymptotisk komplexitetsanalys
1 Asymptotisk komplexitetsanalys 2 Lars Larsson 3 4 VT 2007 5 Lars Larsson Asymptotisk komplexitetsanalys 1 Lars Larsson Asymptotisk komplexitetsanalys 2 et med denna föreläsning är att studenterna skall:
Kapitel 7: Analys av sorteringsalgoritmer
Kapitel 7: Analys av sorteringsalgoritmer Kapitel 7 i Weiss bok handlar om problemet med att sortera en räcka av element vi skall analysera körtiderna för några av sorteringsalgoritmerna vi bevisar också
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Tentamen Datastrukturer D DAT 035/INN960
Tentamen Datastrukturer D DAT 035/INN960 22 december 2006 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser,
Rekursion och induktion för algoritmkonstruktion
Informationsteknologi Tom Smedsaas, Malin Källén 20 mars 2016 Rekursion och induktion för algoritmkonstruktion Att lösa ett problem rekursivt innebär att man uttrycker lösningen i termer av samma typ av
TDDC91 & TDDE22 & 725G97 Datastrukturer och algoritmer Datortentamen (DAT1) , 08 12
Linköpings Tekniska Högskola 29 oktober 2018 Institutionen för Datavetenskap Magnus Nielsen TDDC91 & TDDE22 & 725G97 Datastrukturer och algoritmer Datortentamen (DAT1) 2018-10-29, 08 12 Examinator: Erik
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Tommy Färnqvist, IDA, Linköpings universitet. 2 Rekursion i C Implementation av rekursion Svansrekursion En till övning...
Föreläsning 15 Rekursion TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 2 november 2015 Tommy Färnqvist, IDA, Linköpings universitet 15.1 Innehåll