Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Sortering. Föreläsning 12 Innehåll. Sortering i Java. Sortering i Java Exempel. Sortering"

Transkript

1 Föreläsning 12 Innehåll Sortering Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Varför era? För att göra sökning effektivare. För att förenkla vissa algoritmer. Varför olika eringsalgoritmer? Olika eringsalgoritmer passar bra i olika sammanhang. Ingen enskild algoritm är bäst i alla möjliga situtioner. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Sortering i Java I klassen java.util.arrays finns metoder för att era vektorer t ex: public static void (int[] items) public static void (Object[] items) elementen jämförs med compareto public static <T> void (T[] items, Comparator<? super T> comp) elementen jämförs med comp.compare Sortering i Java Exempel En vektor med Book-objekt ska eras. Klassen Book: public class Book implements Comparable<Book> { private String isbn; private String title; private String author; private int nbrpages; Exempel: int[] a = {1, 4, 1, 9, 5, 2, 6; Arrays.(a); I interfacet java.util.list finns en metod för att era listan (fungerar alltså för t.ex. ArrayList och LinkedList). // konstruktor och övriga metoder public int compareto(book o) { return isbn.compareto(o.isbn); Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

2 Sortering i Java Comparable Book[] a = new Book[4]; a[0] = new Book("isbn4", "titleb", "authorc", 125); a[1] = new Book("isbn3", "titlea", "authorc", 523); a[2] = new Book("isbn2", "titled", "authora", 199); a[3] = new Book("isbn1", "titlec", "authorb", 278); Arrays.(a); // eras efter isbn-nummer Klassen Book måste implementera interfacet Comparable. Inuti metoden används compareto för att jämföra elementen. Datavetenskap (LTH) Föreläsning 12 HT / 38 Sortering i Java Comparator Book[] a = new Book[4]; a[0] = new Book("isbn4", "titleb", "authorc", 125); a[1] = new Book("isbn3", "titlea", "authorc", 523); a[2] = new Book("isbn2", "titled", "authora", 199); a[3] = new Book("isbn1", "titlec", "authorb", 278); // era efter titlar Arrays.(a, new TitleComparator()); Klass som implementerar interfacet Comparator: public class TitleComparator implements Comparator<Book> { public int compare(book b1, Book b2) { return b1.gettitle().compareto(b2.gettitle()); Inuti metoden används compare för att jämföra elementen. Datavetenskap (LTH) Föreläsning 12 HT / 38 Sortering i Java Lambdauttryck Sortera efter titlar: Arrays.(a, (b1, b2) -> b1.gettitle().compareto(b2.gettitle()) ); Sortera efter antal sidor: Arrays.(a, (b1, b2) -> b1.nbrpages() - b2.nbrpages() ); Istället för att skriva en klass som implementerar interfacet Comparator kan vi använda ett lambdauttryck. Inuti metoden används compare för att jämföra elementen. Kommentar: om subtraktion i Comparator I föregående bild används subtraktion för att få ett värde < 0, == 0, > 0: b1.nbrpages() - b2.nbrpages() Differensen får fel tecken om termerna är väldigt stora (i storleksordningen Integer.MAX_VALUE eller MIN_VALUE), och har olika tecken. Problemet kallas overflow, och har att göra med att datatypen int har ett begränsat maximalt antal siffror (32 bitar, binära siffror). Overflow kan inte inträffa i vårt exempel med böcker och sidantal.(varför?) Om man hanterar stora tal kan hjälpmetoden Integer.compare användas: Arrays.(a, (b1, b2) -> Integer.compare(b1.nbrPages(), b2.nbrpages()) ); Du kan läsa mer om overflow i lösningsförslaget till övningen om lambda-uttryck (se kurssidan, cs.lth.se/edaa01ht/oevningar). Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

3 Urvalering i vektor Urvalsering Urvalering (eng. selection ) Sök minsta elementet i den oerade delen av vektorn och byt plats med första oerade element (first = första elementet i den oerade delen): Tidskomplexitet är O(n 2 ). first first min first first Efter k pass är de k minsta (eller största) elementen erade. Kan därför vara lämplig om man bara vill få fram de k minsta (eller största) och k är litet. Tidskomplexitet är då O(k n) min min min first min Tidskomplexitet: n 1 + n = O(n 2 ) Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Insättningsering i vektor Diskutera Insättningsering (eng. insertion ) Element på plats k i vektorn sätts in på rätt plats bland de redan erade elementen på platserna 0..k 1 Detta görs för k = 1, 2,,n o Blir urvalsering snabbare eller långsammare om vektorns element råkar vara erade i stigande ordning? o o o Blir insättningsering snabbare eller långsammare om vektorns element råkar vara erade i stigande ordning? o Tidskomplexitet (värstafall): n 1 = n(n 1)/2 = O(n 2 ). Även medelfallet kan visas vara O(n 2 ). Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

4 Insättningsering Insättningsering public static <T extends Comparable<? super T>> void (T[] a) { for (int i = 1; i < a.length; i++) { T nextval = a[i]; int nextpos = i; while (nextpos > 0 && nextval.compareto(a[nextpos - 1]) < 0) { a[nextpos] = a[nextpos - 1]; nextpos--; a[nextpos] = nextval; Tidskomplexitet är O(n 2 ) ivärstafallochimedelfall. Dock bra metod om vektorn är nästan erad från början: Om vektorn är erad utförs bara en jämförelse per pass tidskomplexiteten blir då O(n). Om vektorn består av n erade element följda av k oerade behövs endast k pass. Man börjar med att era in det (n + 1):a sedan det (n + 2):a o s v. I varje pass görs i värsta fall O(n) jämförelser. Totalt O(k n) d.v.s. O(n) om k är litet i förhållande till n. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Merge Sortera med söndra- och härskateknik Sortera vänstra halvan Sortera högra halvan Samera de båda erade halvorna Merge samering av erade följder Algoritm Givet två följder och med element erade i växande ordning. Samera till en följd. Algoritm: i = j = k = 0 så länge det finns obehandlade element kvar i både och jämför elementet i [i] med elementet i [j] om det minsta elementet är från [k] = [i] i = i + 1 annars [k] = [j] j = j + 1 k = k + 1 En av följderna och har obehandlade element kvar. Flytta dessa element till. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

5 Samering av erade följder exempel Sameringen i Merge IsameringsstegetiMerge(merge)motsvarasdebådaföljderna och av de båda erade vektorhalvorna. Det går inte att utföra sameringen i den ursprungliga vektorn. En hjälpvektor, lika stor som den som ska eras, behövs. När man i merge-steget skall slå samman två delvektorer: används motsvarande utrymme i hjälpvektorn (tmparray): Resultatet flyttas sedan tillbaka till ursprungsvektorn. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Sameringen i Merge Exempel Slå samman delvektorerna och i vektorn a (bestående av ett element vardera): a tmparray Resultatet flyttas sedan tillbaka till den ursprungliga vektorn. merge implementeringsskiss Slå samman de erade delvektorerna a[leftpos].. a[rightpos - 1] och a[rightpos].. a[rightend]: private static <T extends Comparable<? super T>> void merge(t[] a, T[] tmparray, int leftpos, int rightpos, int rightend) { int leftend = rightpos - 1; int tmppos = leftpos; rightend a leftpos rightpos Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

6 merge implementeringsskiss Forts Merge implementering while (leftpos <= leftend && rightpos <= rightend) { if (a[leftpos].compareto(a[rightpos]) <= 0) { tmparray[tmppos] = a[leftpos]; leftpos++; else { tmparray[tmppos] = a[rightpos]; rightpos++; tmppos++; /* Nu är en av delvektorerna tom. Kopiera över ten av elementen i den icke tomma vektorn till tmparray */ /* Flytta till sist tillbaks elementen från tmparray till motsvarande platser i a */ /** Sorterar elementen i vektora a */ public static <T extends Comparable<? super T>> void (T[] a) { T[] tmparray = (T[]) new Comparable[a.length]; mergesort(a, tmparray, 0, a.length - 1); private static <T extends Comparable<? super T>> void mergesort(t[] a, T[] tmparray, int first, int last) { if (first < last) { int mid = first + (last - first) / 2; mergesort(a, tmparray, first, mid); mergesort(a, tmparray, mid + 1, last); merge(a, tmparray, first, mid + 1, last); Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Stabila eringsalgoritmer Merge tidskomplexitet Stabila eringsalgoritmer Bibehåller ordningen för element med lika nycklar efter eringen. Att samera två erade delvektorer av sammanlagd storlek n kostar n. Exempel: Antag att vi har personer ordnade efter förnamn: Ada Andersson, Bo Eriksson, Lars Andersson, Lena Andersson Om vi vill era efter efternamn istället, men samtidigt bibehålla den tidigare ordningen mellan förnamnen så måste vi använda en stabil eringsalgoritm. Ada Andersson, Lars Andersson, Lena Andersson, Bo Eriksson Är merge stabil? 1 merge av två delvektorer av storlek n/2, kostnad n 2 merge av två delvektorer av storlek n/4, kostnad 2 n/2 = n 4 merge av två delvektorer av storlek n/8, kostnad 4 n/4 = n Antal nivåer = log n =) total kostnad n log n Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

7 Quick Quick algoritm Välj ut ett element (element). Se till att det hamnar på rätt plats: Söndra- och härskaalgoritm. Oftast snabb Sämre än Merge i värsta fall O(n 2 ). Bra (snabb) i medelfall O(n log n). Värstafallet kan göras statistiskt osannolikt. Inget extra minnesutrymme för temporär vektor krävs. Flytta om elementen så att element apple hamnar till vänster och element hamnar till höger. Kallas partitionering av vektorn. x x x Pivot-elementet, på rätt plats Upprepa rekursivt på de båda delvektorerna till vänster pektive till höger om elementet. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Quick implementering Quick val av public static <T extends Comparable<? super T>> void (T[] a) { quicksort(a, 0, a.length - 1); /* Privat hjälpmetod. Sorterar delvektorn a[first]..a[last] */ private static <T extends Comparable<? super T>> void quicksort(t[] a, int first, int last) { if (first < last) { int pivindex = partition(a, first, last); quicksort(a, first, pivindex - 1); quicksort(a, pivindex + 1, last); Iprincipkanvilketelementsomhelstväljas. Vi börjar för enkelhets skull med att välja första elementet i vektorn. Inte särskilt bra val. Vi återkommer senare med en diskussion om bättre val. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

8 Quick partitioneringssteget Partitionering exempel = Sök från vänster upp ett element som är. Sök från höger upp ett element som är apple. Byt plats på dessa. Fortsätt tills hela vektorn genomletats. Pivotelementet kan sättas in mellan de båda vektordelarna som uppstår. Arbetet blir proportionellt mot vektorns längd. Efter byte: Efter byte: Byt plats på detta och Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Partitionering erad vektor Dåligt val av Om vektorn är erad och om väljs som första elementet hamnar Quick i sitt värsta fall: = 1 Byt plats på detta och Quick tidskomplexitet Man kan visa att det bästa fallet för Quick är när vektorn delas mitt itu i varje rekursiv upplaga. Då är tidskomplexiteten = O(n log n) x x Sämsta fall är när den ena delvektorn blir tom i varje rekursiv upplaga. Då är tidskomplexiteten = O(n 2 ) x Tom vektordel till vänster Alla element utom ett till höger Detta upprepas i alla rekursiva upplagor. x x Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

9 Quick bättre val av Välj median av första, mittersta och sista elementet. Eliminerar riskerna i samband med erad eller nästan erad indata left mid right Sortera de tre elementen i växande ordning: left mid right Quick bättre val av Forts Byt elementet på plats mid med elementet på plats left. Då hamnar elementet längs till vänster precis som förut Nu kan partitioneringssteget utföras som förut. Median av de tre är nu mittelementet. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38 Varianter av partitioneringssteget Quick efter partitioneringen Stanna eller ej (och byta) vid likhet med? Om vi inte stannar och byter och alla nycklar är lika hamnar vi i sämsta fallet Om vi stannar och byter och alla nycklar är lika blir det bästa fallet Efter partitioneringen eras delvektorerna a[low]a[pivindex-1] och a[pivindex+1]a[high] rekursivt. I praktiken låter man av effektivitetsskäl metoden avstanna när delvektorn i det rekursiva anropet är mindre än Den då nästan färdigerade vektorn kan eras av någon metod som är bra på nästan erad indata. T.ex. är insättningsering lämplig Man brukar rekommendera att stanna och byta vid likhet. Datavetenskap (LTH) Föreläsning 12 HT / 38 Datavetenskap (LTH) Föreläsning 12 HT / 38

10 Sortering Exempel på vad du ska kunna Redogöra för och jämföra olika eringsalgoritmer: Insättningsering i vektor Urvalsering i vektor Heap (behandlas i samband med prioritetsköer). Merge Quick Genomföra ering på enkla exempel med ovan nämnda metoder Samera två erade följder Förklara begreppen -element och partitionering (Quick). Använda idéerna från eringsalgoritmerna för att lösa andra problem (t.ex. partionering från quick eller sammanslagning av erade följder från merge). Datavetenskap (LTH) Föreläsning 12 HT / 38 Datorlaboration 6 Map, hashtabell Implementera en map med en egen öppen hashtabell table.length -1 null null null null key value next key value null next key value next null Tips: Det ska vara en öppen hashtabell. Entry-objekten fungerar även som noder i en enkellänkad lista. Innehåll: abstrakta datatypen map, öppen hashtabell, länkade listor, generisk klass Datavetenskap (LTH) Föreläsning 12 HT / 38

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering

Föreläsning 11 Innehåll. Sortering. Sortering i Java. Sortering i Java Comparable. Sortering. O(n 2 )-algoritmer: urvalssortering insättningssortering Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalsering insättningsering O(n log n)-algoritmer: Merge Quick Heap behandlades i samband med prioritetsköer. Undervisningsmoment: föreläsning 11,

Läs mer

Föreläsning 11 Innehåll

Föreläsning 11 Innehåll Föreläsning 11 Innehåll Sortering O(n 2 )-algoritmer: urvalssortering insättningssortering O(n log n)-algoritmer: Mergesort Quicksort Heapsort behandlades i samband med prioritetsköer. Undervisningsmoment:

Läs mer

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 13 Innehåll. Prioritetskö vs FIFO-kö. Prioritetskö Exempel på användning. Prioritetsköer och heapar Föreläsning 1 Innehåll ADT Prioritetskö Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util ar Implementering av prioritetskö med heap Sortering med hjälp

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

Seminarium 13 Innehåll

Seminarium 13 Innehåll Seminarium 13 Innehåll Prioritetsköer och heapar Prioritetsköer ADTn Klassen PriorityQueue i java.util Implementering med lista Heapar ADTn För implementering av prioritetskö För sortering Efter seminariet

Läs mer

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar

ADT Prioritetskö. Föreläsning 12 Innehåll. Prioritetskö. Interface för Prioritetskö. Prioritetsköer och heapar Föreläsning 1 Innehåll Prioritetsköer och heapar Prioritetsköer och heapar ADT prioritetskö Klassen PriorityQueue i java.util Heapar Implementering av prioritetskö med heap Sortering med hjälp av heap

Läs mer

Kapitel 7: Analys av sorteringsalgoritmer

Kapitel 7: Analys av sorteringsalgoritmer Kapitel 7: Analys av sorteringsalgoritmer Kapitel 7 i Weiss bok handlar om problemet med att sortera en räcka av element vi skall analysera körtiderna för några av sorteringsalgoritmerna vi bevisar också

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,

Läs mer

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition

Föreläsning 10 Innehåll. Diskutera. Inordertraversering av binära sökträd. Binära sökträd Definition Föreläsning Innehåll Diskutera Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 6 Innehåll. Rekursion. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursiv problemlösning. Rekursion. Rekursivt tänkande:

Föreläsning 6 Innehåll. Rekursion. Rekursiv problemlösning Mönster för rekursiv algoritm. Rekursiv problemlösning. Rekursion. Rekursivt tänkande: Föreläsning 6 Innehåll Rekursion Begreppet rekursion Rekursiv problemlösning Samband mellan rekursion och induktion Söndra-och-härska-algoritmer Dynamisk programmering Undervisningsmoment: föreläsning

Läs mer

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning.

Programmering för Språkteknologer II. Innehåll. Associativa datastrukturer. Associativa datastrukturer. Binär sökning. Programmering för Språkteknologer II Markus Saers markus.saers@lingfil.uu.se Rum -040 stp.lingfil.uu.se/~markuss/ht0/pst Innehåll Associativa datastrukturer Hashtabeller Sökträd Implementationsdetaljer

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning, implementering effektivitet balanserade binära sökträd, AVL-träd Abstrakta datatyperna mängd (eng. Set) och lexikon

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Binära sökträd algoritmer för sökning, insättning och borttagning implementering effektivitet balanserade binära sökträd, AVL-träd Jämföra objekt interfacet Comparable Interfacet

Läs mer

Föreläsning 9 Innehåll

Föreläsning 9 Innehåll Föreläsning 9 Innehåll Träd, speciellt binära träd egenskaper användningsområden implementering Datavetenskap (LTH) Föreläsning 9 HT 2017 1 / 31 Inlämningsuppgiften De föreläsningar som inlämningsuppgiften

Läs mer

13 Prioritetsköer, heapar

13 Prioritetsköer, heapar Prioritetsköer, heapar 31 13 Prioritetsköer, heapar U 101. En prioritetskö är en samling element där varje element har en prioritet (som används för att jämföra elementen med). Elementen plockas ut i prioritetsordning

Läs mer

Inlämningsuppgift och handledning

Inlämningsuppgift och handledning Inlämningsuppgift och handledning Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder på fredagluncher

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller

Inlämningsuppgift och handledning. Föreläsning 11 Innehåll. Diskutera. Hashtabeller Inlämningsuppgift och handledning Föreläsning 11 Innehåll Inlämningsuppgiften redovisas i vecka 49/50. Hög tid att komma igång! Jourtider varje vecka (se http://cs.lth.se/edaa01ht/inlaemningsuppgift) Frågestunder

Läs mer

Algoritmer. Två gränssnitt

Algoritmer. Två gränssnitt Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;

Läs mer

Tentamen, Algoritmer och datastrukturer

Tentamen, Algoritmer och datastrukturer UNDS TEKNISKA ÖGSKOA (6) Institutionen för datavetenskap Tentamen, Algoritmer och datastrukturer 23 8 29, 8. 3. Anvisningar: Denna tentamen består av fem uppgifter. Totalt är skrivningen på 36 poäng och

Läs mer

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd

Datastrukturer i kursen. Föreläsning 8 Innehåll. Träd rekursiv definition. Träd Föreläsning 8 Innehåll Datastrukturer i kursen Träd, speciellt binära träd egenskaper användningsområden implementering Undervisningsmoment: föreläsning 8, övningsuppgifter 8, lab 4 Avsnitt i läroboken:

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 9 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Prioritetskö Heap Representation som

Läs mer

Föreläsning 10 Innehåll

Föreläsning 10 Innehåll Föreläsning 10 Innehåll Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map i Java Undervisningsmoment:

Läs mer

Föreläsning 9. Sortering

Föreläsning 9. Sortering Föreläsning 9 Sortering Föreläsning 9 Sortering Sortering och Java API Urvalssortering Instickssortering Söndra och härska Shellsort Mergesort Heapsort Quicksort Bucketsort Radixsort Läsanvisningar och

Läs mer

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2 Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek

Läs mer

Föreläsning 4 Datastrukturer (DAT037)

Föreläsning 4 Datastrukturer (DAT037) Föreläsning 4 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-10 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal)

Föreläsning 10 Innehåll. Diskutera. Hashtabeller. Hashfunktion. hashfunktion. hashkod (ett heltal) Föreläsning 0 Innehåll Diskutera Hashtabeller implementering, effektivitet Metoden hashcode i Java Abstrakta datatyperna mängd (eng. Set) och lexikon (eng. Map) Interfacen Set och Map ijava Undervisningsmoment:

Läs mer

Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek

Föreläsning 5 Innehåll. Val av algoritm och datastruktur. Analys av algoritmer. Tidsåtgång och problemets storlek Föreläsning 5 Innehåll Val av algoritm och datastruktur Algoritmer och effektivitet Att bedöma och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Det räcker inte med att en algoritm är korrekt

Läs mer

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet.

Abstrakt datatyp. -Algoritmer och Datastrukturer- För utveckling av verksamhet, produkter och livskvalitet. -Algoritmer och Datastrukturer- Abstrakt datatyp Datatyp för en variabel Betecknar i ett programmeringsspråk den mängd värden variabeln får anta. T ex kan en variabel av typ boolean anta värdena true och

Läs mer

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod

Föreläsning 3-4 Innehåll. Diskutera. Metod. Programexempel med metod Föreläsning 3-4 Innehåll Diskutera Vad gör programmet programmet? Föreslå vilka satser vi kan bryta ut till en egen metod. Skriva egna metoder Logiska uttryck Algoritm för att beräkna min och max Vektorer

Läs mer

Interfacen Set och Map, hashtabeller

Interfacen Set och Map, hashtabeller Föreläsning 0 Innehåll Hashtabeller implementering, effektivitet Interfacen Set och Map ijava Interfacet Comparator Undervisningsmoment: föreläsning 0, övningsuppgifter 0-, lab 5 och 6 Avsnitt i läroboken:

Läs mer

Föreläsning Datastrukturer (DAT036)

Föreläsning Datastrukturer (DAT036) Föreläsning Datastrukturer (DAT036) Nils Anders Danielsson 2013-11-25 Idag Starkt sammanhängande komponenter Duggaresultat Sökträd Starkt sammanhängande komponenter Uppspännande skog Graf, och en möjlig

Läs mer

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs

Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDAA01 programmeringsteknik fördjupningkurs 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2008-05-27 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Länkade strukturer, parametriserade typer och undantag

Länkade strukturer, parametriserade typer och undantag Länkade strukturer, parametriserade typer och undantag Programmering för språkteknologer 2 Sara Stymne 2013-09-18 Idag Parametriserade typer Listor och länkade strukturer Komplexitet i länkade strukturer

Läs mer

Lösningsförslag för tentamen i Datastrukturer (DAT037) från

Lösningsförslag för tentamen i Datastrukturer (DAT037) från Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser

Läs mer

TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P

TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P UME UNIVERSITET Datavetenskap 981212 TENTAMEN PROGRAMMERINGSMETODIK MOMENT 2 - JAVA, 4P Datum : 981212 Tid : 9-15 HjŠlpmedel : Inga Antal uppgifter : 9 TotalpoŠng : 60 (halva pošngtalet kršvs normalt fšr

Läs mer

F9 - Polymorfism. ID1004 Objektorienterad programmering Fredrik Kilander

F9 - Polymorfism. ID1004 Objektorienterad programmering Fredrik Kilander F9 - Polymorfism ID1004 Objektorienterad programmering Fredrik Kilander fki@kth.se Polymorfism - flerformighet Vi vet vad metoden heter (signaturen) Men vi vet inte vid anropet exakt vilken metod som faktiskt

Läs mer

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg

Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg LUNDS TEKNISKA HÖGSKOLA 1(5) Institutionen för datavetenskap Lösningsförslag till tentamen i EDA690 Algoritmer och Datastrukturer, Helsingborg 2013 12 19 1. a) En samling element där insättning och borttagning

Läs mer

Programmering fortsättningskurs

Programmering fortsättningskurs Programmering fortsättningskurs Philip Larsson 2013 03 09 Innehåll 1 Träd 1 1.1 Binära träd........................................ 1 1.2 Strikt binärt träd..................................... 1 1.3 Binärt

Läs mer

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254

Rekursion. Att tänka rekursivt Att programmera rekursivt i Java Exempel. Programmeringsmetodik -Java 254 Rekursion Rekursion är en grundläggande programmeringsteknik M h a rekursion kan vissa problem lösas på ett mycket elegant sätt Avsnitt 11 i kursboken: Att tänka rekursivt Att programmera rekursivt i Java

Läs mer

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad

F5: Debriefing OU2, repetition av listor, träd och hashtabeller. Carl Nettelblad F5: Debriefing OU2, repetition av listor, träd och hashtabeller Carl Nettelblad 2017-04-24 Frågor Kommer nog inte att täcka 2 timmar Har ni frågor på OU3, något annat vi har tagit hittills på kursen, listor

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden

Sortering. Brute-force. Sortering Ordna element enligt relation mellan nyckelvärden Sortering Brute-force Sortering Ordna element enligt relation mellan nyckelvärden Flera olika algoritmer med olika fördelar Brute-force Gå igenom alla permutationer och hitta den där elementen ligger i

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Programmering för språkteknologer II. OH-serie: Sökning och sortering. Algoritm

Programmering för språkteknologer II. OH-serie: Sökning och sortering. Algoritm Programmering för språkteknologer II OH-serie: Sökning och sortering Mats Dahllöf Sökning och sortering Sökning: lokalisera objekt i samlingar. Finns ett visst värde? I så fall: var? Sortering: placera

Läs mer

Teoretisk del. Facit Tentamen TDDC (6)

Teoretisk del. Facit Tentamen TDDC (6) Facit Tentamen TDDC30 2014-08-29 1 (6) Teoretisk del 1. (6p) "Snabba frågor" Alla svar motiveras väl. a) Vad är skillnaden mellan synligheterna public, private och protected? (1p) Svar:public: Nåbar för

Läs mer

SORTERING OCH SÖKNING

SORTERING OCH SÖKNING Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm

Läs mer

Begreppet subtyp/supertyp i Java. Mera om generik. Generik och arv. Generik och arv. Innehåll

Begreppet subtyp/supertyp i Java. Mera om generik. Generik och arv. Generik och arv. Innehåll Mera om generik Begreppet subtyp/supertyp i Java Innehåll Wildcards Vektorer och generik Supertyper för en viss klass C är alla klasser från vilka C ärver och alla interface som klassen implementerar.

Läs mer

Föreläsning 3. Stack

Föreläsning 3. Stack Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista ADT Stack Grundprinciper: En stack

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {

Läs mer

Tentamen Programmeringsteknik II Inledning. Anmälningskod:

Tentamen Programmeringsteknik II Inledning. Anmälningskod: Tentamen Programmeringsteknik II 2016-01-11 Inledning I bilagan finns ett antal mer eller mindre ofullständiga klasser. Några ingår i en hierarki: List, SortedList, SplayList och ListSet enligt vidstående

Läs mer

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9 Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2010-03-16 Skrivtid: 4 timmar Kontaktperson: Nicolina Månsson Poäng / Betyg: Max 44 poäng

Läs mer

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } }

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } } Rekursion 25 7 Rekursion Tema: Rekursiva algoritmer. Litteratur: Avsnitt 5.1 5.5 (7.1 7.5 i gamla upplagan) samt i bilderna från föreläsning 6. U 59. Man kan definiera potensfunktionen x n (n heltal 0)

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Datastrukturer D. Föreläsning 2

Datastrukturer D. Föreläsning 2 Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of

Läs mer

Föreläsning ALGORITMER: SÖKNING, REGISTRERING, SORTERING

Föreläsning ALGORITMER: SÖKNING, REGISTRERING, SORTERING Föreläsning 11 12 ALGORITMER: SÖKNING, REGISTRERING, SORTERING Seminarier: Fredagsklubben för dig som tycker att programmering är svårt (0 eller möjligen 1 poäng på delmålskontrollen) inte avsedda för

Läs mer

Föreläsning 5 Datastrukturer (DAT037)

Föreläsning 5 Datastrukturer (DAT037) Föreläsning 5 Datastrukturer (DAT037) Nils Anders Danielsson, Fredrik Lindblad 2016-11-14 Förra gången: Cirkulära arrayer Prioritetskö Binära heapar Leftistheapar merge Det verkar inte gå att slå ihop

Läs mer

Föreläsning 3. Stack

Föreläsning 3. Stack Föreläsning 3 Stack Föreläsning 3 ADT Stack Stack JCF Tillämpning Utvärdera ett postfix uttryck Stack implementerad med en array Stack implementerad med en länkad lista Evaluate postfix expressions Läsanvisningar

Läs mer

Programmering för språkteknologer II, HT2014. Rum

Programmering för språkteknologer II, HT2014. Rum Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer

Läs mer

Föreläsning REPETITION & EXTENTA

Föreläsning REPETITION & EXTENTA Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder

Läs mer

Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Jonas Lindgren, Institutionen för Datavetenskap, LiU

Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Interface Generiska klasser Undantag

Läs mer

Föreläsning 13 Datastrukturer (DAT037)

Föreläsning 13 Datastrukturer (DAT037) Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning

Läs mer

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter

Läs mer

Föreläsning 2. Länkad lista och iterator

Föreläsning 2. Länkad lista och iterator Föreläsning 2 Länkad lista och iterator Föreläsning 2 Länkad-lista Lista implementerad med en enkellänkad lista Iterator Implementering av en Iterator Dubbellänkad lista och cirkulär lista LinkedList JCF

Läs mer

Lösningar Datastrukturer TDA

Lösningar Datastrukturer TDA Lösningar Datastrukturer TDA416 2016 12 21 roblem 1. roblem 2. a) Falskt. Urvalssortering gör alltid samma mängd av jobb. b) Sant. Genom att ha en referens till sista och första elementet, kan man nå både

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta!

TENTAMEN: Algoritmer och datastrukturer. Läs detta! (6) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi inte

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (7) TENTAMEN: Algoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. Börja varje uppgift på ett nytt blad. Skriv ditt idnummer på varje blad (så att vi

Läs mer

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor

Abstrakta datatyper. Primitiva vektorer. Deklarera en vektor Abstrakta datatyper 1 Primitiva vektorer Vektorer kan skapas av primitiva datatyper, objektreferenser eller andra vektorer. Vektorer indexeras liksom i C från 0. För att referera en vektor används hakparenteser.

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

TDDC Terminologi Uppdaterad Fö #1

TDDC Terminologi Uppdaterad Fö #1 Det här dokumentet ska inte ses som en uttömmande förklaring av varje term, utan snarare som en snabb påminnelse om vad varje enskild term betydde. För en mer noggrann beskrivning, se kursmaterialet eller

Läs mer

Föreläsning 3 Datastrukturer (DAT037)

Föreläsning 3 Datastrukturer (DAT037) Föreläsning 3 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-07 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt Se http://wwwcsechalmersse/edu/year/2015/course/dat037 Förra

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Det är extra mycket

Läs mer

Föreläsning 13. Rekursion

Föreläsning 13. Rekursion Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2007-03-13 Skrivtid: 4 timmar Kontakt person: Nicolina Månsson, tel. 035-167487 Poäng / Betyg:

Läs mer

Tentamen Datastrukturer D DAT 036/DIT960

Tentamen Datastrukturer D DAT 036/DIT960 Tentamen Datastrukturer D DAT 036/DIT960 17 december 2010 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 0736-341480 eller ankn 1035 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 =

Läs mer

TDDI16 Datastrukturer och algoritmer. Algoritmanalys

TDDI16 Datastrukturer och algoritmer. Algoritmanalys TDDI16 Datastrukturer och algoritmer Algoritmanalys 2017-08-28 2 Översikt Skäl för att analysera algoritmer Olika fall att tänka på Medelfall Bästa Värsta Metoder för analys 2017-08-28 3 Skäl till att

Läs mer

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom: 6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 4 oktober 2017 1 Idag Algoritmkonstruktion (lite blandat) Redovisning och inlämning av labbteori 3 2 Uppgifter Uppgift

Läs mer

Tentamen, EDAA20/EDA501 Programmering

Tentamen, EDAA20/EDA501 Programmering LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Tentamen, EDAA20/EDA501 Programmering 2011 10 19, 8.00 13.00 Anvisningar: Denna tentamen består av fem uppgifter. Preliminärt ger uppgifterna

Läs mer

public interface Skrivbar { void skriv(); } public class Punkt implements Skrivbar { public double x; public double y;

public interface Skrivbar { void skriv(); } public class Punkt implements Skrivbar { public double x; public double y; public interface Skrivbar { void skriv(); public class Punkt implements Skrivbar { public double x; public double y; public Punkt(double xx, double yy) { x = xx; y = yy; public Punkt() { @Override public

Läs mer

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna

Binära sökträd. Seminarium 9 Binära sökträd Innehåll. Traversering av binära sökträd. Binära sökträd Definition. Exempel på vad du ska kunna Seminarium inära sökträd Innehåll inära sökträd inära sökträd Definition Implementering lgoritmer Sökning Insättning orttagning Effektivitet alanserade binära sökträd Eempel på vad du ska kunna Förklara

Läs mer

Föreläsning 7. Träd och binära sökträd

Föreläsning 7. Träd och binära sökträd Föreläsning 7 Träd och binära sökträd Föreläsning 7 Träd Binära träd Binärt sökträd som ADT Implementering av binärt sökträd Travestera binärt sökträd Sökning Insättning/borttagning Läsanvisningar och

Läs mer

Tentamen i Algoritmer & Datastrukturer i Java

Tentamen i Algoritmer & Datastrukturer i Java Tentamen i Algoritmer & Datastrukturer i Java Hjälpmedel: Skrivhjälpmedel, miniräknare. Ort / Datum: Halmstad / 2011-03-15 Skrivtid: 4 timmar Kontakt person: Mattias Wecksten 7396 Poäng / Betyg: Max poäng

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

ID1020: Quicksort. Dr. Jim Dowling jdowling@kth.se. kap 2.3. Slides adapted from Algoritms 4 th Edition, Sedgewick.

ID1020: Quicksort. Dr. Jim Dowling jdowling@kth.se. kap 2.3. Slides adapted from Algoritms 4 th Edition, Sedgewick. ID1020: Quicksort Dr. Jim Dowling jdowling@kth.se kap 2.3 Slides adapted from Algoritms 4 th Edition, Sedgewick. Quicksort Grundläggande metod. - Blanda array:n. - Partitioner så att för något värde j

Läs mer

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista

Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Föreläsning 3: Abstrakta datastrukturer, kö, stack, lista Abstrakt stack Abstrakt kö Länkade listor Abstrakta datatyper Det är ofta praktiskt att beskriva vilka operationer man vill kunna göra på sina

Läs mer

Algoritmer och datastrukturer 2012, fo rela sning 8

Algoritmer och datastrukturer 2012, fo rela sning 8 lgoritmer och datastrukturer 01, fo rela sning 8 Komplexitet för binära sökträd De viktigaste operationerna på binära sökträd är insert, find och remove Tiden det tar att utföra en operation bestäms till

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

EDAA01 Programmeringsteknik - fördjupningskurs

EDAA01 Programmeringsteknik - fördjupningskurs EDAA01 Programmeringsteknik - fördjupningskurs Läsperiod lp 1+2 (Ges även lp 3) 7.5 hp anna.axelsson@cs.lth.se sandra.nilsson@cs.lth.se http://cs.lth.se/edaa01ht Förkunskapskrav: Godkänd på obligatoriska

Läs mer

Övningsuppgifter #11, Programkonstruktion och datastrukturer

Övningsuppgifter #11, Programkonstruktion och datastrukturer Övningsuppgifter #11, Programkonstruktion och datastrukturer Lösningsförslag Elias Castegren elias.castegren@it.uu.se Övningar 1. 1 2. 2 3. Ett binomialträd med rang n har 2 n noder. En binomial heap innehåller

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2013-03-27 Sal Tid 08:00 12:00 Kurskod Provkod Kursnamn/benämning Institution Antal uppgifter som ingår i tentamen Antal

Läs mer

Laboration 13, Arrayer och objekt

Laboration 13, Arrayer och objekt Laboration 13, Arrayer och objekt Avsikten med denna laboration är att du ska träna på att använda arrayer. Skapa paketet laboration13 i ditt laborationsprojekt innan du fortsätter med laborationen. Uppgift

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Interface Generiska klasser Undantag

Läs mer

Seminarium 3 Introduktion till Java Collections Framework Innehåll. Generik Bakgrund. Exempel på en generisk klass java.util.arraylist.

Seminarium 3 Introduktion till Java Collections Framework Innehåll. Generik Bakgrund. Exempel på en generisk klass java.util.arraylist. Seminarium 3 Introduktion till Java Collections Framework Innehåll Generik Bakgrund Java Collections Framework interface och klasser för samlingar av element interfacen Iterator och Iterable och foreach-sats

Läs mer

Föreläsning 12. Länkade listor

Föreläsning 12. Länkade listor Föreläsning 12 Länkade listor Jämför en array med en länkad lista m in n e t Array (med 5 element): + effektiv vid hämtning - ineffektiv vid insättning och borttagning Länkad lista (med 5 element): + effektiv

Läs mer

Länkade strukturer. (del 2)

Länkade strukturer. (del 2) Länkade strukturer (del 2) Översikt Abstraktion Dataabstraktion Inkapsling Gränssnitt (Interface) Abstrakta datatyper (ADT) Programmering tillämpningar och datastrukturer 2 Abstraktion Procedurell abstraktion

Läs mer

Föreläsning 3 Innehåll. Generiska klasser. Icke-generisk lista ArrayList, skiss av implementering. Icke-generisk lista Risk för fel

Föreläsning 3 Innehåll. Generiska klasser. Icke-generisk lista ArrayList, skiss av implementering. Icke-generisk lista Risk för fel Föreläsning 3 Innehåll Generiska klasser Implementera generiska klasser Exceptions Dokumentationekommentarer javadoc Enhetstestning - junit Man kan deklarera en eller flera typparametrar när man definierar

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer