729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap

Storlek: px
Starta visningen från sidan:

Download "729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap"

Transkript

1 729G43 Artificiell intelligens (2016) Maskininlärning 1 Marco Kuhlmann Institutionen för datavetenskap

2 Introduktion

3 Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå naturligt språk kontrollera maskiner, farkost, robotar ge beslutsstöd inom sjukvården detektera skumma banktransaktioner och cyberattacker föreslå produkter, låtar och filmer hjälpa oss att hitta information på webben

4 Tre exempel Stanford University Autonomous Helicopter Project Länk till videon Computers Teach Themselves to Recognize Cats, Faces Länk till videon At Berkeley, a Robot that Folds Laundry Länk till videon

5 Kommersiellt intresse

6 Inlärningsuppgifter Övervakad inlärning (eng. supervised learning) Agenten får data och facit för att lära sig. regression, klassifikation Oövervakad inlärning (eng. unsupervised learning) Agenten får data men inget facit. klustring, temamodeller Förstärkande inlärning (eng. reinforcement learning) Agenten får data och belönas om den gör rätt.

7 Övervakad inlärning Regression Förutsäga värdet på en variabel med oändligt många värden. husets pris Klassifikation Förutsäga värdet på en variabel med ändligt många värden. höger/vänster

8 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

9 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

10 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

11 Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full $ No No Thai No 3 No Yes No No Some $ No No Burger 0 10 Yes 4 Yes No Yes Yes Full $ No No Thai Yes 5 Yes No Yes No Full $$$ No Yes French >60 No 6 No Yes No Yes Some $$ Yes Yes Italian 0 10 Yes 7 No Yes No No None $ Yes No Burger 0 10 No 8 No No No Yes Some $$ Yes Yes Thai 0 10 Yes 9 No Yes Yes No Full $ Yes No Burger >60 No 10 Yes Yes Yes Yes Full $$$ No Yes Italian No 11 No No No No None $ No No Thai 0 10 No 12 Yes Yes Yes Yes Full $ No No Burger Yes

12 Klassifikation Herr talman! Bostadsministern är kategorisk. Inget samhällsstöd för byggnation av bostäder. Bostaden ska vara en handelsvara, ingen social rättighet. Bostadspolitiken avpolitiseras och rangeras ut från välfärdspolitiken. Men det är ok med RUT, att någon kommer hem och hjälper till med serveringen. 2 miljarder är kostnaden. Det är ok med ROT, reparation och ombyggnad i sommarstugan eller bostadsrätten 13,2 miljarder. Det är ok med sänkt restaurangmoms 5,4 miljarder. Hamburgare och korv kan subventioneras, medan bostadsköerna växer. Det är sorgligt, i sanning mycket sorgligt att bostadsministern har den uppfattningen om vikten av politisk prioritering. Jag vill upprepa för tredje gången: Kan bostadsministern här i kammaren tala om vad han säger till det unga par som har flyttat till Stockholm från arbetslösheten på någon annan plats i landet men inte har någon bostad? Vad säger bostadsministern till det paret? vänster? höger?

13 Regression eller klassifikation? Du har samlat in en massa filmrecensioner från IMDB, där varje film har fått mellan 0 och 10 stjärnor. Nu får du en ny filmrecension och vill förutsäga hur många stjärnor filmen får. Du har samlat in data om hur många fordon som trafikerar E4 mellan Norrköping och Linköping. Nu vill du uppskatta hur många fordon som kommer trafikera denna sträcka i morgon.

14 Temamodeller How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes. 0,5 0,375 0,25 0,125 0 Teman Källa: Blei (2012)

15 Temamodeller human genome dna genetic genes sequence gene molecular sequencing map information genetics mapping project sequences evolution evolutionary species organisms life origin biology groups phylogenetic living diversity group new two common computer models information data computers system network systems model parallel methods networks software new simulations

16 När skulle du använda oövervakad inlärning? Predicera om ett epostmeddelande är spam/ham, givet en mängd epostmeddelanden taggade som spam/ham. Gruppera datorer i ett stort nätverk utifrån vilka datorer kommunicerar mest med vilka andra. Givet en databas med kunddata, upptäck marknadssegment och gruppera kunderna i dessa segment. Predicera om en patient har diabetes, givet en mängd data om andra patienter som antingen har eller inte har diabetes. Källa: Andrew Ng

17 Översikt Introduktion Exempel: Linjär regression med en variabel Några grundläggande begrepp Linjär regression med flera variabler Perceptroninlärning Neuronnät

18 Exempel: Linjär regression med en variabel

19 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

20 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

21 Träningsmängd Husets storlek (x) Husets pris (y) N stycken träningsinstanser (x i, y i )

22 Linjär regression Modellantagandet Sambandet mellan indata och utdata är en rät linje. Vad betyder detta matematiskt? Inlärningsuppgift Hitta den bästa räta linjen: den linje som minimerar det totala avståndet till datapunkterna. Hur mäter vi avståndet?

23 Räta linjens ekvation linjens lutning förskjutning från origo

24 Räta linjens ekvation h(x) h(x) x x θ 0 = 1, θ 1 = 0 θ 0 = 0, θ 1 = 1

25 Inlärningsuppgift Problemformulering Välj parametrarna θ 0 och θ 1 sådana att det totala avståndet mellan den motsvarande linjen och datapunkterna är minimalt. Detta problem kan lösas exakt med minsta kvadratmetoden. En inexakt (numerisk) men mycket användbar metod för att lösa problemet är gradientsökning (eng. gradient descent).

26 Felfunktion: L2 modellparametrarna målvärde för x i predicerat värde för x i

27 Vad mäter felfunktionen?

28 Vad mäter felfunktionen? 3 θ 1 =

29 Vad mäter felfunktionen? 3 θ 1 = 0,

30 Vad mäter felfunktionen? 3 θ 1 =

31 Felfunktion: L2 4 3 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ

32 Gradientsökning: Intuition J(θ) 2 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ 0-0,5 0 0,5 1 1,5 2 2,5 θ θ θ stort värde θ θ + litet värde

33 Gradientsökning: Intuition J(θ) 2 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ 0-0,5 0 0,5 1 1,5 2 2,5 θ θ θ tangentens lutning θ θ + tangentens lutning

34 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangenten: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Detalj: Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.

35 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467

36 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467

37 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,249

38 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1,284 0,19 1, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,133

39 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1 1,284 0,19 1,33 1,151 0,05 0,71 0-0,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,071

40 Uppdateringsregeln för gradientsökning tangentens lutning i punkt θ steglängdsfaktor

41 Uppdateringsregeln för gradientsökning När vi räknar ut tangentens lutning explicit får vi: (För att räkna ut detta själv behöver man kunna ta derivator.)

42 Frågor kring gradientsökning Vad hade hänt om vi hade börjat med θ = 0 eller θ = 1? Vad händer när steglängdsfaktorn är för stor eller för liten? Prova till exempel α = 1.

43 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangentens lutning: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.

44 Varianter på gradientsökning Minibatch gradient descent Uppdatera baserat på mindre delar av träningsdatan. Kan öka hastigheten med vilken inlärningsprocessen konvergerar. Stochastic gradient descent Kasta om träningsdatan slumpmässigt efter varje iteration. Kan förhindra att inlärningsprocessen fastnar i lokala optima.

45 Översikt Introduktion Exempel: Linjär regression med en variabel Några grundläggande begrepp Linjär regression med flera variabler Perceptroninlärning Neuronnät

46 Några grundläggande begrepp

47 Guldstandard För att träna upp och utvärdera system för övervakad maskininlärning behöver vi data på formen (x, y), där x är ett invärde och y är det korrekta målvärdet för x. Exempel: x = riksdagsanförande, y = korrekt klass En sådan datamängd kallas guldstandard.

48 Träning och testning Träning Att träna upp ett system innebär att vi visar det både invärdet x och målvärdet y och låter det lära sig. vid linjär regression: förändra vikterna Testning När vi utvärderar en modell visar vi bara x och jämför modellens predicerade utvärde för detta datum med målvärdet y. Hur nära kom systemet rätt målvärde, i genomsnitt?

49 Träningsfel, generaliseringsfel, testfel Under träningen försöker vi minimera modellens träningsfel, dvs. hur mycket fel den gör på datan i träningsmängden. optimering Det som vi egentligen vill minimera är modellens generaliseringsfel, dvs. hur mycket fel den gör på okända data. Eftersom vi inte kan mäta generaliseringsfelet uppskattar vi den utifrån modellens testfel, dvs. hur mycket fel den gör på testdatan. kräver statistiska antaganden om likheten mellan träningsdata och testdata

50 Statistiska antaganden om datamängderna eng. independent and identically distributed (i.i.d.) Antagande 1: Datan i träningsmängden och i testmängden är ömsesidigt oberoende. Antagande 2: Datan i träningsmängden och i testmängden är tagna från samma sannolikhetsfördelning. t.ex. inte kast med ett vanligt mynt i ena, med ett manipulerat mynt i andra

51 Underfitting och overfitting Underfitting Modellen räcker inte till för att få ett lågt felvärde på träningsmängden. Den är ännu sämre på testmängden. Overfitting Modellen är överoptimerad på träningsdatan. Den får ett lågt felvärde där, men ett mycket högre felvärde på testmängden. Modellen har lärt sig säregenskaper hos träningsdatan.

52 Underfitting och overfitting ,5 0 0,5 1 1,5 2 2,5 0-0,5 0 0,5 1 1,5 2 2,5 0-0,5 0 0,5 1 1,5 2 2,5 lämplig modell underfitting overfitting

53 Regularisering För att undvika overfitting kan vi använda regularisering. Detta innebär att vi förändrar en inlärningsalgoritm så att dess generaliseringsfel men inte dess träningsfel blir mindre. Exempel: L2-regularisering. Lägg till en extra term till felfunktionen som blir större ju större vikterna är. Intuition: Låt modellen fokusera på det generella, inte det extrema.

54 Valideringsmängd Ibland har en maskininlärningsalgoritm parametrar som måste fixeras manuellt. Sådana parametrar kallas hyperparametrar. Exempel: inlärningskvot För att hitta lämpliga värden till hyperparametrarna brukar man använda en separat valideringsmängd. alternativ: korsvalidering

55 Översikt Introduktion Exempel: Linjär regression med en variabel Några grundläggande begrepp Linjär regression med flera variabler Perceptroninlärning Neuronnät

729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 1 Marco Kuhlmann Introduktion Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå naturligt språk kontrollera maskiner,

Läs mer

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 2 Marco Kuhlmann Förra gången: Linjär regression Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna

Läs mer

729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 3 Marco Kuhlmann Förra gången: Perceptroninlärning Beslutsregel predicerat y-värde Exempel: AND Välj parametrar θ 0, θ 1, θ 2 sådana att perceptronen

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 2 Marco Kuhlmann Institutionen för datavetenskap Förra gången: Gradientsökning tangentens lutning i punkt θ steglängdsfaktor Översikt Introduktion

Läs mer

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap ARTIFICIELLA NEURALA NÄT MARCO KUHLMANN Institutionen för datavetenskap Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 3 Marco Kuhlmann Institutionen för datavetenskap Modell med vektornotation parametervektor särdragsvektor Perceptron kombinerar linjär regression med

Läs mer

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA 729G43 Artificiell intelligens Maskininlärning Arne Jönsson HCS/IDA Maskininlärning Introduktion Beslutsträdsinlärning Hypotesinlärning Linjär regression Vektorer Perceptroner Artificiella Neurala Nät

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd.

I en deterministisk omgivning beror nästa tillstånd bara av agentens handling och nuvarande tillstånd. OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Artificiella Neuronnät

Artificiella Neuronnät Artificiella Neuronnät 2 3 4 2 (ANN) Inspirerade av hur nervsystemet fungerar Parallell bearbetning Vi begränsar oss här till en typ av ANN: Framåtkopplade nät med lagerstruktur 3 4 Fungerar i princip

Läs mer

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät Artificiella Neuronnät 1 Karaktäristiska egenskaper Användningsområden Klassiska exempel Biologisk bakgrund 2 Begränsningar Träning av enlagersnät 3 Möjliga avbildningar Backprop algoritmen Praktiska problem

Läs mer

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit.

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit. 2D1432 Artificiella Neuronnät och andra lärande system Lösningsförslag till Tentamen 2003-03-06 Inga hjälpmedel. Uppgift 1 Vilka av följande påståenden är sanna? Korrigera de som är fel. 1. Potentialen

Läs mer

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Niklas Blomstrand Linköpings Universitet Inledning Att veta vilken ordklass ett ord tillhör är en viktig del i bearbetning

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018

Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018 Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018 Mats Artursson Utredare/Inspektör Agenda Vad säger regelverket Olika typer av AI Sverige Internationellt Utmaningar Pågående EU arbete 2 Medicinteknisk

Läs mer

SHAZAM! En!smart!musiktjänst! Linha108! Fördjupningsarbete!729G43!

SHAZAM! En!smart!musiktjänst! Linha108! Fördjupningsarbete!729G43! SHAZAM Ensmartmusiktjänst Linha108 Fördjupningsarbete729G43 Sammanfattning Shazam är en musiktjänst som genom en sökalgoritm kan känna igen ljud och returnera låt och artist till användaren. Detta sker

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

AI utmaningar inom kvalitetssäkring. Henrik Emilsson Teststrateg, Nordic Medtest AB

AI utmaningar inom kvalitetssäkring. Henrik Emilsson Teststrateg, Nordic Medtest AB AI utmaningar inom kvalitetssäkring Henrik Emilsson Teststrateg, Nordic Medtest AB Först lite om Artificiell intelligens General AI vs. Narrow AI Maskininlärning Supervised Learning Unsupervised Learning

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

HYPOTESPRÖVNING sysselsättning

HYPOTESPRÖVNING sysselsättning 0 självmord 20 40 60 HYPOTESPRÖVNING 4. Se spridningsdiagrammen nedan (A, B och C). Alla tre samband har samma korrelation och samma regressionslinje (r = 0,10, b = 0,15). Vi vill testa om sambandet mellan

Läs mer

Linköpings universitet

Linköpings universitet Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning 4 Informationsbearbetningsmodeller Vad är kognitionsvetenskap? Kort bakgrund/historik Representation och bearbetning av information Vetenskapliga

Läs mer

Vindkraft och ML. - hur kan vindkraft dra nytta avml

Vindkraft och ML. - hur kan vindkraft dra nytta avml Vindkraft och ML - hur kan vindkraft dra nytta avml AI och ML Intelligens: förmågan att utnyttja kunskap för att bättre lösa en klass av uppgifter Lärande: förmågan att förbättra sin förmåga att lösa uppgifterna

Läs mer

Att använda Weka för språkteknologiska problem

Att använda Weka för språkteknologiska problem Att använda Weka för språkteknologiska problem Systemet WEKA (Waikato Environment for Knowledge Acquisition) är en verktygslåda med olika maskininlärningsalgoritmer, metoder för att behandla indata, möjligheter

Läs mer

729G17 Språkteknologi / Introduktion. Marco Kuhlmann Institutionen för datavetenskap

729G17 Språkteknologi / Introduktion. Marco Kuhlmann Institutionen för datavetenskap 729G17 Språkteknologi / 2016 Introduktion Marco Kuhlmann Institutionen för datavetenskap Vad är språkteknologi? Vad är språkteknologi? Språkteknologi är all teknologi som skapas för att förstå eller generera

Läs mer

Matcha rätt hjärta till rätt patient med AI. Dennis Medved

Matcha rätt hjärta till rätt patient med AI. Dennis Medved Matcha rätt hjärta till rätt patient med AI Dennis Medved Översikt Introduktion IHTSA LuDeLTA Sammanfattning Framtida arbete Introduktion Hjärttransplantation Livräddande operation för patienter med hjärtsvikt

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 8

ÖVNINGSUPPGIFTER KAPITEL 8 ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår

Läs mer

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016 Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16

Läs mer

Regression med Genetiska Algoritmer

Regression med Genetiska Algoritmer Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR

DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR DATAANALYS OCH AVANCERADE ALGORITMER MÖJLIGHETER MED UTÖKAD MÄTINFRASTRUKTUR Mattias Persson (Ph.D.) 1 Oktober 2018 RISE Research Institutes of Sweden Measurement technology Agenda Bakgrund Målet med projektet

Läs mer

Tänk på följande saker när du skriver tentan:

Tänk på följande saker när du skriver tentan: Ämne: AI med inriktning mot kognition och design Kurskod: KOGB05 / TDBB21 Datum: 2005-04-01 Antal uppgifter: 12 Skrivtid: 09:00 15:00 Max poäng: 54 Betygsgränser: 27 x

Läs mer

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar

Läs mer

Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen

Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen Adaptiva algoritmer och intelligenta maskiner, 2005 Hemtentamen Hemtentamen består av 5 uppgifter. Totalpoängen är 25 och varje uppgift ger 5 poäng. För godkänt krävs minst 10 poäng. Det är givetvis tillåtet

Läs mer

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén,

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, Sub-symbolisk kognition & Konnektionism Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, mats.andren@liu.se 1 Konnektionism Neutrala nät baseras på en (förenklad) modell av hur hjärnan fungerar.

Läs mer

Användning av maskininlärning för att välja ut porträtt

Användning av maskininlärning för att välja ut porträtt Användning av maskininlärning för att välja ut porträtt Department of Electrical and Information Technology Faculty of Engineering, LTH, Lund University SE-221 00 Lund, Sweden Examensarbete: David Axelsson

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2017-08-15 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

ÖVNINGSUPPGIFTER KAPITEL 9

ÖVNINGSUPPGIFTER KAPITEL 9 ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar

Läs mer

Algoritmer och maskininlärning

Algoritmer och maskininlärning Algoritmer och maskininlärning Olof Mogren Chalmers tekniska högskola 2016 De här företagen vill Tjäna pengar Hitta mönster i stora datamängder Göra förutsägelser Klassificera data Förstå människan Maskininlärning

Läs mer

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

Datorer och intelligens

Datorer och intelligens Datorer och intelligens (kapitel 4 och 8 av Winograd & Flores) Harko Verhagen Statement One cannot program computers to be intelligent Problem: vad är intelligens? Vad är intelligens? 1. Intelligens =

Läs mer

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University Neurala nätverk och språk Henli807!1 Neurala nätverk och språkigenkänning Henrik Linnarsson Linköping University Neurala nätverk och språk Henli807!2 RNN, LSTM och språkigenkänning Inledning Idag är språkigenkänning

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten.

Antag att b är förgreningsfaktorn, d sökdjupet, T (d) tidskomplexiteten och M(d) minneskomplexiteten. OS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervalsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Vad behövs för att skapa en tillståndsrymd?

Vad behövs för att skapa en tillståndsrymd? OBS! För flervalsfrågorna gäller att ett, flera eller inget alternativ kan vara korrekt. På flervarlsfrågorna ges 1 poäng för korrekt svar och 0,5 poäng om skillnaden mellan antalet korrekta svar och antalet

Läs mer

Analytisk statistik. Mattias Nilsson Benfatto, PhD.

Analytisk statistik. Mattias Nilsson Benfatto, PhD. Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning?

Finns det över huvud taget anledning att förvänta sig något speciellt? Finns det en generell fördelning som beskriver en mätning? När vi nu lärt oss olika sätt att karaktärisera en fördelning av mätvärden, kan vi börja fundera över vad vi förväntar oss t ex för fördelningen av mätdata när vi mätte längden av en parkeringsficka. Finns

Läs mer

a) y = 10 0,5x där y är vattenmängden i hinken och x antalet timmar. b) Se diagrammet c) Då det återstår 5 liter har det gått 10 timmar.

a) y = 10 0,5x där y är vattenmängden i hinken och x antalet timmar. b) Se diagrammet c) Då det återstår 5 liter har det gått 10 timmar. Ge inte upp om inte ditt svar stämmer med facit. Du kan ha tänkt helt rätt, men bara räknat fel. Prova en gång till. Om ditt svar ändå inte stämmer med facit, klicka på Hjälp?, eller be din lärare om hjälp

Läs mer

GeoGebra in a School Development Project Mathematics Education as a Learning System

GeoGebra in a School Development Project Mathematics Education as a Learning System Karlstad GeoGebra in a School Development Project Mathematics Education as a Learning System Dé dag van GeoGebra Zaterdag 19 oktober 2013 GeoGebra Instituut Vlaanderen, Brussell 1 2 GeoGebra in a School

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

Probabilistisk logik 1

Probabilistisk logik 1 729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast

Läs mer

Matematik 3c Kap 2 Förändringshastighet och derivator

Matematik 3c Kap 2 Förändringshastighet och derivator Matematik 3c Kap 2 Förändringshastighet och derivator Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Exempel x f ( x = e + x = 1 5 3 f ( x = x + x x+ 5= 0 f ( x, y = cos( x sin ( x + y = 1 Kan endast i undantagsfall lösas exakt Kan sakna lösning, ha en lösning, ett visst antal lösningar

Läs mer

TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning. Marco Kuhlmann Institutionen för datavetenskap

TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning. Marco Kuhlmann Institutionen för datavetenskap TDDD02 Språkteknologi för informationssökning (2016) Ordklasstaggning Marco Kuhlmann Institutionen för datavetenskap Ordklasstaggning Tagga varje ord i en sekvens av ord (oftast en mening) med dess korrekta

Läs mer

GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON

GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON 2018 GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON Innehåll Inledning & Bakgrund... 2 Förstärkt inlärning... 2 MDP... 2 Gridworld... 3 Nytta och policy... 4 Värdefunktion och Bellmanekvationer...

Läs mer

ALGORITMER, OPTIMERING OCH LABYRINTER

ALGORITMER, OPTIMERING OCH LABYRINTER ALGORITMER, OPTIMERING OCH LABYRINTER Text: Marie Andersson, Learncode AB Illustrationer: Li Rosén Foton: Shutterstock Har du någonsin lagat mat efter recept eller monterat ihop en möbel från IKEA? Då

Läs mer

Hur biologiska system optimerar sin egen produktionsstyrning

Hur biologiska system optimerar sin egen produktionsstyrning Hur biologiska system optimerar sin egen produktionsstyrning Replace Refine Reduce x i systembiologi blir djurförsök mer och mer irrelevanta! Gunnar Cedersund, Integrative Systems Biology, Linköping University,

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid 1 (10) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 Betrakta nedanstående täthetsfunktion för en normalfördelad slumpvariabel X med väntevärde

Läs mer

The present situation on the application of ICT in precision agriculture in Sweden

The present situation on the application of ICT in precision agriculture in Sweden The present situation on the application of ICT in precision agriculture in Sweden Anna Rydberg & Johanna Olsson JTI Swedish Institute for Agricultural and Environmental Engineering Objective To investigate

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python)

Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Instruktioner - Datortentamen TDDE24 och TDDD73 Funktionell och imperativ programmering (i Python) Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken

Läs mer

Laboration 1: Optimalt sparande

Laboration 1: Optimalt sparande Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem

Läs mer

Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB

Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB Att förutsäga framtiden.. "I predict the Internet will soon go spectacularly supernova and in 1996 catastrophically collapse.

Läs mer

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,

Läs mer

Laboration 2: Normalfo rdelning, regressionsanalys och korstabeller

Laboration 2: Normalfo rdelning, regressionsanalys och korstabeller S0004M Statistik 1 Undersökningsmetodik. Laboration 2: Normalfo rdelning, regressionsanalys och korstabeller Till denna laboration ska det angivna datamaterialet användas och bearbetas med den statistiska

Läs mer

Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts.

Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Berkant Savas Tillämpad matematik i natur och teknikvetenskap, TNA5 Institutionen för teknik och naturvetenskap Linköpings universitet

Läs mer

LÖNEN ETT EFFEKTIVT SÄTT FÖR ÖNSKAD PRESTATION - ENDA FÖRUTSÄTTNINGEN FÖR KONKURRENSKRAFT I EN GLOBAL VÄRLD!

LÖNEN ETT EFFEKTIVT SÄTT FÖR ÖNSKAD PRESTATION - ENDA FÖRUTSÄTTNINGEN FÖR KONKURRENSKRAFT I EN GLOBAL VÄRLD! LÖNEN ETT EFFEKTIVT SÄTT FÖR ÖNSKAD PRESTATION - ENDA FÖRUTSÄTTNINGEN FÖR KONKURRENSKRAFT I EN GLOBAL VÄRLD! PRESTATION - UPPNÅDDA RESULTAT INOM GIVNA RAMAR KRAFTER SOM PÅVERKAR PRESTATION FÖR ORGANISATIONER

Läs mer

6 Derivata och grafer

6 Derivata och grafer 6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000

Läs mer

med hjälp av Deep Reinforcement Learning

med hjälp av Deep Reinforcement Learning Agent som kan spela Atarispel bättre än människor med hjälp av Deep Reinforcement Learning Sofie Adolfsson, sofad117@student.liu.se Artificiell Intelligens Linköpings Universitet 2017-01-12 SofieAdolfsson

Läs mer

Numerisk Analys, MMG410. Lecture 10. 1/17

Numerisk Analys, MMG410. Lecture 10. 1/17 Numerisk Analys, MMG410. Lecture 10. 1/17 Ickelinjära ekvationer (Konvergensordning) Hur skall vi karakterisera de olika konvergenshastigheterna för halvering, sekant och Newton? Om f(x x k+1 x ) = 0 och

Läs mer

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN

LARS ULVELAND HOPFIELDNÄTVERK FÖR IGENKÄNNING AV DEGRADERADE BILDER OCH HANDSKRIVNA TECKEN LARS ULVELAD HOPFIELDÄTVERK FÖR IGEKÄIG AV DEGRADERADE BILDER OCH HADSKRIVA TECKE E PROJEKTRAPPORT FÖR PROJEKTKURSE I BILDAALYS HT 02 Teori för Hopfieldnätverk Hopfieldmodellen är en typ av neuronnät,

Läs mer

Linjär algebra förel. 10 Minsta kvadratmetoden

Linjär algebra förel. 10 Minsta kvadratmetoden Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Icke-linjära ekvationer

Icke-linjära ekvationer stefan@it.uu.se Eempel f ( ) = e + = 5 3 f ( ) = + + 5= f (, y) = cos( ) sin ( ) + y = Kan endast i undantagsfall lösas eakt Kan sakna lösning, ha en lösning, ett visst antal lösningar eller oändligt många

Läs mer

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden 24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,

Läs mer

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r.

där x < ξ < 0. Eftersom ξ < 0 är högerledet alltid mindre än Lektion 4, Envariabelanalys den 30 september 1999 r(1 + 0) r 1 = r. Lektion 4, Envariabelanals den 30 september 1999 där 0 < ξ 0 är högerledet alltid större än 2.6.2 Åskådliggör medelvärdessatsen genom att finna en punkt i det öppna intervallet (1, 2) där

Läs mer

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet Dynamiska system Hans Lundmark Matematiska institutionen Linköpings universitet 2/24 Dynamiskt system = ett system vars tillstånd ändras med tiden, och som har följande egenskaper: Deterministiskt Följer

Läs mer

Psykologi som vetenskap

Psykologi som vetenskap Psykologi som vetenskap Begrepp och metoder Forskningsetik Av Jenny Wikström, KI till Psykologprogrammet HT10 Kurslitteratur: Myers Psychology, Kap.1 Kurs: Introduktion till psykologi 7,5 hp Psykologi

Läs mer

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1.

En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1. Lektion 6, Flervariabelanals den 27 januari 2000 1272 Givet funktionen och punkten p 1, 1, beräkna a gradienten till f i p, f, + b en ekvation för tangentplanet till f:s graf i punkten p, fp, c en ekvation

Läs mer

Optimering av strålterapi

Optimering av strålterapi Optimering av strålterapi Anders Forsgren Optimeringslära och systemteori Institutionen för matematik KTH Presentation simuleringsteknik 3 oktober 2013 Optimering av strålterapi Gememensamt forskningsprojekt

Läs mer

1(15) Bilaga 1. Av Projekt Neuronnätverk, ABB Industrigymnasium, Västerås Vt-05

1(15) Bilaga 1. Av Projekt Neuronnätverk, ABB Industrigymnasium, Västerås Vt-05 1(15) Bilaga 1 2(15) Neuronnätslaboration Räknare Denna laboration riktar sig till gymnasieelever som går en teknisk utbildning och som helst har läst digitalteknik samt någon form av styrteknik eller

Läs mer

Gradientbaserad Optimering,

Gradientbaserad Optimering, Gradientbaserad Optimering, Produktfamiljer och Trinitas Hur att sätta upp ett optimeringsproblem? Vad är lämpliga designvariabler x? Tjockleksvariabler (sizing) Tvärsnittsarean hos stänger Längdmått hos

Läs mer

Sannolihetsbaserad modellering av flygplansdata -med fokus på ankomsttid

Sannolihetsbaserad modellering av flygplansdata -med fokus på ankomsttid Sannolihetsbaserad modellering av flygplansdata -med fokus på ankomsttid I samarbete med Flightradar24.com JOSEFIN AHNLUND OCH CAROLINE MAGNUSSON JAHNLUND@KTH.SE CARMAG@KTH.SE Examensarbete i Teknisk fysik,

Läs mer

Hierarchical Temporal Memory Maskininlärning

Hierarchical Temporal Memory Maskininlärning Hierarchical Temporal Memory Maskininlärning Innehåll Sammanfattning... 3 Inledning... 4 Vad är HTM?... 4 Hur fungerar HTM?... 4 Hierarchical... 4 Temporal... 5 Memory... 5 Hitta orsaker i världen... 5

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

AI FÖR FRAMTIDENS VÄLFÄRD. Caroline Andersson

AI FÖR FRAMTIDENS VÄLFÄRD. Caroline Andersson AI FÖR FRAMTIDENS VÄLFÄRD Caroline Andersson 2019-10-02 Dagens agenda Vad är det som händer? Vad är AI? Exempel på tillämpningar Konsekvenser av AI Hur långt har Sverige som land kommit och vad behöver

Läs mer

SÅ BLIR DIN NETFLIX- UPPLEVELSE BÄTTRE. En litteraturstudie om Netflixs rekommendationssystem

SÅ BLIR DIN NETFLIX- UPPLEVELSE BÄTTRE. En litteraturstudie om Netflixs rekommendationssystem SÅ BLIR DIN NETFLIX- UPPLEVELSE BÄTTRE En litteraturstudie om Netflixs rekommendationssystem Sammanfattning Studien fokuserar på Latent Factor Model som var ett stort genomslag under Netflix Prize tävlingen

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,

Läs mer