729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann
|
|
- Olof Engström
- för 7 år sedan
- Visningar:
Transkript
1 729G43 Artificiell intelligens / 2015 Maskininlärning 1 Marco Kuhlmann
2 Introduktion
3 Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå naturligt språk kontrollera maskiner, farkost, robotar ge beslutsstöd inom sjukvården detektera skumma banktransaktioner och cyberattacker föreslå produkter, låtar och filmer hjälpa oss att hitta information på webben
4 Tre exempel Stanford University Autonomous Helicopter Project Länk till videon Computers Teach Themselves to Recognize Cats, Faces Länk till videon At Berkeley, a Robot that Folds Laundry Länk till videon
5 Kommersiellt intresse
6 Inlärningsuppgifter Övervakad inlärning (eng. supervised learning) Agenten får data och facit för att lära sig. regression, klassifikation Oövervakad inlärning (eng. unsupervised learning) Agenten får data men inget facit. klustring, temamodeller Förstärkande inlärning (eng. reinforcement learning) Agenten får data och belönas om den gör rätt.
7 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot
8 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot
9 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot
10 Klassifikation sv Stockholm sv sv fi fi fi Helsinki
11 Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full $ No No Thai No 3 No Yes No No Some $ No No Burger 0 10 Yes 4 Yes No Yes Yes Full $ No No Thai Yes 5 Yes No Yes No Full $$$ No Yes French >60 No 6 No Yes No Yes Some $$ Yes Yes Italian 0 10 Yes 7 No Yes No No None $ Yes No Burger 0 10 No 8 No No No Yes Some $$ Yes Yes Thai 0 10 Yes 9 No Yes Yes No Full $ Yes No Burger >60 No 10 Yes Yes Yes Yes Full $$$ No Yes Italian No 11 No No No No None $ No No Thai 0 10 No 12 Yes Yes Yes Yes Full $ No No Burger Yes
12 Övervakad inlärning Regression Förutsäga värdet på en kontinuerlig variabel husets pris Klassifikation Förutsäga värdet på en diskret variabel finska/svenska
13 Regression eller klassifikation? Du har samlat in alla anföranden hållna i Riksdagen under föregående riksmötet. Nu får du ett nytt anförande och vill kunna förutsäga partiet som talaren tillhör. Du har samlat in data om hur många fordon som trafikerar E4 mellan Norrköping och Linköping. Nu vill du uppskatta hur många fordon som kommer trafikera denna sträcka i morgon.
14 Oövervakad inlärning särdrag 2 särdrag 2 särdrag 1 särdrag 1 klassifikation klustring
15 Google News
16 Temamodeller How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes Teman Källa: Blei (2012)
17 Temamodeller human genome dna genetic genes sequence gene molecular sequencing map information genetics mapping project sequences evolution evolutionary species organisms life origin biology groups phylogenetic living diversity group new two common computer models information data computers system network systems model parallel methods networks software new simulations
18 När skulle du använda oövervakad inlärning? Predicera om ett epostmeddelande är spam/ham, givet en mängd epostmeddelanden taggade som spam/ham. Gruppera datorer i ett stort nätverk utifrån vilka datorer kommunicerar mest med vilka andra. Givet en databas med kunddata, upptäck marknadssegment och gruppera kunderna i dessa segment. Predicera om en patient har diabetes, givet en mängd data om andra patienter som antingen har eller inte har diabetes. Källa: Andrew Ng
19 Översikt Introduktion Föreläsning 1: Linjär regression Föreläsning 2: Klassifikation Föreläsning 3: Neuronnät
20 Linjär regression
21 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot
22 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot
23 Träningsmängd Husets storlek (x) Husets pris (y) N stycken träningsinstanser (x i, y i )
24 Linjär regression Modellantagandet Sambandet mellan indata och utdata modelleras som en rät linje. Vad betyder detta matematiskt? Inlärningsuppgift Hitta den bästa räta linjen: den linje som minimerar det totala avståndet till datapunkterna. Hur mäter vi avståndet?
25 Räta linjens ekvation linjens lutning förskjutning från origo
26 Räta linjens ekvation (x) (x) x x θ 0 = 1, θ 1 = 0 θ 0 = 0, θ 1 = 1
27 Inlärningsuppgift Problemformulering Välj parametrarna θ 0 och θ 1 sådana att den totala avstånden mellan den motsvarande linjen och datapunkterna är minimal. Detta problem kan lösas exakt med minsta kvadratmetoden. En inexakt (numerisk) men mycket användbar metod för att lösa problemet är gradientsökning (eng. gradient descent).
28 Felfunktion modellparametrarna faktiskt värde för x i predicerat värde för x i
29 Vad mäter felfunktionen?
30 Vad mäter felfunktionen? 3 θ 1 =
31 Vad mäter felfunktionen? 3 θ 1 = 0,
32 Vad mäter felfunktionen? 3 θ 1 =
33 Felkurvan 4 3 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ
34 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangenten: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Detail: Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.
35 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467
36 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467
37 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,249
38 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1,284 0,19 1, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,133
39 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1 1,284 0,19 1,33 1,151 0,05 0,71 0-0,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,071
40 Uppdateringsregeln tangentens lutning i punkt θ steglängdsfaktor
41 Frågor kring gradientsökning Vad hade hänt om vi hade börjat med θ = 0 eller θ = 1? Vad händer när steglängdsfaktorn är för stor eller för liten? Prova till exempel α = 1.
42 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangenten: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.
43 Varianter på gradientsökning Batch gradient descent Uppdatera baserat på mindre delar av träningsdatan ( batches ). Kan öka hastigheten med vilken inlärningsprocessen konvergerar. Stochastic gradient descent Kasta omkull träningsdatan slumpmässigt efter varje iteration. Kan förhindra att inlärningsprocessen fastnar i lokala optima.
44 Multivariat linjär regression Linjär regression och gradientsökning kan generaliseras till modeller där man har fler än två särdrag x j och parametrar θ j. I många modeller flera miljoner särdrag och parametrar! I sådana situationer är det bekvämt att sammanfatta alla särdrag och parametrar i vektorer; dessa skrivs x och θ (fet stil). vektor = lista Vid gradientsökning måste man räkna ut vektorn med alla partiella derivator. Det är denna vektor som heter gradient. Notation: J(θ) ( nabla )
45 Multivatiat linjär regression särdragsvektor vektormultiplikation parametervektor
729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap
729G43 Artificiell intelligens (2016) Maskininlärning 1 Marco Kuhlmann Institutionen för datavetenskap Introduktion Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå
Läs mer729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann
729G43 Artificiell intelligens / 2015 Maskininlärning 2 Marco Kuhlmann Förra gången: Linjär regression Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna
Läs mer729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann
729G43 Artificiell intelligens / 2015 Maskininlärning 3 Marco Kuhlmann Förra gången: Perceptroninlärning Beslutsregel predicerat y-värde Exempel: AND Välj parametrar θ 0, θ 1, θ 2 sådana att perceptronen
Läs mer729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap
729G43 Artificiell intelligens (2016) Maskininlärning 2 Marco Kuhlmann Institutionen för datavetenskap Förra gången: Gradientsökning tangentens lutning i punkt θ steglängdsfaktor Översikt Introduktion
Läs merARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap
ARTIFICIELLA NEURALA NÄT MARCO KUHLMANN Institutionen för datavetenskap Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full
Läs mer729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap
729G43 Artificiell intelligens (2016) Maskininlärning 3 Marco Kuhlmann Institutionen för datavetenskap Modell med vektornotation parametervektor särdragsvektor Perceptron kombinerar linjär regression med
Läs mer729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA
729G43 Artificiell intelligens Maskininlärning Arne Jönsson HCS/IDA Maskininlärning Introduktion Beslutsträdsinlärning Hypotesinlärning Linjär regression Vektorer Perceptroner Artificiella Neurala Nät
Läs merP Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R
1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,
Läs merSF1624 Algebra och geometri
SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet
Läs mer14. Minsta kvadratmetoden
58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?
Läs merOrdinära differentialekvationer,
(ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden
Läs merMATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Läs merHur kan man CE-märka AI? PICTA workshop 29 Maj 2018
Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018 Mats Artursson Utredare/Inspektör Agenda Vad säger regelverket Olika typer av AI Sverige Internationellt Utmaningar Pågående EU arbete 2 Medicinteknisk
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merLinköpings universitet
Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning 4 Informationsbearbetningsmodeller Vad är kognitionsvetenskap? Kort bakgrund/historik Representation och bearbetning av information Vetenskapliga
Läs merLinjär algebra förel. 10 Minsta kvadratmetoden
Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80
Läs mermed hjälp av Deep Reinforcement Learning
Agent som kan spela Atarispel bättre än människor med hjälp av Deep Reinforcement Learning Sofie Adolfsson, sofad117@student.liu.se Artificiell Intelligens Linköpings Universitet 2017-01-12 SofieAdolfsson
Läs merGeoGebra in a School Development Project Mathematics Education as a Learning System
Karlstad GeoGebra in a School Development Project Mathematics Education as a Learning System Dé dag van GeoGebra Zaterdag 19 oktober 2013 GeoGebra Instituut Vlaanderen, Brussell 1 2 GeoGebra in a School
Läs merx 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden
24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,
Läs merSub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén,
Sub-symbolisk kognition & Konnektionism Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, mats.andren@liu.se 1 Konnektionism Neutrala nät baseras på en (förenklad) modell av hur hjärnan fungerar.
Läs merArtificiella Neuronnät
Artificiella Neuronnät 2 3 4 2 (ANN) Inspirerade av hur nervsystemet fungerar Parallell bearbetning Vi begränsar oss här till en typ av ANN: Framåtkopplade nät med lagerstruktur 3 4 Fungerar i princip
Läs merNeurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University
Neurala nätverk och språk Henli807!1 Neurala nätverk och språkigenkänning Henrik Linnarsson Linköping University Neurala nätverk och språk Henli807!2 RNN, LSTM och språkigenkänning Inledning Idag är språkigenkänning
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Läs mer25 november, 2015, Föreläsning 20. Tillämpad linjär algebra
25 november, 205, Föreläsning 20 Tillämpad linjär algebra Innehåll: Minsta-kvadratmetoden. Minsta kvadratmetoden - motivation Inom teknik och vetenskap arbetar man ofta med modellering av data, dvs att
Läs merStatistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
Läs merBlock 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?
Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor
Läs merMOOC. Massive Open Online Course
MOOC Massive Open Online Course Cecilia Christiansen Mullsjö 2015 https://www.youtube.com/watch?v=u6fvj6jmghu juni 16, 2015 Daphne Koller Andrew Ng https://www.coursera.org/about/ juni 16, 2015 https://www.coursera.org/about/
Läs merMoment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då
Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.
Läs merGoogles sidrankning - linjär algebra värt en förmögenhet
Googles sidrankning - linjär algebra värt en förmögenhet Outline 1 Sökmotorer 2 Grafteori Linjär algebra 3 Målet Utifrån användarens sökord lista de mest relevanta webbsidorna. Dessutom i en ordning som
Läs merAI utmaningar inom kvalitetssäkring. Henrik Emilsson Teststrateg, Nordic Medtest AB
AI utmaningar inom kvalitetssäkring Henrik Emilsson Teststrateg, Nordic Medtest AB Först lite om Artificiell intelligens General AI vs. Narrow AI Maskininlärning Supervised Learning Unsupervised Learning
Läs merSammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering
Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż
Läs merEnlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät
Artificiella Neuronnät 1 Karaktäristiska egenskaper Användningsområden Klassiska exempel Biologisk bakgrund 2 Begränsningar Träning av enlagersnät 3 Möjliga avbildningar Backprop algoritmen Praktiska problem
Läs merNumeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?
Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07
Läs merThe present situation on the application of ICT in precision agriculture in Sweden
The present situation on the application of ICT in precision agriculture in Sweden Anna Rydberg & Johanna Olsson JTI Swedish Institute for Agricultural and Environmental Engineering Objective To investigate
Läs merDatorer och intelligens
Datorer och intelligens (kapitel 4 och 8 av Winograd & Flores) Harko Verhagen Statement One cannot program computers to be intelligent Problem: vad är intelligens? Vad är intelligens? 1. Intelligens =
Läs merMatematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar
Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk
Läs merMatcha rätt hjärta till rätt patient med AI. Dennis Medved
Matcha rätt hjärta till rätt patient med AI Dennis Medved Översikt Introduktion IHTSA LuDeLTA Sammanfattning Framtida arbete Introduktion Hjärttransplantation Livräddande operation för patienter med hjärtsvikt
Läs merVektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll
Läs merLathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik
Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten
Läs merExempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016
Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16
Läs mer2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit.
2D1432 Artificiella Neuronnät och andra lärande system Lösningsförslag till Tentamen 2003-03-06 Inga hjälpmedel. Uppgift 1 Vilka av följande påståenden är sanna? Korrigera de som är fel. 1. Potentialen
Läs merExperimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
Läs merSF1545 Laboration 1 (2015): Optimalt sparande
Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa
Läs merSF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.
1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.
Läs merPerceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens
Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Niklas Blomstrand Linköpings Universitet Inledning Att veta vilken ordklass ett ord tillhör är en viktig del i bearbetning
Läs merFöreläsning G60 Statistiska metoder
Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?
Läs merFöreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik
Läs merTAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Läs mer1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
Läs merSammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller
Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,
Läs mer1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.
Lektion 5 Innehål 1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.7) Innehål 1. Gradient och riktningsderivata
Läs merUppgift 1. Minimeringsproblemet löses med en Monte Carlo algoritm:
Uppgift 1 Minimeringsproblemet löses med en Monte Carlo algoritm: 1) initiera elementen i vektorn s slummässigt med +/-1 2) räkna ut värdefunktionen (ekvationen given i uppgiften) 3) starta iteration 4)
Läs merSF1626 Flervariabelanalys
1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska
Läs merKTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup
KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar
Läs merTentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,
Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,
Läs merMVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.
MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell
Läs merExempel :: Spegling i godtycklig linje.
c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.
Läs merOctober 9, Innehållsregister
October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................
Läs merSelf-Organizing Maps
Self-Organizing Maps - oövervakad inlärning i neurala nät Sammanfattning Self-organizing maps är en modell av neurala nätverk med egenskapen av oövervakad inlärning. En self-organizing map organiserar
Läs merGeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april
GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1
Läs merMekanik Föreläsning 8
Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln
Läs merExempel :: Spegling i godtycklig linje.
INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som
Läs mer1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,
Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +
Läs merFel- och störningsanalys
Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan
Läs merIntroduktion till programmering D0009E. Föreläsning 1: Programmets väg
Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra
Läs merLinjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Läs merNyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB
Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB Att förutsäga framtiden.. "I predict the Internet will soon go spectacularly supernova and in 1996 catastrophically collapse.
Läs merLaboration 1: Optimalt sparande
Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs mertal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller
Augusti, 5 Föreläsning Tillämpad linjär algebra Innehållet: linjen R, planet R, rummet R, oh vektor rummet R n Matriser punkter oh vektorer i planet, rummet, oh R n Linjen, planet, rummet, oh vektor rummet
Läs merLösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
Läs merCase-based resoning. och dess användning inom sjukvården. Linköpings universitet Artificiell intelligens II 729G11 HT 2011
Linköpings universitet Artificiell intelligens II HT 2011 Case-based resoning och dess användning inom sjukvården Sammanfattning Det här arbetet handlar om vad case-based resoning är, hur den funkar, vilka
Läs merHealth café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families
Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic
Läs merAnalys o Linjär algebra. Lektion 7.. p.1/65
Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade
Läs merTavelpresentation - Flervariabelanalys. 1E January 2017
Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................
Läs mer5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.
5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa
Läs merProbabilistisk logik 2
729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom
Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?
Läs mer1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
Läs merValinformation för IT2
Välkommen till Valinformation för IT2 inför valet av valbara kurser till nästa läsår måndag 7 april kl 15.15-16.00 i HB3 Välkomna! Wolfgang Ahrendt Anette Järelöw Börje Johansson Programansvarig Studievägledare
Läs merGRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON
2018 GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON Innehåll Inledning & Bakgrund... 2 Förstärkt inlärning... 2 MDP... 2 Gridworld... 3 Nytta och policy... 4 Värdefunktion och Bellmanekvationer...
Läs merPerception och Maskininärning i Interaktiva Autonoma System. Michael Felsberg Institutionen för systemteknik Linköpings universitet
Perception och Maskininärning i Interaktiva Autonoma System Michael Felsberg Institutionen för systemteknik Linköpings universitet Vad är WASP? Wallenberg Autonomous Systems Program Sveriges största individuella
Läs merFöreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Läs merArtificiell intelligens, eller Kommer din dator att bli klokare än dig? (eller kanske är den redan det?)
Artificiell intelligens, eller Kommer din dator att bli klokare än dig? (eller kanske är den redan det?) Building Watson:! http://www.youtube.com/watch?v=3g2h3dz8rnc!! 29e oktober 2013 Intelligens Vad
Läs merIntellektuell )llgångsinventering En bra start på EU- projekt. Anna Aspgren & Lena Holmberg Innova)onskontor Väst
Intellektuell )llgångsinventering En bra start på EU- projekt Anna Aspgren & Lena Holmberg Innova)onskontor Väst Persontyper vi möc inom akademin Jag har en affärsidé som kan bli det nya Google! Men jag
Läs merDagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Läs merKOKBOKEN 1. Håkan Strömberg KTH STH
KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................
Läs merBeräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi
Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska
Läs merTNSL05 Optimering, Modellering och Planering. Föreläsning 4
TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden
Läs merIckelinjära ekvationer
Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod
Läs mer1 LP-problem på standardform och Simplexmetoden
Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering
Läs merDel A. Lösningsförslag, Tentamen 1, SF1663, CFATE,
Lösningsförslag, Tentamen, SF, CFATE, -- Del A a Om matrisekvationen skrivs AXB C och matriserna A och B är inverterbara så kan ekvationen lösas genom att båda led vänstermultipliceras med A och högermultipliceras
Läs merTANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28
TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:
Läs merDynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet
Dynamiska system Hans Lundmark Matematiska institutionen Linköpings universitet 2/24 Dynamiskt system = ett system vars tillstånd ändras med tiden, och som har följande egenskaper: Deterministiskt Följer
Läs merProbabilistisk logik 1
729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast
Läs merFöreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts.
Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Berkant Savas Tillämpad matematik i natur och teknikvetenskap, TNA5 Institutionen för teknik och naturvetenskap Linköpings universitet
Läs merLinjärisering, Jacobimatris och Newtons metod.
Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system
Läs merAlgoritmer och maskininlärning
Algoritmer och maskininlärning Olof Mogren Chalmers tekniska högskola 2016 De här företagen vill Tjäna pengar Hitta mönster i stora datamängder Göra förutsägelser Klassificera data Förstå människan Maskininlärning
Läs mer2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =
Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn
Läs merEnklare matematiska uppgifter
Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig
Läs mer