Seminarium 13 Innehåll

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Seminarium 13 Innehåll"

Transkript

1 Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet ska du kunna lösa uppgifterna till och med kapitel 12 i övningshäftet EDAA30 (Seminarium 13) HT / 38

2 Prioritetsköer och heapar Exempel på vad du ska kunna Redogöra för vilka operationer som skall finnas i den abstrakta datatypen prioritetskö. Redogöra för olika sätt att implementera en prioritetskö och kunna jämföra dem med avseende på tidskomplexitet. Använda klassen java.util.priorityqueue Förklara begreppet heap Förklara hur en heap kan implementeras med hjälp av en vektor Förklara hur insättning, borttagning och sökning efter högst prioriterat element går till i en heap och ange dessa metoders tidskomplexitet. Förklara hur man bygger en heap på linjär tid från en osorterad samling Redogöra för algoritmen Heapsort och dess värstafallstid. EDAA30 (Seminarium 13) HT / 38

3 Prioritetskö Vanlig kö bevarar tidsordning Borttagning avser alltid äldsta elementet. Prioritetskö det viktigaste först Ex: processer som köar för att få tillgång till CPU i dator Ex: väntande patienter på en akutmottagning Prioritetsköer används också som hjälpmedel i vissa algoritmer. Ex: sortering återkommer vi till Ex: grafalgoritmer (kortaste väg m.m.) ingår i en följande kurs EDAA30 (Seminarium 13) HT / 38

4 ADT Prioritetskö En prioritetskö är en samling element för vilka jämförelse är definierad. Elementen innehåller ett eller flera attribut som modellerar elementets prioritet. Jämförelser baseras på prioriteten. Ex: Personer som väntar på en akutmottagning kan beskrivas av en klass som innehåller ett heltalsattribut som anger prioritet. Många element kan ha samma prioritet. I en prioritetskö ska finnas operationer för att sätta in element. ta reda på det högst prioriterade elementet. ta bort det högst prioriterade elementet. EDAA30 (Seminarium 13) HT / 38

5 Interface för Prioritetskö I Java finns inget speciellt interface för prioritetsköer. Man använder interfacet Queue<E>. En konkret klass PriorityQueue<E> implementerar Queue<E>: public class PriorityQueue<E> implements Queue<E> { boolean offer(e x) {...} E peek() {...} E poll() {...}... } Konvention: lågt värde på prioritetsattribut anger hög prioritet. peek() returnerar minsta elementet i kön. poll() tar bort och returnerar minsta elementet i kön. EDAA30 (Seminarium 13) HT / 38

6 Klassen PriorityQueue i java.util Det finns flera konstruktorer, bl. a.: 1 PriorityQueue() 2 PriorityQueue(int initialcapacity, Comparator<? super E> c) Den första konstruktorn förutsätter att elementen implementerar Comparable, annars genereras ClassCastException. Används den andra konstruktorn jämförs elementen med hjälp av komparatorn c. EDAA30 (Seminarium 13) HT / 38

7 Prioritetskö - implementering Lista sorterad eller osorterad Om sorterad: peek och poll blir O(1) offer blir O(n) rätt plats för elementet måste letas upp Om osorterad: peek och poll blir O(n) minsta element måste letas upp offer blir O(1) elementet kan sättas in först Heap ger effektivare operationer EDAA30 (Seminarium 13) HT / 38

8 Heap Definition Heap En heap är ett komplett binärt träd där varje nod innehåller ett element som är barnens element. Trädet har alltså formen För varje delträd gäller att roten innehåller det minsta elementet. EDAA30 (Seminarium 13) HT / 38

9 Heap Exempel och motexempel Heap Ingen heap. Fel form, men korrekt ordning Ingen heap. Rätt form men ej korrekt ordning EDAA30 (Seminarium 13) HT / 38

10 Heap Representation En heap kan med fördel lagras i en vektor. Roten finns på plats 0. Barnen till noden på plats i finns på platserna 2i + 1 och 2i + 2 i vektorn. Noden på plats i har alltså sin förälder på plats (i 1)/ EDAA30 (Seminarium 13) HT / 38

11 Implementering av PriorityQueue public class PriorityQueue<E> implements Queue<E> { private E[] queue; private int size;... konstruktorer... } boolean offer(e x) {...} E peek() {...} E poll() {...}... EDAA30 (Seminarium 13) HT / 38

12 offer Implementering Nya elementet placeras på första lediga plats i vektorn. Detta ger rätt form på trädet. Sedan byten uppåt tills rätt ordning. Kallas percolate up eller addleaf. Ex: Sätt in element med nyckel 1 i heapen: EDAA30 (Seminarium 13) HT / 38

13 offer Implementering, forts 2 2 Byt! 1 Klart! Byt! EDAA30 (Seminarium 13) HT / 38

14 offer Tidskomplexitet Eftersom en heap är ett komplett binärt träd så gäller h log n där n är antal noder och h är höjden. Den nya noden kan i värsta fall behöva jämföras (och bytas) med alla element på vägen upp till roten. De är h st. Således är antalet jämförelser i värsta fall log n. I medeltal blir det inte så många byten. Man har visat att det blir O(1) byten i medelfall. EDAA30 (Seminarium 13) HT / 38

15 peek Implementering peek: Minsta element finns på plats 0 i vektorn! Blir O(1)-operation. EDAA30 (Seminarium 13) HT / 38

16 poll Implementering Tag bort noden på plats 0 i vektorn. Ersätt med den som finns på sista plats. Ger rätt form, men roten har nu troligtvis fel storleksförhållande till sina barn. Byt med minsta av barnen tills ordningen ok. Kallas percolate down eller addroot. Ex: Utför poll() på: EDAA30 (Seminarium 13) HT / 38

17 poll Implementering, forts Byt med minsta av barnen! Byt med minsta av barnen! Klart! EDAA30 (Seminarium 13) HT / 38

18 poll Tidskomplexitet I värsta fall får jämförelse med barnen och byten upprepas ända ner till ett löv. Värstafallskostnad för poll blir således O(log n). Eftersom det är en nod långt nedifrån (och alltså sannolikt en nod med ett stort element) i trädet som sätts in i roten och byts nedåt så kommer bytena ofta att behöva fortsätta ända ned till ett löv. Medelfallet kan också visas vara O(log n). EDAA30 (Seminarium 13) HT / 38

19 Bygga heap från osorterad samling Ibland vill man kunna bygga en prioritetskö av en samling osorterade element. Ett sätt är att sätta in elementen i samlingen i en från början tom kö: skapa tom prioritetskö q för varje element, x, i samlingen q.offer(x) Detta koster O(n log n) om det är n element i samlingen. Det går att göra effektivare om man kan arbeta direkt med den vektor (heap) som representerar prioritetskön. EDAA30 (Seminarium 13) HT / 38

20 Bygga heap från osorterad samling Ny konstruktor i klassen PriorityQueue Lägg till en konstruktor i klassen PriorityQueue: PriorityQueue(Collection<? extends E> c) { queue =...; // skapa en vektor, med tillräcklig storlek /* Lägg över alla element ur c i vektorn queue */ int i = 0; for(e e : c) { queue[i] = e; i++; } size = c.size(); } heapify(); // hjälpmetod, se nästa bild EDAA30 (Seminarium 13) HT / 38

21 Hjälpmetoden heapify heapify() bygger en heap (på plats) av en osorterad vektor. Idén är att bygga om det träd vektorn representerar till en heap nedifrån och upp. Ex: Utgå från följande vektor: Bygg en heap på plats i vektorn genom att utföra percolate down med början på den nod som finns på plats n/2 1 sedan på plats n/2 2,..., Börja alltså med percolate down på detta delträd! EDAA30 (Seminarium 13) HT / 38

22 Hjälpmetoden heapify Forts Fortsätt med percolate down här! Sedan percolate-down på roten, som efter byte (i detta fall med vänster barn) innebär att vi eventuellt måste fortsätta med underträd precis som i poll EDAA30 (Seminarium 13) HT / 38

23 heapify - tidskomplexitet I heapify börjar vi på den näst nedersta nivån i trädet och ser till att dessa underträd blir heapordnade. Dessa träd har maximalt höjden 1 och det blir maximalt ett byte i vardera underträd. Sedan fortsätter vi på nivån över. Här finns färre noder, men underträden har maximalt höjden 2. De utför vardera därför maximalt 2 byten etc. Ju högre upp i trädet desto färre noder men desto fler byten nedåt i värsta fall. Man kan visa att heapify kostar O(n) där n är antalet element i vektorn. EDAA30 (Seminarium 13) HT / 38

24 heapify - tidskomplexitet Forts Jämför med att bygga heapen med successiva offer: offer sätter in elementet sist i vektorn (längst ned i trädet) och därefter sker byten uppåt tills trädet är heapordnat. Tidiga insättningar på låga nivåer i trädet kan maximalt behöva flyttas färre steg uppåt än senare insättningar längre ned i trädet. Det är också färre noder på nivåer nära roten än på nivåer längre från roten, d.v.s. här riskerar många noder långa bytesskedjor. EDAA30 (Seminarium 13) HT / 38

25 heapify - implementering Koden för heapify blir enkel: private void heapify() { for (int i = (size - 2) / 2; i >= 0; i--) { percolatedown(i); } } Sista elementet finns på plats size 1 i vektorn dess förälder finns på plats (size 2)/2. percolatedown(k) en metod som med start på noden på plats k i vektorn utför byten nedåt i heapen så länge ordningen är felaktig. (Denna metod används även av operationen poll.) EDAA30 (Seminarium 13) HT / 38

26 Effektiv sortering med hjälp av prioritetskö Sorteringsidé, för att sortera en vektor a: PriorityQueue<E> myq = new PriorityQueue<E>(); for (int i = 0; i < a.length; i++) { myq.offer(a[i]); } for (int i = 0; i < a.length; i++) { a[i] = myq.poll(); } Tidskomplexitet (n = a.length): n gånger offer och n gånger poll ger O(n log n) EDAA30 (Seminarium 13) HT / 38

27 Effektiv sortering med hjälp av prioritetskö Kommentarer Elementen flyttas från vektorn till en annan intern vektor som representerar kön. Det behövs alltså extra minnesutrymme proportionellt mot storleken på den mängd som ska sorteras. Prioritetskön byggs med successiva offer. Men vi vet att vi kan bygga en prioritetskö effektivare med heapify. Båda punkterna kan förbättras om vi har tillgång till den vektor som representerar kön. Se följande bilder. EDAA30 (Seminarium 13) HT / 38

28 Sortering på plats i en vektor som representerar en minheap Ex: Gör successiva poll på följande minheap: Efter ett poll Den lediga platsen utnyttjas för att lagra 10. EDAA30 (Seminarium 13) HT / 38

29 Sortering på plats i en vektor som representerar en minheap Forts Ex: Gör successiva poll på följande minheap: Nästa poll tar bort 20. Det borttagna elementet 20 placeras på den lediga platsen. Etc... Slutligen har vi en vektor sorterad i omvänd ordning. EDAA30 (Seminarium 13) HT / 38

30 Heapsort Man kan få vektorn sorterad i växande ordning om man i stället bygger en max-heap, dvs en heap där förälderns nyckel barnens nycklar. Man tar sedan successivt ut största elementet. Ex: sortera en vektorn { } Se följande bilder. EDAA30 (Seminarium 13) HT / 38

31 Heapsort Vi börjar med att utföra heapify på vektorn men nu så att föräldrar blir större än barn EDAA30 (Seminarium 13) HT / 38

32 Heapsort Den resulterande heapen är alltså: Tag ut största talet (första platsen). Flytta sista noden (20) till luckan som då uppstår på plats 0. Flytta samtidigt den borttagna noden (150) till vektorns sista plats. Blir alltså byte mellan första och sista: EDAA30 (Seminarium 13) HT / 38

33 Heapsort De n-1 första elementen i vektorn representerar trädet: 20 Återställ heapordningen i trädet genom percolate-down (blir två byten): EDAA30 (Seminarium 13) HT / 38

34 Heapsort Tag bort det största elementet och byt med elementet på plats n-2: Återställ heapordningen i trädet genom percolate-down (blir ett byte): Nu är två element på rätt plats. De n-2 första representerar trädet: Etc... EDAA30 (Seminarium 13) HT / 38

35 Heapsort - sammanfattning Sorterar n element i en vektor på plats. Effektiv O(n log n) i värsta fall. Efter k steg i algoritmen är de k största elementen sorterade. Metoden kan alltså avbrytas om vi endast vill ta reda på de k största elementen. Vi kommer att behandla fler effektiva sorteringsalgoritmer senare i kursen. EDAA30 (Seminarium 13) HT / 38

36 Alternativ representation av prioritetsköer Balanserade binära sökträd är ett tänkbart alternativ: Fungerar dock bara om prioriteterna är unika. Minsta elementet finns längst ner till vänster. Alla operationerna blir O(log n). Om prioriteterna är heltal i ett känt begränsat intervall, t.ex. 1..k: Använd en vektor med listor. Vektorstorlek k + 1. Lägg element med prioriteten j i den lista som finns på plats j i vektorn. Operationerna får konstant tidskomplexitet (k är en konstant). Men ingen generell lösning. EDAA30 (Seminarium 13) HT / 38

37 Alternativ representation av prioritetsköer Många algoritmer som använder prioritetsköer som hjälpmedel behöver fler operationer: decreasekey(...), increasekey(...) höj/sänk prioriteten på ett element som befinner sig i kön. Det går att använda en heap, men elementen som sätts in måste innehålla information om på vilken plats de befinner sig i vektorn så att de kan flyttas från denna till rätt plats med hänsyn till ordningen. (Utan information om elementets plats skulle man behöva söka igenom vektorn efter elementet). I ett av alternativen för inlämningsuppgiften implementeras en sådan prioritetskö. EDAA30 (Seminarium 13) HT / 38

38 Alternativ representation av prioritetsköer Om man behöver slå ihop prioritetsköer kan Fibonacciheap användas: Kön representeras här av en mängd (skog av) träd. Kan utföra alla operationer inklusive decreasekey, delete och merge effektivt. Kallas Fibonacciheap eftersom Fibonaccitalen används vid analys av tidskomplexiteten. EDAA30 (Seminarium 13) HT / 38

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap

Läs mer

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

13 Prioritetsköer, heapar

13 Prioritetsköer, heapar Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Föreläsning 11 Innehåll

Föreläsning 11 Innehåll Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,

Läs mer

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir

Läs mer

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning. Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer

Läs mer

Teoretisk del. Facit Tentamen TDDC (6)

Teoretisk del. Facit Tentamen TDDC (6) Facit Tentamen TDDC30 2014-08-29 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för

Läs mer

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma

Läs mer

Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering

Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer.

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map i Java Undervisningsmoment:

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal)

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal) Föreläsning 0 Innehåll Diskutera Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map ijava Undervisningsmoment:

Läs mer

Interfacen Set och Map, hashtabeller

Interfacen Set och Map, hashtabeller Föreläsning 0 Innehåll Hashtabeller implementering, effektivitet Interfacen Set och Map ijava Interfacet Comparator Undervisningsmoment: föreläsning 0, övningsuppgifter 0-, lab 5 och 6 Avsnitt i läroboken:

Läs mer

Datastrukturer. Föreläsning 5. Maps 1

Datastrukturer. Föreläsning 5. Maps 1 Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

Inlämningsuppgift och handledning

Inlämningsuppgift och handledning Inlämningsuppgift och handledning Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder på fredagluncher

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng

Läs mer

Algoritmer och datastrukturer 2012, fo rela sning 8

Algoritmer och datastrukturer 2012, fo rela sning 8 lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till

Läs mer

Tentamen Datastrukturer för D2 DAT 035

Tentamen Datastrukturer för D2 DAT 035 Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller Inlämningsuppgift och handledning Föreläsning 11 Innehåll Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket

Läs mer

Programmering fortsättningskurs

Programmering fortsättningskurs Programmering fortsättningskurs Philip Larsson 2013 03 09 Innehåll 1 Träd 1 1.1 Binära träd........................................ 1 1.2 Strikt binärt träd..................................... 1 1.3 Binärt

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Föreläsning 5 Datastrukturer (DAT037)

Föreläsning 5 Datastrukturer (DAT037) Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop

Läs mer

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften

Läs mer

Tentamen Datastrukturer (DAT036/DAT037/DIT960)

Tentamen Datastrukturer (DAT036/DAT037/DIT960) Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

Föreläsning 9. Sortering

Föreläsning 9. Sortering Föreläsning 9 Sortering Föreläsning 9 Sortering Sortering och Java API Urvalssortering Instickssortering Söndra och härska Shellsort Mergesort Heapsort Quicksort Bucketsort Radixsort Läsanvisningar och

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,

Läs mer

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet.

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet. -Algoritmer och Datastrukturer- Abstrakt datatyp Datatyp för en variabel Betecknar i ett programmeringsspråk den mängd värden variabeln får anta. T ex kan en variabel av typ boolean anta värdena true och

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2015-03-19 Sal Tid 14:00 18:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett

Läs mer

Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller

Sökning. Översikt. Binärt sökträd. Linjär sökning. Binär sökning. Sorterad array. Linjär sökning. Binär sökning Hashtabeller Översikt Linjär sökning Sökning Binär sökning Hashtabeller Programmering tillämpningar och datastrukturer 2 Linjär sökning Binärt sökträd Undersök ett element i taget tills du hittar det sökta Komplexitet

Läs mer

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5

Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5 Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer Tentamen i.. TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2012-12-21 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

Länkade strukturer, parametriserade typer och undantag

Länkade strukturer, parametriserade typer och undantag Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer

Läs mer

Föreläsning 10. ADT:er och datastrukturer

Föreläsning 10. ADT:er och datastrukturer Föreläsning 10 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad

Läs mer

Föreläsning 13 Datastrukturer (DAT037)

Föreläsning 13 Datastrukturer (DAT037) Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning

Läs mer

Teoretisk del. Facit Tentamen TDDC (6)

Teoretisk del. Facit Tentamen TDDC (6) Facit Tentamen TDDC30 2013-06-05 1 (6) Teoretisk del 1. (3p) "Snabba frågor" Alla svar motiveras väl. a) Vad skiljer en statisk metod från en icke-statisk? (0.5p) Svar:En statisk metod är associerad till

Läs mer

Lösningsförslag för tentamen i Datastrukturer (DAT037) från

Lösningsförslag för tentamen i Datastrukturer (DAT037) från Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser

Läs mer

Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek

Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer Tentamen i... TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2011-12-19 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar

Läs mer

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas

Läs mer

Ekvivalensrelationer

Ekvivalensrelationer Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element

Läs mer

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2 Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).

Läs mer

Föreläsning 11. ADT:er och datastrukturer

Föreläsning 11. ADT:er och datastrukturer Föreläsning 11 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad

Läs mer

Länkade strukturer. (del 2)

Länkade strukturer. (del 2) Länkade strukturer (del 2) Översikt Abstraktion Dataabstraktion Inkapsling Gränssnitt (Interface) Abstrakta datatyper (ADT) Programmering tillämpningar och datastrukturer 2 Abstraktion Procedurell abstraktion

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar

Läs mer

TDDC Terminologi Uppdaterad Fö #1

TDDC Terminologi Uppdaterad Fö #1 Det här dokumentet ska inte ses som en uttömmande förklaring av varje term, utan snarare som en snabb påminnelse om vad varje enskild term betydde. För en mer noggrann beskrivning, se kursmaterialet eller

Läs mer

Tentamen TEN1 HI

Tentamen TEN1 HI Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-06-05 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

Datastrukturer. föreläsning 6. Maps 1

Datastrukturer. föreläsning 6. Maps 1 Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100

Läs mer

Facit Tentamen TDDC (7)

Facit Tentamen TDDC (7) Facit Tentamen TDDC30 2014-03-18 1 (7) Teoretisk del 1. (3p) "Snabba frågor" a) Varför kan man tänkas vilja dölja metoder och variabler med private? (0.5p) Svar:För att skydda interna variabler från ändringar

Läs mer

Datastrukturer och Algoritmer D0041D

Datastrukturer och Algoritmer D0041D Luleå Tekniska Universitet 19 mars 2014 Laborationsrapport Laboration 3 Datastrukturer och Algoritmer D0041D Primms Algoritm Namn E-mail Magnus Björk magbjr-3@ltu.student.se Handledare Felix Hansson Primms

Läs mer

Algoritmer. Två gränssnitt

Algoritmer. Två gränssnitt Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;

Läs mer

Föreläsning REPETITION & EXTENTA

Föreläsning REPETITION & EXTENTA Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor

Läs mer

ADS : STACK ADT: STACK. Stack och Kö -Implementering - Tilllämpningar. Oftast förekommande metoder i Stack. TopOfStack

ADS : STACK ADT: STACK. Stack och Kö -Implementering - Tilllämpningar. Oftast förekommande metoder i Stack. TopOfStack Stack och Kö -Implementering - Tilllämpningar ADS : STACK Det finns ett par vanligt förekommande ADT:er för samlingar av element som egentligen är specialfall av listor. En av dem är Stack Definition:

Läs mer

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd

Föreläsning 2. AVL-träd, Multi-Way -sökträd, B-träd TDDD71: DALG. Innehåll. Innehåll. 1 Binära sökträd Föreläsning AVL-träd, Multi-Wa -sökträd, B-träd DDD7: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer november 5 omm Färnqvist, IDA, Linköpings universitet. Innehåll Innehåll Binära

Läs mer

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2 Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek

Läs mer

Föreläsning 5: Grafer Del 1

Föreläsning 5: Grafer Del 1 2D1458, Problemlösning och programmering under press Föreläsning 5: Grafer Del 1 Datum: 2006-10-02 Skribent(er): Henrik Sjögren, Patrik Glas Föreläsare: Gunnar Kreitz Den här föreläsningen var den första

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31 Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

Föreläsning 13. Träd

Föreläsning 13. Träd Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.

Läs mer

Vad har vi pratat om i kursen?

Vad har vi pratat om i kursen? Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet

Läs mer

DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011

DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011 DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.

Läs mer

TDDC30 Programmering i Java, datastrukturer och algoritmer

TDDC30 Programmering i Java, datastrukturer och algoritmer LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Jonas Wallgren Tentamen i TDDC30 Programmering i Java, datastrukturer och algoritmer För I3, Ii3 Datum: 2009-04-17 Klockan: 14-18 Jour: Jonas Wallgren,

Läs mer