729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann

Storlek: px
Starta visningen från sidan:

Download "729G43 Artificiell intelligens / Maskininlärning 1. Marco Kuhlmann"

Transkript

1 729G43 Artificiell intelligens / 2015 Maskininlärning 1 Marco Kuhlmann

2 Introduktion

3 Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå naturligt språk kontrollera maskiner, farkost, robotar ge beslutsstöd inom sjukvården detektera skumma banktransaktioner och cyberattacker föreslå produkter, låtar och filmer hjälpa oss att hitta information på webben

4 Tre exempel Stanford University Autonomous Helicopter Project Länk till videon Computers Teach Themselves to Recognize Cats, Faces Länk till videon At Berkeley, a Robot that Folds Laundry Länk till videon

5 Kommersiellt intresse

6 Inlärningsuppgifter Övervakad inlärning (eng. supervised learning) Agenten får data och facit för att lära sig. regression, klassifikation Oövervakad inlärning (eng. unsupervised learning) Agenten får data men inget facit. klustring, temamodeller Förstärkande inlärning (eng. reinforcement learning) Agenten får data och belönas om den gör rätt.

7 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

8 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

9 Regression 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

10 Klassifikation sv Stockholm sv sv fi fi fi Helsinki

11 Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full $ No No Thai No 3 No Yes No No Some $ No No Burger 0 10 Yes 4 Yes No Yes Yes Full $ No No Thai Yes 5 Yes No Yes No Full $$$ No Yes French >60 No 6 No Yes No Yes Some $$ Yes Yes Italian 0 10 Yes 7 No Yes No No None $ Yes No Burger 0 10 No 8 No No No Yes Some $$ Yes Yes Thai 0 10 Yes 9 No Yes Yes No Full $ Yes No Burger >60 No 10 Yes Yes Yes Yes Full $$$ No Yes Italian No 11 No No No No None $ No No Thai 0 10 No 12 Yes Yes Yes Yes Full $ No No Burger Yes

12 Övervakad inlärning Regression Förutsäga värdet på en kontinuerlig variabel husets pris Klassifikation Förutsäga värdet på en diskret variabel finska/svenska

13 Regression eller klassifikation? Du har samlat in alla anföranden hållna i Riksdagen under föregående riksmötet. Nu får du ett nytt anförande och vill kunna förutsäga partiet som talaren tillhör. Du har samlat in data om hur många fordon som trafikerar E4 mellan Norrköping och Linköping. Nu vill du uppskatta hur många fordon som kommer trafikera denna sträcka i morgon.

14 Oövervakad inlärning särdrag 2 särdrag 2 särdrag 1 särdrag 1 klassifikation klustring

15 Google News

16 Temamodeller How many genes does an organism need to survive? Last week at the genome meeting here, two genome researchers with radically different approaches presented complementary views of the basic genes needed for life. One research team, using computer analyses to compare known genomes, concluded that today s organisms can be sustained with just 250 genes, and that the earliest life forms required a mere 128 genes Teman Källa: Blei (2012)

17 Temamodeller human genome dna genetic genes sequence gene molecular sequencing map information genetics mapping project sequences evolution evolutionary species organisms life origin biology groups phylogenetic living diversity group new two common computer models information data computers system network systems model parallel methods networks software new simulations

18 När skulle du använda oövervakad inlärning? Predicera om ett epostmeddelande är spam/ham, givet en mängd epostmeddelanden taggade som spam/ham. Gruppera datorer i ett stort nätverk utifrån vilka datorer kommunicerar mest med vilka andra. Givet en databas med kunddata, upptäck marknadssegment och gruppera kunderna i dessa segment. Predicera om en patient har diabetes, givet en mängd data om andra patienter som antingen har eller inte har diabetes. Källa: Andrew Ng

19 Översikt Introduktion Föreläsning 1: Linjär regression Föreläsning 2: Klassifikation Föreläsning 3: Neuronnät

20 Linjär regression

21 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

22 Huspriser i Portland, OR 700 Husets pris i tusentals dollar Husets storlek i kvadratfot

23 Träningsmängd Husets storlek (x) Husets pris (y) N stycken träningsinstanser (x i, y i )

24 Linjär regression Modellantagandet Sambandet mellan indata och utdata modelleras som en rät linje. Vad betyder detta matematiskt? Inlärningsuppgift Hitta den bästa räta linjen: den linje som minimerar det totala avståndet till datapunkterna. Hur mäter vi avståndet?

25 Räta linjens ekvation linjens lutning förskjutning från origo

26 Räta linjens ekvation (x) (x) x x θ 0 = 1, θ 1 = 0 θ 0 = 0, θ 1 = 1

27 Inlärningsuppgift Problemformulering Välj parametrarna θ 0 och θ 1 sådana att den totala avstånden mellan den motsvarande linjen och datapunkterna är minimal. Detta problem kan lösas exakt med minsta kvadratmetoden. En inexakt (numerisk) men mycket användbar metod för att lösa problemet är gradientsökning (eng. gradient descent).

28 Felfunktion modellparametrarna faktiskt värde för x i predicerat värde för x i

29 Vad mäter felfunktionen?

30 Vad mäter felfunktionen? 3 θ 1 =

31 Vad mäter felfunktionen? 3 θ 1 = 0,

32 Vad mäter felfunktionen? 3 θ 1 =

33 Felkurvan 4 3 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ

34 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangenten: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Detail: Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.

35 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467

36 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,467

37 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,249

38 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1,284 0,19 1, ,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,133

39 Gradientsökning 4 Steglängdsfaktor = 0,1 3 θ J(θ) Lutning 2,000 2,33 4,67 J(θ) 2 1,533 0,66 2,49 1 1,284 0,19 1,33 1,151 0,05 0,71 0-0,5 0 0,5 1 1,5 2 2,5 θ θ θ 0,071

40 Uppdateringsregeln tangentens lutning i punkt θ steglängdsfaktor

41 Frågor kring gradientsökning Vad hade hänt om vi hade börjat med θ = 0 eller θ = 1? Vad händer när steglängdsfaktorn är för stor eller för liten? Prova till exempel α = 1.

42 Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna ut felfunktionens tangent i den punkt som motsvarar den aktuella modellparametern θ. Steg 2: Gå i motsatt riktning av tangenten: Om tangenten har positiv lutning, minska värdet på θ. Om tangenten har negativ lutning, höj värdet på θ. Lutningen multipliceras med en steglängdsfaktor. Upprepa steg 1 2 tills felet blir tillräckligt litet.

43 Varianter på gradientsökning Batch gradient descent Uppdatera baserat på mindre delar av träningsdatan ( batches ). Kan öka hastigheten med vilken inlärningsprocessen konvergerar. Stochastic gradient descent Kasta omkull träningsdatan slumpmässigt efter varje iteration. Kan förhindra att inlärningsprocessen fastnar i lokala optima.

44 Multivariat linjär regression Linjär regression och gradientsökning kan generaliseras till modeller där man har fler än två särdrag x j och parametrar θ j. I många modeller flera miljoner särdrag och parametrar! I sådana situationer är det bekvämt att sammanfatta alla särdrag och parametrar i vektorer; dessa skrivs x och θ (fet stil). vektor = lista Vid gradientsökning måste man räkna ut vektorn med alla partiella derivator. Det är denna vektor som heter gradient. Notation: J(θ) ( nabla )

45 Multivatiat linjär regression särdragsvektor vektormultiplikation parametervektor

729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 1. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 1 Marco Kuhlmann Institutionen för datavetenskap Introduktion Maskininlärning Tack vare maskininlärning kan AI-system idag bl.a. producera och förstå

Läs mer

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 2. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 2 Marco Kuhlmann Förra gången: Linjär regression Gradientsökning Vandra ner i felets dal. Steg 0: Börja med ett godtyckligt värde för θ. Steg 1: Räkna

Läs mer

729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann

729G43 Artificiell intelligens / Maskininlärning 3. Marco Kuhlmann 729G43 Artificiell intelligens / 2015 Maskininlärning 3 Marco Kuhlmann Förra gången: Perceptroninlärning Beslutsregel predicerat y-värde Exempel: AND Välj parametrar θ 0, θ 1, θ 2 sådana att perceptronen

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 2. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 2 Marco Kuhlmann Institutionen för datavetenskap Förra gången: Gradientsökning tangentens lutning i punkt θ steglängdsfaktor Översikt Introduktion

Läs mer

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap

ARTIFICIELLA NEURALA NÄT. MARCO KUHLMANN Institutionen för datavetenskap ARTIFICIELLA NEURALA NÄT MARCO KUHLMANN Institutionen för datavetenskap Example Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait 1 Yes No No Yes Some $$$ No Yes French 0 10 Yes 2 Yes No No Yes Full

Läs mer

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap

729G43 Artificiell intelligens (2016) Maskininlärning 3. Marco Kuhlmann Institutionen för datavetenskap 729G43 Artificiell intelligens (2016) Maskininlärning 3 Marco Kuhlmann Institutionen för datavetenskap Modell med vektornotation parametervektor särdragsvektor Perceptron kombinerar linjär regression med

Läs mer

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA

729G43 Artificiell intelligens Maskininlärning. Arne Jönsson HCS/IDA 729G43 Artificiell intelligens Maskininlärning Arne Jönsson HCS/IDA Maskininlärning Introduktion Beslutsträdsinlärning Hypotesinlärning Linjär regression Vektorer Perceptroner Artificiella Neurala Nät

Läs mer

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R

P Q = ( 2, 1, 1), P R = (0, 1, 0) och QR = (2, 2, 1). arean = 1 2 P Q P R 1 Matematiska Institutionen KTH Lösningar till några övningar på geometri och vektorer inför lappskrivning nummer 2 på kursen Linjär algebra II, SF1604, vt11. 1. En triangel har hörn i punkterna (1, 2,

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Föreläsning 2 David Rydh Institutionen för matematik KTH 28 augusti 2018 Detta gjorde vi igår Punkter Vektorer och skalärer, multiplikation med skalär Linjärkombinationer, spannet

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, (ODE) Ordinära differentialekvationer, del 1 Beräkningsvetenskap II It is a truism that nothing is permanent except change. - George F. Simmons ODE:er är modeller som beskriver förändring, ofta i tiden

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018

Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018 Hur kan man CE-märka AI? PICTA workshop 29 Maj 2018 Mats Artursson Utredare/Inspektör Agenda Vad säger regelverket Olika typer av AI Sverige Internationellt Utmaningar Pågående EU arbete 2 Medicinteknisk

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

Linköpings universitet

Linköpings universitet Översikt Kognitionsvetenskaplig introduktionskurs Föreläsning 4 Informationsbearbetningsmodeller Vad är kognitionsvetenskap? Kort bakgrund/historik Representation och bearbetning av information Vetenskapliga

Läs mer

Linjär algebra förel. 10 Minsta kvadratmetoden

Linjär algebra förel. 10 Minsta kvadratmetoden Linjär algebra förel. 10 Minsta kvadratmetoden Niels Chr. Overgaard 015-09- c N. Chr. Overgaard Förel. 9 015-09- logoonly 1 / 17 Data från 1 vuxna män vikt (kg) längd (m) 58 1,69 83 1,77 80 1,79 77 1,80

Läs mer

med hjälp av Deep Reinforcement Learning

med hjälp av Deep Reinforcement Learning Agent som kan spela Atarispel bättre än människor med hjälp av Deep Reinforcement Learning Sofie Adolfsson, sofad117@student.liu.se Artificiell Intelligens Linköpings Universitet 2017-01-12 SofieAdolfsson

Läs mer

GeoGebra in a School Development Project Mathematics Education as a Learning System

GeoGebra in a School Development Project Mathematics Education as a Learning System Karlstad GeoGebra in a School Development Project Mathematics Education as a Learning System Dé dag van GeoGebra Zaterdag 19 oktober 2013 GeoGebra Instituut Vlaanderen, Brussell 1 2 GeoGebra in a School

Läs mer

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden

x 2 x 1 W 24 november, 2016, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden 24 november, 206, Föreläsning 20 Tillämpad linjär algebra Innehåll: Projektionssatsen Minsta-kvadratmetoden. Projektionssatsen - ortogonal projektion på generella underrum Om W är ett underrum till R n,

Läs mer

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén,

Sub-symbolisk kognition & Konnektionism. Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, Sub-symbolisk kognition & Konnektionism Kognitionsvetenskaplig Introduktionskurs (729G01) Mats Andrén, mats.andren@liu.se 1 Konnektionism Neutrala nät baseras på en (förenklad) modell av hur hjärnan fungerar.

Läs mer

Artificiella Neuronnät

Artificiella Neuronnät Artificiella Neuronnät 2 3 4 2 (ANN) Inspirerade av hur nervsystemet fungerar Parallell bearbetning Vi begränsar oss här till en typ av ANN: Framåtkopplade nät med lagerstruktur 3 4 Fungerar i princip

Läs mer

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University

Neurala nätverk och språkigenkänning. Henrik Linnarsson. Linköping University Neurala nätverk och språk Henli807!1 Neurala nätverk och språkigenkänning Henrik Linnarsson Linköping University Neurala nätverk och språk Henli807!2 RNN, LSTM och språkigenkänning Inledning Idag är språkigenkänning

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

25 november, 2015, Föreläsning 20. Tillämpad linjär algebra

25 november, 2015, Föreläsning 20. Tillämpad linjär algebra 25 november, 205, Föreläsning 20 Tillämpad linjär algebra Innehåll: Minsta-kvadratmetoden. Minsta kvadratmetoden - motivation Inom teknik och vetenskap arbetar man ofta med modellering av data, dvs att

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

MOOC. Massive Open Online Course

MOOC. Massive Open Online Course MOOC Massive Open Online Course Cecilia Christiansen Mullsjö 2015 https://www.youtube.com/watch?v=u6fvj6jmghu juni 16, 2015 Daphne Koller Andrew Ng https://www.coursera.org/about/ juni 16, 2015 https://www.coursera.org/about/

Läs mer

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då

Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34. Planet Ett plan i rummet är bestämt då Moment 4.11 Viktiga exempel 4.32, 4.33 Övningsuppgifter Ö4.18-Ö4.22, Ö4.30-Ö4.34 Planet Ett plan i rummet är bestämt då två icke parallella riktningar, v 1 och v 2, och en punkt P 1 i planet är givna.

Läs mer

Googles sidrankning - linjär algebra värt en förmögenhet

Googles sidrankning - linjär algebra värt en förmögenhet Googles sidrankning - linjär algebra värt en förmögenhet Outline 1 Sökmotorer 2 Grafteori Linjär algebra 3 Målet Utifrån användarens sökord lista de mest relevanta webbsidorna. Dessutom i en ordning som

Läs mer

AI utmaningar inom kvalitetssäkring. Henrik Emilsson Teststrateg, Nordic Medtest AB

AI utmaningar inom kvalitetssäkring. Henrik Emilsson Teststrateg, Nordic Medtest AB AI utmaningar inom kvalitetssäkring Henrik Emilsson Teststrateg, Nordic Medtest AB Först lite om Artificiell intelligens General AI vs. Narrow AI Maskininlärning Supervised Learning Unsupervised Learning

Läs mer

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering

Sammanfattning av föreläsning 11. Modellbygge & Simulering, TSRT62. Föreläsning 12. Simulering. Föreläsning 12. Numeriska metoder och Simulering Sammanfattning av föreläsning 11 Modellbygge & Simulering, TSRT62 Föreläsning 12. Simulering Reglerteknik, ISY, Linköpings Universitet Index för en DAE Antalet derivationer som behövs för att lösa ut ż

Läs mer

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät

Enlagersnät Flerlagersnät Generalisering. Artificiella Neuronnät Artificiella Neuronnät 1 Karaktäristiska egenskaper Användningsområden Klassiska exempel Biologisk bakgrund 2 Begränsningar Träning av enlagersnät 3 Möjliga avbildningar Backprop algoritmen Praktiska problem

Läs mer

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde?

Numeriska metoder, grundkurs II. Dagens program. Hur skriver man en funktion? Administrativt. Hur var det man gjorde? Numeriska metoder, grundkurs II Övning 1 för I2 Dagens program Övningsgrupp 1 Johannes Hjorth hjorth@nada.kth.se Rum 163:006, Roslagstullsbacken 35 08-790 69 00 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/2d1240/numi07

Läs mer

The present situation on the application of ICT in precision agriculture in Sweden

The present situation on the application of ICT in precision agriculture in Sweden The present situation on the application of ICT in precision agriculture in Sweden Anna Rydberg & Johanna Olsson JTI Swedish Institute for Agricultural and Environmental Engineering Objective To investigate

Läs mer

Datorer och intelligens

Datorer och intelligens Datorer och intelligens (kapitel 4 och 8 av Winograd & Flores) Harko Verhagen Statement One cannot program computers to be intelligent Problem: vad är intelligens? Vad är intelligens? 1. Intelligens =

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar

Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Matematisk statistik 9 hp, HT-16 Föreläsning 10: Punktskattningar Anna Lindgren (Stanislav Volkov) 31 oktober + 1 november 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F10: Punktskattning 1/18 Matematisk

Läs mer

Matcha rätt hjärta till rätt patient med AI. Dennis Medved

Matcha rätt hjärta till rätt patient med AI. Dennis Medved Matcha rätt hjärta till rätt patient med AI Dennis Medved Översikt Introduktion IHTSA LuDeLTA Sammanfattning Framtida arbete Introduktion Hjärttransplantation Livräddande operation för patienter med hjärtsvikt

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik

Lathund fo r rapportskrivning: LATEX-mall. F orfattare Institutionen f or teknikvetenskap och matematik Lathund fo r rapportskrivning: LATEX-mall F orfattare forfattare@student.ltu.se Institutionen f or teknikvetenskap och matematik 31 maj 2017 1 Sammanfattning Sammanfattningen är fristående från rapporten

Läs mer

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016

Exempel ode45 parametrar Miniprojekt 1 Rapport. Problemlösning. Anastasia Kruchinina. Uppsala Universitet. Januari 2016 Problemlösning Anastasia Kruchinina Uppsala Universitet Januari 2016 Anastasia Kruchinina Problemlösning 1 / 16 Exempel ode45 parametrar Miniprojekt 1 Rapport Anastasia Kruchinina Problemlösning 2 / 16

Läs mer

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit.

2D Potentialen i en nervcell definieras normalt som skillnaden i spänning mellan dess axon och dendrit. 2D1432 Artificiella Neuronnät och andra lärande system Lösningsförslag till Tentamen 2003-03-06 Inga hjälpmedel. Uppgift 1 Vilka av följande påståenden är sanna? Korrigera de som är fel. 1. Potentialen

Läs mer

Experimentella metoder, FK3001. Datorövning: Finn ett samband

Experimentella metoder, FK3001. Datorövning: Finn ett samband Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska

Läs mer

SF1545 Laboration 1 (2015): Optimalt sparande

SF1545 Laboration 1 (2015): Optimalt sparande Avsikten med denna laboration är att: SF1545 Laboration 1 (215: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa

Läs mer

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt.

SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A. r cos t + (r cos t) 2 + (r sin t) 2) rdrdt. 1. Beräkna integralen medelpunkt i origo. SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 218-3-14 D DEL A (x + x 2 + y 2 ) dx dy där D är en cirkelskiva med radie a och Lösningsförslag.

Läs mer

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens

Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Perceptron som ordklasstaggare: ett fördjupningsarbete i 729G43 -Artificiell Intelligens Niklas Blomstrand Linköpings Universitet Inledning Att veta vilken ordklass ett ord tillhör är en viktig del i bearbetning

Läs mer

Föreläsning G60 Statistiska metoder

Föreläsning G60 Statistiska metoder Föreläsning 3 Statistiska metoder 1 Dagens föreläsning o Samband mellan två kvantitativa variabler Matematiska samband Statistiska samband o Korrelation Svaga och starka samband När beräkna korrelation?

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p) UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant

Läs mer

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller

Sammanfattning av föreläsning 4. Modellbygge & Simulering, TSRT62. Föreläsning 5. Identifiering av olinjära modeller Sammanfattning av föreläsning 4 Modellbygge & Simulering, TSRT62 Föreläsning 5. Identifiering av olinjära modeller Reglerteknik, ISY, Linköpings Universitet Linjära parametriserade modeller: ARX, ARMAX,

Läs mer

1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.

1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2. Lektion 5 Innehål 1. Gradient och riktningsderivata till funktioner av två variabler (2.7) 2. Gradient och riktningsderivata till funktioner av tre variabler (2.7) Innehål 1. Gradient och riktningsderivata

Läs mer

Uppgift 1. Minimeringsproblemet löses med en Monte Carlo algoritm:

Uppgift 1. Minimeringsproblemet löses med en Monte Carlo algoritm: Uppgift 1 Minimeringsproblemet löses med en Monte Carlo algoritm: 1) initiera elementen i vektorn s slummässigt med +/-1 2) räkna ut värdefunktionen (ekvationen given i uppgiften) 3) starta iteration 4)

Läs mer

SF1626 Flervariabelanalys

SF1626 Flervariabelanalys 1 / 15 SF1626 Flervariabelanalys Föreläsning 6 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 15 SF1626 Flervariabelanalys Dagens Lektion För funktioner från R n till R ska

Läs mer

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup

KTH 2D1240 OPEN vt 06 p. 1 (5) J.Oppelstrup KTH 2D1240 OPEN vt 06 p. 1 (5) Tentamen i Numeriska Metoder gk II 2D1240 OPEN (& andra) Fredag 2006-04-21 kl. 13 16 Hjälpmedel: Del 1 inga, Del 2 rosa formelsamlingen som man får ta fram när man lämnar

Läs mer

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik,

Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, Tentamenskrivning: TMS145 - Grundkurs i matematisk statistik och bioinformatik, 7,5 hp. Tid: Lördag den 18 april 2009, kl 14:00-18:00 Väg och vatten Examinator: Olle Nerman, tel 7723565. Jour: Frank Eriksson,

Läs mer

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian.

MVE035. Sammanfattning LV 1. Blom, Max. Engström, Anne. Cvetkovic Destouni, Sofia. Kåreklint, Jakob. Hee, Lilian. MVE035 Sammanfattning LV 1 Blom, Max Engström, Anne Cvetkovic Destouni, Sofia Kåreklint, Jakob Hee, Lilian Hansson, Johannes 11 mars 2017 1 Partiella derivator Nedan presenteras en definition av partiell

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. c Mikael Forsberg oktober 009 Exempel :: Spegling i godtycklig linje. abstract:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som går genom origo.

Läs mer

October 9, Innehållsregister

October 9, Innehållsregister October 9, 017 Innehållsregister 1 Vektorer 1 1.1 Geometrisk vektor............................... 1 1. Vektor och koordinatsystem.......................... 1 1.3 Skalär produkt (dot eller inner product)...................

Läs mer

Self-Organizing Maps

Self-Organizing Maps Self-Organizing Maps - oövervakad inlärning i neurala nät Sammanfattning Self-organizing maps är en modell av neurala nätverk med egenskapen av oövervakad inlärning. En self-organizing map organiserar

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer

Mekanik Föreläsning 8

Mekanik Föreläsning 8 Mekanik Föreläsning 8 CBGA02, FYGA03, FYGA07 Jens Fjelstad 2010 02 19 1 / 16 Repetition Polära koordinater (r, θ): ange punkter i R 2 m h a r: avståndet från origo (0, 0) θ: vinkeln mot positiva x axeln

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform,

1. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, Lösningsförslag, Matematik 2, E, I, M, Media och T, 2 2 8.. Vi skriver upp ekvationssystemet i matrisform och gausseliminerar tills vi når trappstegsform, 2 2 2 a 2 2 2 a 2 2-2 2 a 7 7 2 a 7 7-7 2 a +

Läs mer

Fel- och störningsanalys

Fel- och störningsanalys Fel- och störningsanalys Terminologi Antag att x är ett exakt värde och x är en approximation av x. Vi kallar då absoluta felet i x = x x, relativa felet i x = x x x. Ofta känner vi inte felet precis utan

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB

Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB Nyttjande av kartor och kartteknik hur ser framtiden ut? Jonas Bäckström, Sokigo AB Att förutsäga framtiden.. "I predict the Internet will soon go spectacularly supernova and in 1996 catastrophically collapse.

Läs mer

Laboration 1: Optimalt sparande

Laboration 1: Optimalt sparande Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

tal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller

tal. Mängden av alla trippel av reella tal betecknas med R 3 och x 1 x 2 En sekvens av n reella tal betecknas med (x 1, x 2,, x n ) eller Augusti, 5 Föreläsning Tillämpad linjär algebra Innehållet: linjen R, planet R, rummet R, oh vektor rummet R n Matriser punkter oh vektorer i planet, rummet, oh R n Linjen, planet, rummet, oh vektor rummet

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Case-based resoning. och dess användning inom sjukvården. Linköpings universitet Artificiell intelligens II 729G11 HT 2011

Case-based resoning. och dess användning inom sjukvården. Linköpings universitet Artificiell intelligens II 729G11 HT 2011 Linköpings universitet Artificiell intelligens II HT 2011 Case-based resoning och dess användning inom sjukvården Sammanfattning Det här arbetet handlar om vad case-based resoning är, hur den funkar, vilka

Läs mer

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families Health café Resources Meeting places Live library Storytellers Self help groups Heart s house Volunteers Health coaches Learning café Recovery Health café project Focus on support to people with chronic

Läs mer

Analys o Linjär algebra. Lektion 7.. p.1/65

Analys o Linjär algebra. Lektion 7.. p.1/65 Analys o Lektion 7 p1/65 Har redan (i matlab bla) stött på tal-listor eller vektorer av typen etc Vad kan sådana tänkas representera/modellera? Hur kan man räkna med sådana? Skall närmast fokusera på ordnade

Läs mer

Tavelpresentation - Flervariabelanalys. 1E January 2017

Tavelpresentation - Flervariabelanalys. 1E January 2017 Tavelpresentation - Flervariabelanalys 1E January 2017 1 Innehåll 1 Partiella derivator 3 2 Differentierbarhet 3 3 Kedjeregeln 4 3.1 Sats 2.3.4............................... 5 3.2 Allmänna kedjeregeln........................

Läs mer

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts.

5B1817 Tillämpad ickelinjär optimering. Metoder för problem utan bivillkor, forts. 5B1817 Tillämpad ickelinjär optimering Föreläsning 5 Metoder för problem utan bivillkor, forts. A. Forsgren, KTH 1 Föreläsning 5 5B1817 2006/2007 Lösningar För en given metod blir en lösning den bästa

Läs mer

Probabilistisk logik 2

Probabilistisk logik 2 729G43 Artificiell intelligens / 2016 Probabilistisk logik 2 Marco Kuhlmann Institutionen för datavetenskap Översikt Probabilistiska modeller Probabilistisk inferens 1: Betingad sannolikhet Probabilistisk

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom

Uppsala Universitet Matematiska Institutionen Bo Styf. Svar till tentan. Del A. Prov i matematik Linj. alg. o geom Uppsala Universitet Matematiska Institutionen Bo Styf Prov i matematik Linj. alg. o geom. 1 2011-05-07 Svar till tentan. Del A 1. För vilka värden på a är ekvationssystemet { ax + y 1 2x + (a 1y 2a lösbart?

Läs mer

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att

Läs mer

Valinformation för IT2

Valinformation för IT2 Välkommen till Valinformation för IT2 inför valet av valbara kurser till nästa läsår måndag 7 april kl 15.15-16.00 i HB3 Välkomna! Wolfgang Ahrendt Anette Järelöw Börje Johansson Programansvarig Studievägledare

Läs mer

GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON

GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON 2018 GRIDWORLD OCH MDP PROJEKTRAPPORT 729G43 MICHAEL JONASSON Innehåll Inledning & Bakgrund... 2 Förstärkt inlärning... 2 MDP... 2 Gridworld... 3 Nytta och policy... 4 Värdefunktion och Bellmanekvationer...

Läs mer

Perception och Maskininärning i Interaktiva Autonoma System. Michael Felsberg Institutionen för systemteknik Linköpings universitet

Perception och Maskininärning i Interaktiva Autonoma System. Michael Felsberg Institutionen för systemteknik Linköpings universitet Perception och Maskininärning i Interaktiva Autonoma System Michael Felsberg Institutionen för systemteknik Linköpings universitet Vad är WASP? Wallenberg Autonomous Systems Program Sveriges största individuella

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Artificiell intelligens, eller Kommer din dator att bli klokare än dig? (eller kanske är den redan det?)

Artificiell intelligens, eller Kommer din dator att bli klokare än dig? (eller kanske är den redan det?) Artificiell intelligens, eller Kommer din dator att bli klokare än dig? (eller kanske är den redan det?) Building Watson:! http://www.youtube.com/watch?v=3g2h3dz8rnc!! 29e oktober 2013 Intelligens Vad

Läs mer

Intellektuell )llgångsinventering En bra start på EU- projekt. Anna Aspgren & Lena Holmberg Innova)onskontor Väst

Intellektuell )llgångsinventering En bra start på EU- projekt. Anna Aspgren & Lena Holmberg Innova)onskontor Väst Intellektuell )llgångsinventering En bra start på EU- projekt Anna Aspgren & Lena Holmberg Innova)onskontor Väst Persontyper vi möc inom akademin Jag har en affärsidé som kan bli det nya Google! Men jag

Läs mer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer

Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,

Läs mer

KOKBOKEN 1. Håkan Strömberg KTH STH

KOKBOKEN 1. Håkan Strömberg KTH STH KOKBOKEN 1 Håkan Strömberg KTH STH Hösten 2006 Håkan Strömberg 2 KTH Syd Innehåll Olikheter.................................... 6................................. 6 Uppgift 2.................................

Läs mer

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska

Läs mer

TNSL05 Optimering, Modellering och Planering. Föreläsning 4

TNSL05 Optimering, Modellering och Planering. Föreläsning 4 TNSL05 Optimering, Modellering och Planering Föreläsning 4 2018-11-14 2 Kursmål: idag Studenten ska efter avslutad kurs kunna: Analysera och formulera optimeringsmodeller inom ekonomiska tillämpningsområden

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Del A. Lösningsförslag, Tentamen 1, SF1663, CFATE,

Del A. Lösningsförslag, Tentamen 1, SF1663, CFATE, Lösningsförslag, Tentamen, SF, CFATE, -- Del A a Om matrisekvationen skrivs AXB C och matriserna A och B är inverterbara så kan ekvationen lösas genom att båda led vänstermultipliceras med A och högermultipliceras

Läs mer

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28

TANA17 Matematiska beräkningar med MATLAB för M, DPU. Fredrik Berntsson, Linköpings Universitet. 26 november 2015 Sida 1 / 28 TANA17 Matematiska beräkningar med MATLAB för M, DPU Fredrik Berntsson, Linköpings Universitet 26 november 2015 Sida 1 / 28 Föreläsning 6 Minsta kvadrat problem. Polynom. Interpolation. Rötter. Tillämpningar:

Läs mer

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet Dynamiska system Hans Lundmark Matematiska institutionen Linköpings universitet 2/24 Dynamiskt system = ett system vars tillstånd ändras med tiden, och som har följande egenskaper: Deterministiskt Följer

Läs mer

Probabilistisk logik 1

Probabilistisk logik 1 729G43 Artificiell intelligens / 2016 Probabilistisk logik 1 Marco Kuhlmann Institutionen för datavetenskap Osäkerhet 1.01 Osäkerhet Agenter måste kunna hantera osäkerhet. Agentens miljö är ofta endast

Läs mer

Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts.

Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Föreläsning 7: Klassificering, minsta kvadratproblem, SVD, forts. Berkant Savas Tillämpad matematik i natur och teknikvetenskap, TNA5 Institutionen för teknik och naturvetenskap Linköpings universitet

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

Algoritmer och maskininlärning

Algoritmer och maskininlärning Algoritmer och maskininlärning Olof Mogren Chalmers tekniska högskola 2016 De här företagen vill Tjäna pengar Hitta mönster i stora datamängder Göra förutsägelser Klassificera data Förstå människan Maskininlärning

Läs mer

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 =

2x+y z 5 = 0. e x e y e z = 4 e y +4 e z +8 e x + e z = (8,4,5) n 3 = n 1 n 2 = Problem 1. Nedan presenteras ekvationen för en rät linje och ett plan i rummet. Du ska avgöra om linjen är vinkelrät mot planet. x = 2 4t y = 3 2t z = 1+2t 2x+y z 5 = 0 Lösning: Linjen har riktningsvektorn

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer