13 Prioritetsköer, heapar

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "13 Prioritetsköer, heapar"

Transkript

1 Prioritetsköer, heapar Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning till skillnad mot en vanlig kö där elementen plockas ut i den ordning de satts in i kön. De operationer man ska kunna göra på en prioritetskö är sätta in element ta reda på det högst prioriterade elementet (minsta elementet) ta bort det högst prioriterade elementet (minsta elementet) U 102. Heap efter insättning av element med nycklarna: 2, 5, 1, 7, 9, 6, 3, 0, 8, U 103. En heap kan lagras i en vektor. Roten lagras på plats 0. Barnen till noden på plats i finns på platserna 2i + 1 och 2i + 2 i vektorn. Nod på plats i har alltså sin förälder på plats (i-1)/2). Heapen från uppgift U 102: U 104. Tag bort noden på plats 0 i vektorn. Ersätt med den som finns på sista plats. Detta ger rätt form, men roten har nu troligtvis fel storleksförhållande till sina barn. Byt med minsta av barnen tills ordningen ok ( percolate down ). U 105. a) Antag t ex att vi sätter in tre lika element e 1, e 2 och e 3 (i den ordningen) i en heap. Heapens utseende efter dessa insättningar visas till vänster i figuren nedan. Antag nu att vi gör en borttagning. Det blir då e 1 som tas ut. Efter borttagningen har heapen det utseende som visas till höger i figuren nedan. Nästa borttagning kommer därför att ta ut e 3. Detta element är yngre än e 2. Alltså är heapen inte stabil. e 1 e 3 e 2 e 3 e 2 b) Man kan sätta in element som består av prioritet plus ett nummer. Man numrerar sina element 1,2,... efterhand som man sätter in dem. Vidare definierar man comparetometoden så att den jämför på prioritet i första hand och nummer i andra hand. Av två element med lika prioritet kommer ett som är senare insatt då att anses vara större än det tidigare insatta. Då kommer element med lika prioritet att komma ut ur heapen i den ordning de sattes in.

2 32 Prioritetsköer, heapar U 106. I en heap kan man snabbt hitta minsta elementet. Sökning av ett godtyckligt element blir däremot dyrare. Vi kan inte söka oss ner på en gren som i ett sökträd, en heap är ju inte ordnad på samma sätt. Vi måste söka i både vänster och höger underträd tills vi eventuellt hittar elementet. I värsta fall behöver vi söka igenom hela heapen, vilket kostar O(n). U 107. a) Om trädet är skevt t.ex. om alla noder bara har höger barn så kommer noderna att hamna på platserna 0, 2, 6,..., 2 i 2,..., 2 n 2 i vektorn. I det andra fallet inträffar värsta fallet när noden på nivå k + 1 är höger barn till noden längst till höger på nivå k. Noden på nivå 1 finns på plats 0 i vektorn. Noderna på nivå 2 finns på platserna 1 och 2, noderna på nivå 3 på platserna 3, 4, 5 och 6 etc. Noderna på nivå i finns alltså på platserna 2 i i 2. Alla noder på nivåerna 1..k kommer därför att fylla platserna 1..2 k 2. Lägger vi till ett höger barn till den sista noden hamnar det på plats 2 k+1 2 d.v.s. vi behöver ungefär dubbelt så stor vektor trots att vi bara lägger till en enda nod på sista nivån. b) Om trädet är tomt ska det nya elementet placeras i roten. Om trädet har en nod ska det nya elementet placeras som vänster barn till roten, och om trädet har två noder ska det nya elementet placeras som höger barn till roten. Låt en båge från en nod till dess vänstra barn representera en nolla och en båge från en nod till dess högra barn representera en etta. Vägen för den andra noden beskrivs då av en nolla och vägen för den tredje noden av en etta. Om vi går vidare och utgår från ett träd med tre noder så ska den fjärde noden placeras som vänster barnbarn till roten. Denna väg motsvarar sekvensen 00. Nästa nods väg beskrivs av 01 och nästa av 10 och den sjunde nodens väg är 11. Om vi låter vägen till roten beskrivas av en etta får vi i stället sekvensenra 100, 101, 110 och 111 d.v.s. den binära representationen av 4, 5, 6 och 7. Varje nods plats beskrivs alltså på detta sätt av den binära representationen av antalet noder efter insättningen. U 108. I stället för en heap kan man använda t.ex. ett balanserat binärt sökträd för att representera en prioritetskö. Trädet sorteras då efter prioriteter. Man måste modifiera trädimplementeringen så att dubbletter kan sättas in. Detta kan man göra genom att man vid likhet mellan element alltid väljer att göra insättning i t.ex. höger underträd. Vi vet sedan tidigare att insättning kostar O( 2 logn) i ett balanserat binärt sökträd. Om vi ska använda trädet som en prioritetskö behöver vi också en metod för att ta bort minsta elementet ur trädet. Detta element finns längst ner till vänster i trädet, d.v.s. man hittar det genom att utgående från roten flytta sig nedåt med hjälp av referenserna till vänster barn. Borttagning kan inte kosta mer än O( 2 logn) i ett balanserat träd. Man kan också använda listor, sorterade eller osorterade. Har man en osorterad lista blir operationerna för att söka minsta och ta bort minsta långsamma (O(n)) men insättning blir O(1). För en sorterad lista är det tvärtom. U 109. Man kan införa en vektor av listor. Vektorns storlek = antalet olika prioriteter. Ett elements prioritet avgör i vilken lista det placeras. Insättning blir O(1). Tag bort minsta och sök minsta blir också O(1). Man måste visserligen söka upp första icke-tomma listan i vektorn, men vektorns storlek är en konstant. Man åstadkommer stabilitet genom att sätta in ett nytt element sist i den lista där det hör hemma. Det kräver då att man har en listimplementation där insättning sist kostar O(1).

3 Prioritetsköer, heapar 33 U 110. a) public class Patient implements Comparable<Patient> { private static int total = 0; private String firstname; private String lastname; private String personnbr; private int prio; private int number; public Patient(String firstname, String lastname, String personnbr, int prio) { this.firstname = firstname; this.lastname = lastname; this.personnbr = personnbr; this.prio = prio; total++; number = total; public int compareto(patient rhs) { if (prio == rhs.prio) { return number - rhs.number; else { return prio - rhs.prio; public boolean equals(object rhs) { if (rhs instanceof Patient) { return compareto((patient) rhs) == 0; else { b) PriorityQueue<Patient> pq = new PriorityQueue<Patient>(); pq.offer(new Patient("Kalle", "Karlsson", " ", 3)); pq.offer(new Patient("Lisa", "Svensson", " ", 2)); pq.offer(new Patient("Lena", "Nilsson", " ", 3)); U 111. a) public class PrioComparator implements Comparator<Patient> { public int compare(patient p1, Patient p2) { if (p1.getprio() == p2.getprio()) { return p1.getnumber() - p2.getnumber(); else { return p1.getprio() - p2.getprio(); Om vi förutsätter att metodern getnumber och getprio redan finns i klassen Patient behövs inga ytterligare förändringar. Klassen Patient ser ut så här:

4 34 Prioritetsköer, heapar public class Patient implements Comparable<Patient> {... // attribut och konstruktor enligt tidigare public int compareto(patient rhs) { return personnbr.compareto(rhs.personnbr); public boolean equals(object rhs) { if (rhs instanceof Patient) { return compareto((patient) rhs) == 0; else { public int getprio() { return prio; public int getnumber() { return number; b) PriorityQueue<Patient> pq = new PriorityQueue<Patient>(10, new PrioComparator()); U 112. a) /** * Skapar ett objekt som hanterar en kö för köpordrar och en kö för säljordrar * för aktien med id shareid. shareid aktieslag public OrderQueues(String shareid) { this.shareid = shareid; buyorders = new PriorityQueue<Order>(10, new ReversePriceComparator()); sellorders = new PriorityQueue<Order>(10, new PriceComparator()); /** * Lägger till en köporder ifall matchande säljorder inte finns. * Om matchande säljorder finns tas säljordern bort och returneras. buyorder köporder matchande säljorder om sådan finns, i annat fall null public Order addbuyorder(order buyorder) { if (! sellorders.isempty() && buyorder.getprice() >= sellorders.peek().getprice()) { return sellorders.poll(); buyorders.offer(buyorder); return null; Det behövs också två klasser som implementerar Comparator:

5 Prioritetsköer, heapar 35 public class PriceComparator implements Comparator<Order> { public int compare(order order1, Order order2) { return Double.compare(order1.getPrice(), order2.getprice()); public class ReversePriceComparator implements Comparator<Order> { public int compare(order order1, Order order2) { return Double.compare(order2.getPrice(), order1.getprice()); Alternativ lösning: Man kan stryka den ena Comparator-klassen om man låter klassen Order implementera Comparable: public class Order implements Comparable<Order> {... public int compareto(order other) { return Double.compare(price, other.price); public boolean equals(object other) { if (!(other instanceof Order)) { return (compareto((order) other) == 0); I så fall skapas kön med säljordrar så här: sellorders = new PriorityQueue<Order>(); b) /** * Låter kunden customer lägga en köporder av aktieslaget shareid till * budpriset price. Genomför köpet om matchande säljorder finns, i annat * fall lagras köpordern i motsvarande orderkö. customer kunden shareid aktieslag price budpris NoSuchElementException om det inte finns någon orderkö för * aktieslaget shareid. public void buy(customer customer, String shareid, double price) { Order buyorder = new Order(price, customer); OrderQueues share = q.get(shareid); if (share == null) { throw new NoSuchElementException(); Order matchingsellorder = share.addbuyorder(buyorder); if (matchingsellorder!= null) { execute(buyorder, matchingsellorder); c) I metoden addbuyorder utförs peek (som kostar O(1)) och sedan poll eller offer (som kostar O(logn)). Den totala tidskomplexiteten blir alltså O(logn).

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp

Läs mer

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap

Läs mer

Seminarium 13 Innehåll

Seminarium 13 Innehåll Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket

Läs mer

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning. Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

Träd Hierarkiska strukturer

Träd Hierarkiska strukturer Träd Hierarkiska strukturer a 1 a 2 a 3 a 4 a 2 a 5 a 6 a 7 Hierarki: Korta vägar till många Hur korta? Linjär lista: n 2 Träd: Antal element på avståndet m: g m a 1 a 3 a 8 a 12 m = log g n a 9 a 10 Väglängden

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften

Läs mer

Tentamen Datastrukturer för D2 DAT 035

Tentamen Datastrukturer för D2 DAT 035 Tentamen Datastrukturer för D2 DAT 035 17 december 2005 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. (Bonuspoäng från övningarna tillkommer.) Betygsgränser:

Läs mer

Algoritmer och datastrukturer 2012, fo rela sning 8

Algoritmer och datastrukturer 2012, fo rela sning 8 lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till

Läs mer

Algoritmer och datastrukturer 2012, föreläsning 6

Algoritmer och datastrukturer 2012, föreläsning 6 lgoritmer och datastrukturer 2012, föreläsning 6 Nu lämnar vi listorna och kommer till nästa datastruktur i kursen: träd. Här nedan är ett exempel på ett träd: Båge Rot De rosa noderna är ett exempel på

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng

Läs mer

Algoritmer och datastrukturer

Algoritmer och datastrukturer Algoritmer och datastrukturer Binära sökträd Hash Tabeller Sökning Många datastukturer försöker uppnå den effektivaste sökningen I arrayer - linjer sökning, och binärt sökning när arrayen kan vara sörterad

Läs mer

Datastrukturer. Föreläsning 5. Maps 1

Datastrukturer. Föreläsning 5. Maps 1 Datastrukturer Föreläsning 5 Maps 1 Traversering av träd Maps 2 Preordningstraversering Traversera = genomlöpa alla noderna i ett träd Varje nod besöks innan sina delträd Preordning = djupet först Exempel:

Läs mer

Interfacen Set och Map, hashtabeller

Interfacen Set och Map, hashtabeller Föreläsning 0 Innehåll Hashtabeller implementering, effektivitet Interfacen Set och Map ijava Interfacet Comparator Undervisningsmoment: föreläsning 0, övningsuppgifter 0-, lab 5 och 6 Avsnitt i läroboken:

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

Programmering fortsättningskurs

Programmering fortsättningskurs Programmering fortsättningskurs Philip Larsson 2013 03 09 Innehåll 1 Träd 1 1.1 Binära träd........................................ 1 1.2 Strikt binärt träd..................................... 1 1.3 Binärt

Läs mer

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd

Innehåll. Föreläsning 12. Binärt sökträd. Binära sökträd. Flervägs sökträd. Balanserade binära sökträd. Sökträd Sökning. Sökning och Sökträd Innehåll Föreläsning 12 Sökträd Sökning Sökning och Sökträd 383 384 Binärt sökträd Används för sökning i linjära samlingar av dataobjekt, specifikt för att konstruera tabeller och lexikon. Organisation:

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map i Java Undervisningsmoment:

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering

Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer.

Läs mer

Föreläsning 11 Innehåll

Föreläsning 11 Innehåll Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:

Läs mer

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X

BINÄRA TRÄD. (X = pekarvärdet NULL): struct int_bt_node *pivot, *ny; X X X 12 X X 12 X X -3 X X Algoritmer och Datastrukturer Kary FRÄMLING/Göran PULKKIS (v23) Kap. 7, Sid 1 BINÄRA TRÄD Träd används för att representera olika slags hierarkier som ordnats på något sätt. Den mest använda trädstrukturen

Läs mer

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2

Självbalanserande träd AVL-träd. Koffman & Wolfgang kapitel 9, avsnitt 1 2 Självbalanserande träd AVL-träd Koffman & Wolfgang kapitel 9, avsnitt 1 2 1 Balanserade träd Nodbalanserat träd: skillnaden i antalet noder mellan vänster och höger delträd är högst 1 Höjdbalanserat träd:

Läs mer

Lösningsförslag. Programmeringsmetodik, KV: Java och OOP. 17 januari 2004

Lösningsförslag. Programmeringsmetodik, KV: Java och OOP. 17 januari 2004 Lösningsförslag Programmeringsmetodik, KV: Java och OOP 17 januari 2004 Examinator: Johan Karlsson Skrivtid: 9-15 Hjälpmedel: En av följande böcker: Barnes & Kölling: Objects First With Java a practical

Läs mer

Programmering för språkteknologer II, HT2014. evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/

Programmering för språkteknologer II, HT2014. evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Hashtabeller

Läs mer

Lösningsförslag till tentamen

Lösningsförslag till tentamen Uppgift 1 a) Sant. b) Sant. c) Sant. Lösningsförslag till tentamen 170818 d) Falskt. IPv6 anger en IP-adress med 132 bitar. e) Falskt. Spoofing åsyftar användning av förfalskad eller lånad identitet på

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte

Läs mer

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal)

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal) Föreläsning 0 Innehåll Diskutera Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map ijava Undervisningsmoment:

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1)

Upplägg. Binära träd. Träd. Binära träd. Binära träd. Antal löv på ett träd. Binära träd (9) Binära sökträd (10.1) Binära träd Algoritmer och Datastrukturer Markus Saers markus.saers@lingfil.uu.se Upplägg Binära träd (9) Binära sökträd (0.) Träd Många botaniska termer Träd, rot, löv, gren, Trädets rot kan ha ett antal

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Trädstrukturer och grafer

Trädstrukturer och grafer Översikt Trädstrukturer och grafer Trädstrukturer Grundbegrepp Binära träd Sökning i träd Grafer Sökning i grafer Programmering tillämpningar och datastrukturer Varför olika datastrukturer? Olika datastrukturer

Läs mer

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,

Läs mer

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på

Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), Tiden det tar att utföra en iteration av loopen är oberoende av värdet på Lösningsförslag till tentamen Datastrukturer, DAT037 (DAT036), 2017-01-11 1. Loopen upprepas n gånger. getat på en dynamisk array tar tiden O(1). member på ett AVL-träd av storlek n tar tiden O(log n).

Läs mer

TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P

TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P UME UNIVERSITET Datavetenskap 981212 TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P Datum : 981212 Tid : 9-15 HjŠlpmedel : Inga Antal uppgifter : 9 TotalpoŠng : 60 (halva pošngtalet kršvs normalt fšr

Läs mer

Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga)

Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga) Grundläggande programmering med C# Provmoment: Ladokkod: Tentamen ges för: 7,5 högskolepoäng TEN1 NGC011 Tentamen DE12, IMIT12, SYST12, ITEK11 (även öppen för övriga) (Ifylles av student) (Ifylles av student)

Läs mer

Inlämningsuppgift och handledning

Inlämningsuppgift och handledning Inlämningsuppgift och handledning Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder på fredagluncher

Läs mer

DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011

DD1320 Tillämpad datalogi. Lösning (skiss) till tenta 20 okt 2011 DD1320 Tillämpad datalogi Lösning (skiss) till tenta 20 okt 2011 1 KMP P I P P I N i 1 2 3 4 5 6 Next[i] 0 1 0 2 1 3 2 Huffmankodning: Algoritmen 1. Sortera tecknen som ska kodas i stigande förekomstordning.

Läs mer

Lösningsförslag till tentamen 150317

Lösningsförslag till tentamen 150317 Uppgift 1 Lösningsförslag till tentamen 150317 1) Sant 2) Falskt. I ett RAM-minne är åtkomsttiden densamma för alla minnesadresser.) 3) Falskt. Det är TCP som använder sig av en fast kommunikationsförbindelse.)

Läs mer

Träd - C&P kap. 10 speciellt binära sökträd sid. 452

Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Föreläsning 10 Träd - C&P kap. 10 speciellt binära sökträd sid. 452 Dessa bilder finns i PDF-format på http://dsv.su.se/courses/pm2/f10/index.html Jozef Swiatycki DSV Bild 1 förälder Träd allmänt Binär-länkad

Läs mer

Länkade strukturer, parametriserade typer och undantag

Länkade strukturer, parametriserade typer och undantag Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer

Läs mer

Tentamen Datastrukturer, DAT037 (DAT036)

Tentamen Datastrukturer, DAT037 (DAT036) Tentamen Datastrukturer, DAT037 (DAT036) Datum och tid för tentamen: 2017-01-11, 14:00 18:00. Ansvarig: Fredrik Lindblad. Nås på tel nr. 031-772 2038. Besöker tentamenssalarna ca 15:00 och ca 17:00. Godkända

Läs mer

EDAA20 Föreläsning Klassen ArrayList. Viktiga operationer på ArrayList. Generisk klass

EDAA20 Föreläsning Klassen ArrayList. Viktiga operationer på ArrayList. Generisk klass EDAA20 Föreläsning 11-12 Klassen ArrayList Klassen ArrayList Skriva program som läser data från en textfil och skriver data till en textfil Repetition inför delmålskontroll 2 är en standardklass (i paketet

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {

Läs mer

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller Inlämningsuppgift och handledning Föreläsning 11 Innehåll Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder

Läs mer

Tentamen TEN1 HI

Tentamen TEN1 HI Tentamen TEN1 HI1029 2015-03-17 Skrivtid: 8.15-13.00 Hjälpmedel: Referensblad (utdelas), papper (tomma), penna Logga in med tentamenskontot ni får av skrivvakten. Det kommer att ta tid att logga in ha

Läs mer

Informationsteknologi Tom Smedsaas 19 augusti 2016

Informationsteknologi Tom Smedsaas 19 augusti 2016 Informationsteknologi Tom Smedsaas 19 augusti 016 VL-träd Definition Ett VL-träd är ett binärt sökträd där det för varje nod gäller att skillnaden i höjd mellan nodens vänster och höger subträd är högst

Läs mer

Tentamen Programmeringsteknik II Inledning. Anmälningskod:

Tentamen Programmeringsteknik II Inledning. Anmälningskod: Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående

Läs mer

Tentamen Datastrukturer (DAT036/DAT037/DIT960)

Tentamen Datastrukturer (DAT036/DAT037/DIT960) Tentamen Datastrukturer (DAT036/DAT037/DIT960) Datum och tid för tentamen: 2016-04-07, 14:00 18:00. Författare: Nils Anders Danielsson. (Tack till Per Hallgren och Nick Smallbone för feedback.) Ansvarig:

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn

Ett generellt träd är. Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn Träd allmänt Träd allmänt Ett generellt träd är Antingen det tomma trädet, eller en rekursiv struktur: rot /. \ /... \ t1... tn där t1,..., tn i sin tur är träd och kallas subträd, vars rotnoder kallas

Läs mer

Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006

Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006 Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006 Detta lösningsförslag är skrivet i stor hast, så det är möjligt att det innehåller en del slarvfel jag ber i så fall om ursäkt för

Läs mer

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find

TDDI16 Datastrukturer och algoritmer. Prioritetsköer, heapar, Union/Find TDDI16 Datastrukturer och algoritmer Prioritetsköer, heapar, Union/Find Prioritetsköer En vanligt förekommande situation: Väntelista (jobbhantering på skrivare, simulering av händelser) Om en resurs blir

Läs mer

Föreläsning 14. Filhantering

Föreläsning 14. Filhantering Föreläsning 14 Filhantering Filhantering Att hantera filer, dvs att läsa eller skriva data till en fil är en viktig del i de flesta program. Ur Javas synvinkel är filer objekt med egenskaper och metoder

Läs mer

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31

Programmering i C++ EDA623 Dynamiska datastrukturer. EDA623 (Föreläsning 11) HT / 31 Programmering i C++ EDA623 Dynamiska datastrukturer EDA623 (Föreläsning 11) HT 2013 1 / 31 Dynamiska datastrukturer Innehåll Länkade listor Stackar Köer Träd EDA623 (Föreläsning 11) HT 2013 2 / 31 Länkade

Läs mer

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet.

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet. -Algoritmer och Datastrukturer- Abstrakt datatyp Datatyp för en variabel Betecknar i ett programmeringsspråk den mängd värden variabeln får anta. T ex kan en variabel av typ boolean anta värdena true och

Läs mer

Övningsuppgifter #11, Programkonstruktion och datastrukturer

Övningsuppgifter #11, Programkonstruktion och datastrukturer Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Minsta uppspännande träd Maps 2 Minsta uppspännande träd Uppspännande träd till graf fritt delträd innehåller alla noderna Minsta uppspännande träd (MST) är det uppspännande

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-27 Idag Balanserade sökträd Splayträd Skipplistor AVL-träd AVL-träd Sökträd Invariant (för varje nod): Vänster och höger delträd har samma

Läs mer

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer

Läs mer

Föreläsning 2. Länkad lista och iterator

Föreläsning 2. Länkad lista och iterator Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF

Läs mer

Föreläsning 5 Datastrukturer (DAT037)

Föreläsning 5 Datastrukturer (DAT037) Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop

Läs mer

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina

Läs mer

Föreläsning 4. ADT Kö Kö JCF Kö implementerad med en cirkulär array Kö implementerad med en länkad lista Läsanvisningar och uppgifter

Föreläsning 4. ADT Kö Kö JCF Kö implementerad med en cirkulär array Kö implementerad med en länkad lista Läsanvisningar och uppgifter Föreläsning 4 Kö Föreläsning 4 ADT Kö Kö JCF Kö implementerad med en cirkulär array Kö implementerad med en länkad lista Läsanvisningar och uppgifter ADT Kö Grundprinciper: En kö fungerar som en kö. Man

Läs mer

Lösningsförslag för tentamen i Datastrukturer (DAT037) från

Lösningsförslag för tentamen i Datastrukturer (DAT037) från Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser

Läs mer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer

TDDC30/725G63. Objektorienterad programmering i Java, datastrukturer och algoritmer Tentamen i... TDDC30/725G63 Objektorienterad programmering i Java, datastrukturer och algoritmer Datum 2011-12-19 Tid 14-18 Provkod DAT1 Institution Institutionen för Datavetenskap (IDA) Jour Johan Janzén

Läs mer

Bankkonto - övning. Övning 2 Skriv en metod, geträntan, som returnerar räntan.

Bankkonto - övning. Övning 2 Skriv en metod, geträntan, som returnerar räntan. Bankkonto - övning Övningar att göra efter lärardemostration. Filen bankkonto.zip innehåller ett projekt med klassen Bankkonto. Zippa upp denna fil och öppna projektet i BlueJ och skriv vidare på klassen

Läs mer

Datastrukturer. föreläsning 9. Maps 1

Datastrukturer. föreläsning 9. Maps 1 Datastrukturer föreläsning 9 Maps 1 Grafer och grafalgoritmer Hur implementerar man grafer? Hur genomsöker (traverserar) man grafer? Hur genomsöker man viktade grafer (och hittar kortaste vägen)? Hur beräknar

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Programkonstruktion och. Datastrukturer

Programkonstruktion och. Datastrukturer Programkonstruktion och Datastrukturer Repetitionskurs, sommaren 2011 Datastrukturer (Listor, Träd, Sökträd och AVL-träd) Elias Castegren elias.castegren.7381@student.uu.se Datastrukturer Vad är en datastruktur?

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2011-03-15 Skrivtid: 4 timmar Kontakt person: Mattias Wecksten 7396 Poäng / Betyg: Max poäng

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

ADS : STACK ADT: STACK. Stack och Kö -Implementering - Tilllämpningar. Oftast förekommande metoder i Stack. TopOfStack

ADS : STACK ADT: STACK. Stack och Kö -Implementering - Tilllämpningar. Oftast förekommande metoder i Stack. TopOfStack Stack och Kö -Implementering - Tilllämpningar ADS : STACK Det finns ett par vanligt förekommande ADT:er för samlingar av element som egentligen är specialfall av listor. En av dem är Stack Definition:

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna!

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna! Tentamen Programmeringsteknik II 2014-01-09 Skrivtid: 0800-1300 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja

Läs mer

Teoretisk del. Facit Tentamen TDDC (6)

Teoretisk del. Facit Tentamen TDDC (6) Facit Tentamen TDDC30 2013-06-05 1 (6) Teoretisk del 1. (3p) "Snabba frågor" Alla svar motiveras väl. a) Vad skiljer en statisk metod från en icke-statisk? (0.5p) Svar:En statisk metod är associerad till

Läs mer

Exempel på listor (klassen ArrayList). Ett exempel med fält. Avbildning är en speciell typ av lista HashMap.

Exempel på listor (klassen ArrayList). Ett exempel med fält. Avbildning är en speciell typ av lista HashMap. Institutionen för Datavetenskap Göteborgs universitet HT2008 DIT011 Objektorienterad programvaruutveckling GU (DIT011) Innehåll Föreläsning 4 Exempel på listor (klassen ArrayList). Ett exempel med fält.

Läs mer

Föreläsning 3. Stack

Föreläsning 3. Stack Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista ADT Stack Grundprinciper: En stack

Läs mer

Innehåll. Sökning och hashtabeller. En bilsamling att söka i. En bil-klass att söka efter. Hur hittar vi alla bilar som uppfyller ett annat villkor

Innehåll. Sökning och hashtabeller. En bilsamling att söka i. En bil-klass att söka efter. Hur hittar vi alla bilar som uppfyller ett annat villkor Innehåll Sökning och hashtabeller Henrik Bergström henrikbe@dsv.su.se Sökning i linjära strukturer Söka efter många objekt Sökning efter ett objekt Sekventiell sökning Binär sökning Sökning efter godtyckligt

Läs mer

Föreläsning 13 Datastrukturer (DAT037)

Föreläsning 13 Datastrukturer (DAT037) Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning

Läs mer

Föreläsning 14. Träd och filhantering

Föreläsning 14. Träd och filhantering Föreläsning 14 Träd och filhantering Träd Ett träd är en datastruktur som tillåter oss att modellera sådant som vi inte kan modellera med linjära datastrukturer. Ett datavetenskapligt träd består av noder

Läs mer

Laboration 13, Arrayer och objekt

Laboration 13, Arrayer och objekt Laboration 13, Arrayer och objekt Avsikten med denna laboration är att du ska träna på att använda arrayer. Skapa paketet laboration13 i ditt laborationsprojekt innan du fortsätter med laborationen. Uppgift

Läs mer