Föreläsning 3 Datastrukturer (DAT037)
|
|
- Thomas Sundström
- för 9 månader sedan
- Visningar:
Transkript
1 Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se
2 Förra gången Amorterad tidskomplexitet Dynamisk array Generics ADT-er/datastrukturer Introduktion till Listor, stackar, köer
3 Abstrakt datatyp/datastruktur Abstrakt datatyp (matematisk abstraktion): lista Datastrukturer (implementation): Array Enkellänkad lista
4 Listor, stackar och köer: ADT-er ADT Stack Kö Lista Iterator Operationer (exkl konstruerare) push, pop enqueue, dequeue add(x), add(x, i), remove(x), remove(i), get(i), set(i, x), contains(x), size, iterator hasnext, next, remove (Inte exakta definitioner)
5 Listor, stackar och köer: datastrukturer ADT Implementationer Lista dynamisk array, enkellänkad lista, dubbellänkad lista Stack lista Kö lista, cirkulär array
6 ADT-er Kan använda en datastruktur för en viss ADT för att implementera en annan ADT
7 Collections i Java Java Collections Framework ADT gränssnitt, datastruktur klass
8 Stackar och köer: tillämpningar Stackar Implementera rekursion Evaluera postfix-uttryck Köer Skrivarköer Bredden först-sökning (grafalgoritm)
9 Länkade listor
10 Länkade listor Många varianter: Objekt med pekare till första noden, kanske storlek Pekare till sista noden? Enkellänkad, dubbellänkad? Vaktposter (sentinels)? Först/sist/både och?
11 Dubbellänkad lista med dubbla vaktposter public class DoublyLinkedList<A> { private class ListNode { A contents; ListNode next; // null omm sista vakten ListNode prev; // null omm första vakten } }
12 Dubbellänkad lista med dubbla vaktposter public class DoublyLinkedList<A> { private ListNode first, last; private int size; // Ej null } // Konstruerar tom lista public DoublyLinkedList() { first = new ListNode(); last = new ListNode(); firstnext = last; lastprev = first; size = 0; }
13 Implementera metoden add som lägger till ett element i slutet av listan void add(a x) { }
14 void add(a x) { Link l = new Link(); lcontents = x; lnext = last; lprev = lastprev; lastprevnext = l; lastprev = l; size++; }
15 Listor: tidskomplexitet add(x) add(x, i) remove(x) remove(i) get(i) set(i, x) contains(x) size iterator hasnext/next remove Dynamisk array Dubbellänkad lista
16 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) remove(x) remove(i) get(i) set(i, x) contains(x) size iterator hasnext/next remove Dubbellänkad lista
17 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) remove(i) get(i) set(i, x) contains(x) size iterator hasnext/next remove Dubbellänkad lista
18 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) get(i) set(i, x) contains(x) size iterator hasnext/next remove Dubbellänkad lista
19 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) set(i, x) contains(x) size iterator hasnext/next remove Dubbellänkad lista
20 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) contains(x) size iterator hasnext/next remove Dubbellänkad lista
21 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) size iterator hasnext/next remove Dubbellänkad lista
22 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) O(n) O(n) size iterator hasnext/next remove Dubbellänkad lista
23 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) O(n) O(n) size O(1) O(1) iterator hasnext/next remove Dubbellänkad lista
24 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) O(n) O(n) size O(1) O(1) iterator O(1) O(1) hasnext/next remove Dubbellänkad lista
25 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) O(n) O(n) size O(1) O(1) iterator O(1) O(1) hasnext/next O(1) O(1) remove Dubbellänkad lista
26 Listor: tidskomplexitet Dynamisk array add(x) O(1) am O(1) add(x, i) O(n) O(n) remove(x) O(n) O(n) remove(i) O(n) O(n) get(i) O(1) O(n) set(i, x) O(1) O(n) contains(x) O(n) O(n) size O(1) O(1) iterator O(1) O(1) hasnext/next O(1) O(1) remove O(n) O(1) Dubbellänkad lista
27 Listor: tidskomplexitet Några kommentarer: remove, contains: Givet att jämförelser tar konstant tid Indexbaserade operationer för länkade listor: Bättre än Θ(n) om man vet att i pekar nära början (eller i vissa fall slutet) av listan
28 Testning
29 Invariant Egenskap som alltid gäller för programmets tillstånd Exempel: 1 first!= null 2 lastnext = null 3 nnextprev = n (om n ej är vaktpost) 4 firstnext size+1 = last Invarianter bryts ibland temporärt när objekt uppdateras
30 Precondition Krav som förväntas vara uppfyllt då metod anropas Exempel: pop kräver att stacken inte är tom
31 Postcondition Egenskap som är uppfylld efter anrop, givet preconditions och invarianter Exempel: Efter push är stacken inte tom
32 Assertion Man kan testa vissa egenskaper med assertions Kan vara smidigt för att hitta/undvika fel i labbar Failjava public class Fail { public static void main (String[] args) { assert argslength == 2; } } $ javac Failjava $ java Fail $ java -ea Fail ett två $ java -ea Fail Exception in thread "main" javalangassertionerror at Failmain(Failjava:3)
33 Assertion // Skapar ny /intern/ listnod // Precondition: prev!= null && next!= null ListNode(A contents, ListNode prev, ListNode next) { assert prev!= null && next!= null; thiscontents = contents; thisprev = prev; thisnext = next; } Nu leder new ListNode(x,firstprev,firstnext) till ett AssertionError (med -ea), inte ett kryptiskt fel senare
34 Assertion // Lägger till x efter n // Precondition: n!= null && n!= last void addafter(listnode n, A x) { assert n!= null && n!= last; } ListNode next = nnext; nnext = new ListNode(x, n, next); nextprev = nnext; size++; void addfirst(a x) { addafter(first, x); }
35 Exempel på metod som kontrollerar invarianter hos en instans av den dubbellänkade listan vi tittade på tidigare private void checkinvariants() { assert first!= null && last!= null; assert firstprev == null; assert lastnext == null; assert size >= 0; Link l = first; for (int i = -1; i < size; i++) { assert lnext!= null; assert lnextprev == l; l = lnext; } assert l == last; }
36 Korrekthet Hur kan man förvissa sig om att man löst en uppgift korrekt? Bevis Kan vara svårt, ta mycket tid Tester Kan gå snabbare
37 Tester När ni jonglerar pekare (på papper eller i dator): Testa gärna lösningen Några representativa fall: Tom lista Lista med några element
38 Träd
39 Träd Är ytterligare ett exempel på en ADT Är dock inte så tydligt vilken standarduppsättningen av metoder skulle vara Därför är träd är inte en ADT (ett interface) i java collection framework och man implementerar träd från början när man behöver dem
40 Abstrakt beskrivning A B C D O J P E Q K F R G I M H L N
41 Termer Träd(trees) består av noder, som har 0 eller flera underordnade noder/delträd Noderna är förbundna med bågar(edges) Noden som är underordnad en annan kallas barn(child), den överordnade noden för förälder(parent) En indirekt överordnad nod kallas förfader(ancestor) och indirekt underordnad för avkomling(descendant) Noder som har samma förälder kallas syskon(siblings) I varje träd finns en nod som är rot Den har ingen förälder Alla andra noder i ett träd har en förälder Noder som inte har några barn kallas löv(leaves)
42 Trädstrukturer brukar ritas upp-och-ner jämför med riktiga träd, dvs med roten högst upp En mängd av träd kallas skog(forest) I ett ordnat träd har syskonen en inbördes ordning Motsatsen är oordnat träd Jmf lista gentemot mängd
43 Användningsområden Filsystem, klassificering med kategorier och underkategorier, representation för matematiska uttryck, programmeringsspråk och naturliga språk Som konkrek implementering för ADTer används det till sorterade samlingar och avbildningar samt prioritetsköer, tex PriorityQueue och TreeMap i java
44 Fler definitioner Längden(length) av en väg(path) mellan två noder = antal passerade bågar Djupet(depth) av en nod är längden till roten Höjden(height) av en nod är längsta vägen ner till ett löv Höjden av ett träd = rotens höjd Storleken(size) av ett träd är antalet noder
45 Implementering Pekare motsvarar länkade listor för listor Detta funkar för alla typer av träd Array effektivt för vissa typer av träd, tex binära heapar som vi kommer titta på nästa gång
46 Representation med pekare En lokal klass för noder I huvudklassen en pekare till rotnoden I nodklassen en pekare till varje barn Ibland pekare till föräldern Om obegränsat antal barn lista (ordnad), mängd (oordnad), eller i varje nod en pekare till vänstra barnet och syskonet till höger
47 Binära träd Binära träd är en vanlig typ av träd Varje nod har max två barn och man skiljer på en nod med bara ett delträd till vänster och samma nod med samma delträd till höger A B D E J O P K C G I H L N
48 Sorterade och balanserade träd Många typer av träd är sorterade, dvs elementen i noderna uppfyller någon ordning (t ex vid en Comparator), och balanserade, dvs uppfyller vissa krav på hur höjden av delträd förhåller sig till varandra Vi kommer se ett exempel på detta nästa gång och fler när vi behandlar sökträd om ett par veckor
49 Trädgenomlöpning (Tree traversal) Besöker alla noder i ett träd Pre-order först noden själv, sedan vänster delträd och sist höger delträd In-order vänster, noden, höger Post-order vänster, höger, noden Bredden först Först roten, sedan nodenerna på nästa nivå, etc
50 Antag binärt träd med följande representation class Tree<E> { private class Node { E data; Node left = null, right = null; } Node root = null; public void traverseprint() { } } Skriv en metod som genomlöper alla noder pre/in/post-order och skriver ut datan
51 public void traverseprint() { printsubtree(root); } private void printsubtree(node n) { if (root == null) return; Systemoutprintln(ndatatoString()); printsubtree(nleftchild); printsubtree(nrightchild); } Ovan ger pre-order traversal In-order och post-order fås genom att sätta raden som skriver ut mellan resp efter de rekursiva anropen
52 Rekursion Rekursiv metod anropar sig själv Rekursiva metoder som anropar sig själv en gång går utan större problem att skriva ut som icke-rekursiv med slinga Men kan vara naturligare med rekursion Vid flera rekursiva anrop är det ofta krångligt att implementera på annat sätt Tänk på att det måste finnas ett slutvillkor så anropen inte sker i oändlighet
53 Sammanfattning Länkade listor, pekarjonglering Komplexitet för implementeringar av listor Invarianter, assertions, testning Träd
Föreläsning 2 Datastrukturer (DAT037)
Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet
Föreläsning 4 Datastrukturer (DAT037)
Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar
Föreläsning 13 Datastrukturer (DAT037)
Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig
Datastrukturer. föreläsning 3. Stacks 1
Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer
Föreläsning Datastrukturer (DAT037)
Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Länkade strukturer, parametriserade typer och undantag
Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer
Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor
Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.
Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)
Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som
Tentamen, Algoritmer och datastrukturer
UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och
Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet
Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig
Trädstrukturer och grafer
Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer
Tentamen Datastrukturer (DAT036/DAT037/DIT960)
Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:
Dugga Datastrukturer (DAT036)
Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre
Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö
Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista
Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina
Föreläsning 5 Datastrukturer (DAT037)
Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop
Föreläsning 2. Länkad lista och iterator
Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF
Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd
Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:
Länkade strukturer. (del 2)
Länkade strukturer (del 2) Översikt Abstraktion Dataabstraktion Inkapsling Gränssnitt (Interface) Abstrakta datatyper (ADT) Programmering tillämpningar och datastrukturer 2 Abstraktion Procedurell abstraktion
Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31
Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade
Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt
Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index
Träd Hierarkiska strukturer
Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-18 Idag Mer om grafer: Minsta uppspännande träd (för oriktade grafer). Prims algoritm. Kruskals algoritm. Djupet först-sökning. Cykel
Lösningar Datastrukturer TDA
Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både
Föreläsning Datastrukturer (DAT036)
Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma
ADS : STACK ADT: STACK. Stack och Kö -Implementering - Tilllämpningar. Oftast förekommande metoder i Stack. TopOfStack
Stack och Kö -Implementering - Tilllämpningar ADS : STACK Det finns ett par vanligt förekommande ADT:er för samlingar av element som egentligen är specialfall av listor. En av dem är Stack Definition:
Tentamen Datastrukturer, DAT037 (DAT036)
Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända
Föreläsning 11. ADT:er och datastrukturer
Föreläsning 11 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad
TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2. Länkade listor Stackar Köer MyList Iteratorer Lab 2 Exceptions Paket
TDDC30 Programmering i Java, Datastrukturer och Algoritmer Lektion 2 Länkade listor Stackar Köer MyList Iteratorer Lab 2 Exceptions Paket 1 Länkade listor Likadant som i Ada-kursen. 2 Stack MyStack MyStack
Föreläsning 2. Länkad lista och iterator
Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF
Algoritmer och datastrukturer 2012, föreläsning 6
lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på
Tentamen Programmeringsteknik II Inledning. Anmälningskod:
Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående
Föreläsning 9 Innehåll
Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon
Träd, binära träd och sökträd. Koffman & Wolfgang kapitel 6, avsnitt 1 4
Träd, binära träd och sökträd Koffman & Wolfgang kapitel 6, avsnitt 1 4 1 Träd Träd är ickelinjära och hierarkiska: i motsats till listor och fält en trädnod kan ha flera efterföljare ( barn ) men bara
Föreläsning 7. Träd och binära sökträd
Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng
Seminarium 13 Innehåll
Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet
Lösningsförslag för tentamen i Datastrukturer (DAT037) från
Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser
ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar
Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp
Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet.
-Algoritmer och Datastrukturer- Abstrakt datatyp Datatyp för en variabel Betecknar i ett programmeringsspråk den mängd värden variabeln får anta. T ex kan en variabel av typ boolean anta värdena true och
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
Algoritmer och datastrukturer 2012, fo rela sning 8
lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer
ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar
Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap
Stackar, köer, iteratorer och paket
Stackar, köer, iteratorer och paket Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Paket Stackar och köer Array resp länkad struktur Iteratorer Javadoc Kommentarer lab 1 Bra att de flesta
13 Prioritetsköer, heapar
Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning
Datastrukturer. Föreläsning 5. Maps 1
Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:
F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad
F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor
Tentamen i Algoritmer & Datastrukturer i Java
Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2011-03-15 Skrivtid: 4 timmar Kontakt person: Mattias Wecksten 7396 Poäng / Betyg: Max poäng
Föreläsning 10 Innehåll
Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5
Datastrukturer, algoritmer och programkonstruktion (DVA104, HT 2014) Föreläsning 5? FORTSÄTTNING TRÄD RECAP (förra föreläsningen) RECAP (förra föreläsningen) Träd är icke-linjära datastrukturer som ofta
Föreläsning 4. ADT Kö Kö JCF Kö implementerad med en cirkulär array Kö implementerad med en länkad lista Läsanvisningar och uppgifter
Föreläsning 4 Kö Föreläsning 4 ADT Kö Kö JCF Kö implementerad med en cirkulär array Kö implementerad med en länkad lista Läsanvisningar och uppgifter ADT Kö Grundprinciper: En kö fungerar som en kö. Man
Föreläsning 7 Datastrukturer (DAT037)
Föreläsning 7 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-21 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Algoritmer och datastrukturer
Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad
Datastrukturer och algoritmer. Föreläsning 4 Test, Stack och Kö
Datastrukturer och algoritmer Föreläsning 4 Test, Stack och Kö 1 Innehåll Test Datatyperna Stack och kö Specifikation och Gränssnitt Konstruktion Tillämpning 2 Testa VIKTIGT! Test går att göra under många
Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Implementering av tabellen. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabellen att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition
Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet
Föreläsning 10. ADT:er och datastrukturer
Föreläsning 10 ADT:er och datastrukturer ADT:er och datastrukturer Dessa två begrepp är kopplade till varandra men de står för olika saker. En ADT (abstrakt datatyp) är just abstrakt och är inte kopplad
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-23 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Förra
Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning
Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd
Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån
TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU
TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning
Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10. Skriv bara på framsidan av varje papper.
Tentamen Programmeringsteknik II och NV2 (alla varianter) 2008-12-10 Skrivtid: 0800-1300 Inga hjälpmedel. Tänk på följande Maximal poäng är 40. För betygen 3 krävs 18 poäng. För betygen 4, 5 kommer något
Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn
Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas
Föreläsning 13. Träd
Föreläsning 13 Träd Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder med pilar emellan.
Föreläsning 15: Repetition DVGA02
Föreläsning 15: Repetition DVGA02 Vad handlar kursen om? Kursen kan i grova drag delas upp i tre delar: 1. Objekt-orienterad programmering 2. Grafiska användargränssnitt 3. Datastrukturer Dessutom genomsyras
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på
Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).
Samlingar Collection classes
Samlingar Collection classes Sven-Olof Nyström Uppsala Universitet 17 mars 2005 Skansholm: Kapitel 9, 19 Se även Suns tutorial om Collections Olika slag av samlingar i Java Arrayer (Till exempel: int[])
Föreläsning 8 Datastrukturer (DAT037)
Föreläsning 8 Datastrukturer (DAT037) Fredrik Lindblad 1 22 november 2017 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037
Grafik, grafiska användargränssnitt och rörliga bilder
(22 maj 2015 F14.1 ) Grafik, grafiska användargränssnitt och rörliga bilder Viktigt: Grafiska komponenter: Fönster, etiketter, knappar, textfält,... Tekniken med att med genom arv definiera t ex sitt eget
TDDC30 Programmering i Java, datastrukturer och algoritmer
LINKÖPINGS UNIVERSITET Institutionen för datavetenskap Jonas Wallgren Tentamen i TDDC30 Programmering i Java, datastrukturer och algoritmer För I3, Ii3 Datum: 2009-04-17 Klockan: 14-18 Jour: Jonas Wallgren,
Träd - C&P kap. 10 speciellt binära sökträd sid. 452
Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad
Föreläsning 3. Stack
Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista ADT Stack Grundprinciper: En stack
TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.
1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi
Träd. Rot. Förgrening. Löv
Träd Träd Rot Förgrening Löv Exempel: Organisationsschema Rot Överkucku Förgrening Underhuggare Underhuggare Administativ chef Kanslichef Knegare Knegare Knegare Byråchef Löv Intendent Avd. chef Intendent
Tentamen Datastrukturer för D2 DAT 035
Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:
Tommy Färnqvist, IDA, Linköpings universitet
Föreläsning 9 Pekare, länkade noder, länkade listor TDDD86: DALP Utskriftsversion av föreläsning i Datastrukturer, algoritmer och programmeringsparadigm 25 september 2015 Tommy Färnqvist, IDA, Linköpings
Vad har vi pratat om i kursen?
Vad har vi pratat om i kursen? Föreläsning 1 & 2 Systemminnet och systemstacken Rekursion Abstrakta datatyper Föreläsning 3 ADT:n Länkad lista Föreläsning 4 ADT:n Kö ADT:n Stack Föreläsning 5 Komplexitet
Datastrukturer och algoritmer
Innehåll Datastrukturer och algoritmer Föreläsning 2 Fält Specifikation, Konstruktion och Specifikation, Konstruktion Dynamiska resurser Länk Länkade celler 23 24 Konstruktion av Fält Fysisk datatyp i
Sätt att skriva ut binärträd
Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer
Programkonstruktion och. Datastrukturer
Programkonstruktion och Datastrukturer Repetitionskurs, sommaren 2011 Datastrukturer (Listor, Träd, Sökträd och AVL-träd) Elias Castegren elias.castegren.7381@student.uu.se Datastrukturer Vad är en datastruktur?
Tentamen TEN1 HI
Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha
Tabeller. Programkonstruktion. Moment 8 Om abstrakta datatyper och binära sökträd. Specifikationer för tabellfunktionerna. Operationer på tabellen
Programkonstruktion Moment 8 Om abstrakta datatyper och binära sökträd Tabeller En viktig tillämpning är tabeller att ifrån en nyckel kunna ta fram ett tabellvärde. Ett typiskt exempel är en telefonkatalog:
Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs
LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs 2013 12 19 1. a) En samling element där insättning och borttagning
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal
Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna!
Tentamen Programmeringsteknik II 2014-01-09 Skrivtid: 0800-1300 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja
Två fall: q Tom sekvens: () q Sekvens av element: (a b c) ; (sum-rec '(2 4 6)) = 12. q Första elementet uppfyller vissa villkor: (2 a b c)
Programmönster: # Listan som sekvens, Rekursiv process Enkel genomgång av sekvens (element på toppnivån i en lista)) TDDC60 Programmering: abstraktion och modellering Föreläsning 5 Rekursiva och iterativa
Föreläsning 5. Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning
Föreläsning 5 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Terminologi - träd Ett träd i datalogi består av en rotnod
TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find
TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir
Abstrakta datastrukturer
Föreläsning 2 Datastrukturer Abstrakta datastrukturer Stack Stack implementerad med array Länkad lista Stack implementerad med länkad lista Inlämningsuppgifter Datastrukturer En datastruktur är en struktur
BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X
Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen
Datastrukturer och algoritmer
Innehåll Datastrukturer och algoritmer Föreläsning 2 Fält Specifikation, Konstruktion och Specifikation, Konstruktion Dynamiska resurser Länk Länkade celler 25 26 Fält Modell Schackbräde Organisation n-dimensionellt
Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna
Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara