Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Storlek: px
Starta visningen från sidan:

Download "Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi"

Transkript

1 Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska modeller Talrepresentation Numerisk lösning av ekvationer simulering av komplexa fysikaliska förlopp Beräkningsvetenskap handlar om hur man gör detta på ett effektivt, noggrannt och pålitligt sätt! Ämnet är tvärvetenskapligt och har gränsytor mot matematik, datavetenskap och olika tillämpningar, främst inom naturvetenskap och teknik. Exempel på tillämpningar: Simulering av snödrift för ett av ombyggnadsförslagen Sylarnas fjällstation innan ombyggnaden Meteorologi: Vad blir det för väder imorgon eller hur kommer klimatet att förändras? Alla prognoser från SMHI beräknas numeriskt och tolkas sedan av meteorologer. Oceanografi: Hur kommer vattenflöden, salthalt, temperatur och isutbredning att variera I Östersjöområdet? Var och när behöver isbytarna skickas ut? 1

2 Bioinformatik: Var i genomet finns gener som påverkar exempelvis storlek? + = - Identifiera sekvenser av gener i DNA bestående av 3 miljader baser - Numerisk simulering för design av effektiva läkemedel Hur sprider sig den medicin som injiceras i ögat mot exempelvis starr? Fysik: Vad händer i ett flygplan när blixten slår ner? Hur designar man ett flygplan för minsta möjliga radarreflektion? Molekyldynamik: Om man ändrar ett material på molekylnivå vilka egenskaper förväntas materialet få? 2

3 Mekanik: Hur bygger man krocksäkra bilar? Astronomi: Hur bildas stjärnor, supernova och svarta hål? Virtuella krocktester av preliminär design spar både tid och pengar. Numeriska beräkningar av luftflödet för optimal design av aerodynamiska egenskaper Kemi: Hur får man en effektiv förbränning och bra bränsleekonomi? Simulering av hur förbränning övergår i detonation (vilket vill undvikas i bilmotor) Datavetenskap: I vilken ordning ska träffarna visas? OBS, de flesta program innehåller alltid någon numerisk komponent (t.ex. talrepresentation, bildtransformation, simulering, beräkning) - Internetservrar - Databaser - Spel 3

4 Dual-core laptop 280 core PC-cluster 2x quad-core => 8-core PC 1+8 Multicore playstation Numeriska beräkningar och simuleringar är ofta mycket dataintensiva och utförs på parallelldatorer. Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder. Resultat: Ger approximativ lösning. Verkligheten Dålig noggrannhet Idealisering Matematisk modell Approximation Numerisk metod Implementering Bugg, indata Datorkörning Lösning Nej OK? Ja Otillräcklig modell verklighet Lösning Numeriska metoder Beräkningsvetenskap Ett (trivialt) exempel Beräkna arean på jorden med den matematiska modellen A=4πr2 Ett mer realistiskt exempel Innehåller flera approximationer och fel: Jorden approximeras av en sfär idealisering av jordens verkliga yta Värdet på radien baseras på empiriska mätningar och tidigare beräkningar Värdet på π kräver trunkering (avhuggning) av oändlig decimalutveckling Indata och resultat avrundas av datorn modeller Verkligheten Beräkna egenfrekvenser och svängningsmoder för bron. 4

5 Modellera bron som en tunn sträng: Matematisk modell Matematisk modell Där u förskjutningen i y-led, T spänningen i strängen och p dess densitet. Modellen är en förenkling av verkligheten (1D) Kan bygga ut den till flera dimensioner för att göra den mer realistisk blir då mer komplicerad Svårt bestämma parametrarna T,p. Kan variera för olika material (ställen). Modellen innehåller inte bärlinor Svårt eller omöjligt att göra en modell som helt överensstämmer med verkligheten Slutsats: Modellen en idealisering av verkligheten! Numerisk metod Problem! Kan ej lösas med vanliga matematiska (analytiska) metoder. Vi använder istället en numerisk metod. Numeriska metoder bygger i detta fall på diskretisering, dvs kontinuerliga intervall ersätts med diskreta punkter. Beräkning sker endast i dessa punkter medför diskretiseringsfel Metoderna har olika egenskaper och kan vara bra ur en synvinkel men dåliga ur en annan. Exempelvis kan en viss metod vara effektiv (snabb), men i vissa lägen vara instabil Implementera metoden, dvs skriv program för den numeriska metoden (C++, Java, MATLAB,...) eller Använd befintlig programvara, t ex MATLAB Ofta krävs en kombination av båda! Indata till programmet, t ex T,p baseras vanligen på mätningar och är inte exakta Krävs ett initialtillstånd, dvs böjningen vid tiden t=0. Detta mäts ej exakt utan innehåller fel Datorn avrundar alla beräkningar Lösning Lösningen OK? Tolka resultat Tillräckligt effektivt och snabbt? Är felet tillräckligt litet? Exempel: Vilken betydelse har datorns noggrannhet i beräkningarna? Betrakta uttrycket: y=((1/3-(1/3-3/10)*10)*10^12)^100 På räknare: y=5.15*10^47 Exakt: y=0! Vad hände? Slutsats: Även exakta matematiska uttryck kan ge betydande fel vid numerisk beräkning (exempel på instabil beräkning) 5

6 Frågeställningar inom beräkningsvetenskap Datavetenskap Numeriska metoder Matematik Tillämpningsämnen Exekveringstid? Minnesutnyttjande? Vilken typ av dator? Numeriska metoder Noggrannhet? Stabilitet? Kondition? Realistisk lösning? Tillräcklig model? Talrepresentation Felanalys Lösning av ekvationer Linjära ekv system Icke-linjär ekv Integraler Simulering av dynamiska förlopp Kurvanpassning Ordinära diff ekv Partiella diff ekv Egenvärdesproblem BV I BV II BV III Fem olika block Varje block har strukturen Datorlab => Föreläsning (en eller två) => Workout + problemlösning på dator Problemlösningspass => Miniprojekt Alla delar hänger ihop om man t ex missat labben förstår man föreläsningen sämre Alla delar tillsammans ger fullständig förståelse av blocket Laborationer Verifiering/ Förståelse Upptäckt (Varför/hur?) Teori Simuleringar/datorberäkningar Beskrivning/ Idealisering Citat från tidigare kursvärderingar: Det är framförallt sampelet mellan de olika formerna som varit bra. Att först ha laboration, sen föreläsning, workout och sist problemlösning gav förståelse och väl behövlig repetition. När man var klar med ett block kunde man det väl. Jag tycker det hänger ihop bra. Först får man testa praktiskt utan att förstå och sen får man förklarat för sig och till sist så faller teorin på plats när man gör workouten. 6

7 Kursens mål Kursens mål, forts För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, diskretisering, noggrannhet, noggrannhetsordning, stabil- resp ickestabil algoritm, maskinepsilon, diskretiseringsfel (trunkeringsfel), iteration, kondition; översiktligt förklara idén bakom de algoritmer som behandlas i kursen; Visa hur algoritmerna som behandlas kan användas för lösning av tillämpningsproblem Redogöra för skillnaden i metodik vid datorberäkningar i jämförelse med analytisk lösning och de effekter som flyttalsrepresentation och diskretisering medför; Använda grundläggande programmeringsstrukturer (if, while, for) i algoritmer och i programmeringskod vid problemlösning; Givet ett mindre beräkningsproblem, strukturera och dela upp i underproblem, formulera algoritm för lösning av problemet, samt implementera i ett programmeringsspråk Redogöra för hur parametrar överförs till funktioner samt skillnaden mellan globala och lokala variabler i program Förstå enkel programmeringskod och skriva egna välstrukturerade mindre beräkningsprogram Mål, forts I en mindre rapport förklara och sammanfatta lösningsmetoder och resultat på ett överskådligt sätt. 7

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Naturvetenskapsprogrammet (NA)

Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) ska utveckla elevernas kunskaper om sammanhang i naturen, om livets villkor, om fysikaliska fenomen och skeenden och om kemiska processer.

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

KONSTRUKTION. Ämnets syfte. Kurser i ämnet

KONSTRUKTION. Ämnets syfte. Kurser i ämnet KONSTRUKTION Ämnet konstruktion behandlar konstruktionsprocesser från idé till färdig produkt, där syftet är att utforma och dimensionera produkter med sikte på ändamålsenlig formgivning, funktion och

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Användningen av nätet i undervisningen Bilaga 1 Institution: "Bioblocket": biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F)

Användningen av nätet i undervisningen Bilaga 1 Institution: Bioblocket: biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F) Användningen av nätet i undervisningen Bilaga 1 Institution: "Bioblocket": biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F) BV Ämneskurser: Computers / Computational Methods in bioresearch nätet

Läs mer

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut

Läs mer

Föreläsning 1: Intro till kursen och programmering

Föreläsning 1: Intro till kursen och programmering Föreläsning 1: Intro till kursen och programmering Kursens hemsida http:www.it.uu.se/edu/course/homepage/prog1/vt11 Studentportalen http://www.studentportalen.uu.se Lärare: Tom Smedsaas, Tom.Smedsaas@it.uu.se

Läs mer

Strukturdynamiska simuleringar och PDE

Strukturdynamiska simuleringar och PDE Strukturdynamiska simuleringar och PDE Staffan Häglund 4 november 2014 Staffan Häglund Strukturdynamiska simuleringar och PDE 4 november 2014 1 / 16 Struktur Struktur Om FS Dynamics Exempel, vad kan man

Läs mer

Datorarkitekturer. Sammanfattande bedömning. Ämnesbeskrivning

Datorarkitekturer. Sammanfattande bedömning. Ämnesbeskrivning Datorarkitekturer Sammanfattande bedömning Datorarkitektur är det teknikvetenskapliga ämne som behandlar principer för konstruktion av datorsystem. Datorns arkitektur definierar ett funktionellt gränssnitt

Läs mer

Föreläsning 1: Introduktion till kursen

Föreläsning 1: Introduktion till kursen (18 januari 2015 F1.1 ) Föreläsning 1: Introduktion till kursen Lärare: Anna, Carl, Johan, Tom och ca 20 assistenter Registrering / avregistrering Undervisningsformer: föreläsningar och laborationer Kursmaterial

Läs mer

Rymdutmaningen koppling till Lgr11

Rymdutmaningen koppling till Lgr11 en koppling till Lgr11 När man arbetar med LEGO i undervisningen så är det bara lärarens och elevernas fantasi som sätter gränserna för vilka delar av kursplanerna man arbetar med. Vi listar de delar av

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser

Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser Meteorologi - Grunder och introduktion - Meteorologiska modeller och prognoser Elin Sjökvist, meteorolog elin.sjokvist@smhi.se Innehåll Grundläggande meteorologi Hur väder uppstår Molnbildning Nederbörd

Läs mer

Projektplan. Naturvetenskaps- och tekniksatsningen

Projektplan. Naturvetenskaps- och tekniksatsningen Projektplan Elever: Klass: Version på planen: Senast uppdaterad: Idé Vilket fenomen eller skeende i er omgivning vill ni undersöka? Exempel: Fåglars olika läten och beteenden vid olika situationer. Ämne

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

PARALLELLISERING AV ALGORITMER PROCESSORER FÖR FLERKÄRNIGA

PARALLELLISERING AV ALGORITMER PROCESSORER FÖR FLERKÄRNIGA PARALLELLISERING AV ALGORITMER FÖR FLERKÄRNIGA PROCESSORER 870928 3017 Johan Gustafsson 870303 4952 Gustaf David Hallberg 880525 8210 Per Hallgren 801117 0597 Wuilbert Lopez 1/7 Innehållsförteckning Table

Läs mer

Fakulteten för ekonomi, kommunikation och IT. Utbildningsplan. Högskoleingenjörsprogrammet i datateknik TGDDI

Fakulteten för ekonomi, kommunikation och IT. Utbildningsplan. Högskoleingenjörsprogrammet i datateknik TGDDI Fakulteten för ekonomi, kommunikation och IT Utbildningsplan Högskoleingenjörsprogrammet i datateknik Programkod: Programmets benämning: Inriktningar: TGDDI Högskoleingenjörsprogrammet i datateknik Study

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

Datavetenskapliga programmet, Spel, 180 högskolepoäng

Datavetenskapliga programmet, Spel, 180 högskolepoäng Utbildningsplan Sida 1 av 5 2012-01-20 liga programmet, Spel, 180 högskolepoäng Bachelor Program in Computer Science, Computer Games Development, 180 Credits Denna utbildningsplan gäller för utbildning

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408.

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Programmering B PHP DTR1208 - Programmering B 50 poäng Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Mål Mål för kursen (Skolverket) Kursen skall ge fördjupade teoretiska

Läs mer

Välkomna till kursen i grundläggande programmering DVGA08, ISGA04

Välkomna till kursen i grundläggande programmering DVGA08, ISGA04 Välkomna till kursen i grundläggande programmering DVGA08, ISGA04 Presentation av personal på kursen Kerstin Andersson lärare i datavetenskap Johan Öfverberg lärare i informatik Inger Bran kurssekreterare

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Matematisk Skogsekonomisk orientering

Matematisk Skogsekonomisk orientering 1 http://www.lohmander.com/matskori091230.pdf Matematisk Skogsekonomisk orientering Peter Lohmander, Version 2010-01-05 Erkännande: Olle Eriksson., chefredaktör och ansvarig utgivare, Skogsland, gav tillstånd

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

IT för personligt arbete F5

IT för personligt arbete F5 IT för personligt arbete F5 Datalogi del 1 DSV Peter Mozelius 1 En dators beståndsdelar 1) Minne 2) Processor 3) Inmatningsenheter 1) tangentbord 2) scanner 3) mus 4) Utmatningsenheter 1) bildskärm 2)

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

Masterprogram i Financial Engineering, 120 högskolepoäng

Masterprogram i Financial Engineering, 120 högskolepoäng Utbildningsplan Sida 1 av 6 Programkod: ZMS20 Masterprogram i Financial Engineering, 120 högskolepoäng Master Program in Financial Engineering, 120 Credits Denna utbildningsplan är fastställd av Fakultetsnämnden

Läs mer

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692

Beräkning med ord. -hur en dator hanterar perception. Linköpings universitet Artificiell intelligens 2 2010-10-03 Erik Claesson 880816-1692 Beräkning med ord -hur en dator hanterar perception 2010-10-03 Erik Claesson 880816-1692 Innehåll Inledning... 3 Syfte... 3 Kan datorer hantera perception?... 4 Naturligt språk... 4 Fuzzy Granulation...

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Instruktioner till arbetet med miniprojekt II

Instruktioner till arbetet med miniprojekt II Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II ENERGIFÖRBRUKNING FÖRE OCH EFTER ISOLERING AV HUS Instruktioner till arbetet med miniprojekt

Läs mer

Kursinformation Grundkurs i programmering med Python

Kursinformation Grundkurs i programmering med Python Hösten 2009 Två kurser i en 5DV105 - Programmeringsteknik med Python och MATLAB Programmeringsteori Föreläsningar om Python Färdighetsövning Laborationer i Python 5DV106 - Programmering i Python Praktisk

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

729G06 Föreläsning 1 Objektorienterad programmering

729G06 Föreläsning 1 Objektorienterad programmering Översikt Formalia Vad är objektorienterad programmering 729G06 Föreläsning 1 Objektorienterad programmering Definieria klasser Skapa och använda objekt Annika Silvervarg Ciltab, IDA, Linköpings universitet

Läs mer

Utbildningslinjen för Informationsteknologi

Utbildningslinjen för Informationsteknologi Utbildningslinjen för Informationsteknologi Jan Westerholm utbildningslinjeansvarig 27.8.2015 1 Fyra Fakulteter vid ÅA och deras utbildningslinjer 1. Fakulteten för humaniora, psykologi och teologi kultur,

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

LABORATION 1 AVBILDNING OCH FÖRSTORING

LABORATION 1 AVBILDNING OCH FÖRSTORING LABORATION 1 AVBILDNING OCH FÖRSTORING Personnummer Namn Laborationen godkänd Datum Labhandledare 1 (6) LABORATION 1: AVBILDNING OCH FÖRSTORING Att läsa före lab: Vad är en bild och hur uppstår den? Se

Läs mer

TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011

TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 ITN/KTS Stefan Engevall/Joakim Ekström Kursinformation TNSL05, Optimering, Modellering och Planering, HT2011 TNSL05, Optimering, Modellering och Planering 6 hp, HT2-2011 1 Kursmål & innehåll 1.1 Mål med

Läs mer

Krafter märkbara men osynliga

Krafter märkbara men osynliga Krafter märkbara men osynliga Arbeta med hypotes och prövning Lärarhandledningen, uppgift 7, sida 231 (elevblad på sida 247), elevboken sida 70. Utvecklar förmåga Genomföra systematiska undersökningar

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

CURRICULUM VITAE MYROSLAV DROZDENKO PERSONUPPGIFTER UTBILDNING SEPTEMBER 2007. Myroslav. Efternamn: Drozdenko. Personnummer: 771216-2119.

CURRICULUM VITAE MYROSLAV DROZDENKO PERSONUPPGIFTER UTBILDNING SEPTEMBER 2007. Myroslav. Efternamn: Drozdenko. Personnummer: 771216-2119. CURRICULUM VITAE MYROSLAV DROZDENKO SEPTEMBER 2007 PERSONUPPGIFTER Förnamn: Efternamn: Myroslav Drozdenko Personnummer: 771216-2119 Postadress: Besöksadress: Hemadress: E-post: Hemsida: Institutionen för

Läs mer

Kursupplägg. Examination. Föreläsning 1: Intro till kursen och. Kursmaterial. programmering. Kursboken: Programmera med a multimedia approach

Kursupplägg. Examination. Föreläsning 1: Intro till kursen och. Kursmaterial. programmering. Kursboken: Programmera med a multimedia approach Föreläsning 1: Intro till kursen och Kursens hemsida http://www.it.uu.se/edu/course/homepage/prog1/esvt10 Studentportalen http://www.studentportalen.uu.se Kursmaterial Kursbok Kursprogramvara Tips: Installera

Läs mer

Byggnadsmekanik, LTH MATERIAL, FORM OCH KRAFT

Byggnadsmekanik, LTH MATERIAL, FORM OCH KRAFT Byggnadsmekanik, LTH MATERIAL, FORM OCH KRAFT KURSPROGRAM 2008 Material, form och kraft (VSM131, 9hp) Mål Målet med kursen är en fördjupad formförståelse; en förståelse om samspelet mellan material, form

Läs mer

Räknar du med hur barn tänker?

Räknar du med hur barn tänker? Räknar du med hur barn tänker? ULF SÖDERSTRÖM Vid en föreläsning kom tillvalskursen i matematik på M-linjen vid Högskolan i Växjö läsåret 80/81 i kontakt med problemställningen Hur tänker barn när de räknar?

Läs mer

EL1000/1120/1110 Reglerteknik AK

EL1000/1120/1110 Reglerteknik AK KTH ROYAL INSTITUTE OF TECHNOLOGY EL1000/1120/1110 Reglerteknik AK Henrik Sandberg (hsan@kth.se) Reglerteknik EES Osquldas väg 10, plan 6 Dagens program Kursinformation Reglerteknik konsten att styra Inledande

Läs mer

Gymnasiearbete för högskoleförberedande examen

Gymnasiearbete för högskoleförberedande examen Gymnasiearbete - introduktionstext september 2012 Gymnasiearbete för högskoleförberedande examen Syftet med den här texten är att ge övergripande information om och kommentarer till gymnasiearbetet för

Läs mer

Fysik. Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik:

Fysik. Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik: Fysik Arbetslag: Gamma Klass: 8 C, D Veckor: 43-51, ht-2015 Akustik och optik (ljud och ljus) och astronomi Utdrag ur kursplanen i fysik: - Använda kunskaper i fysik för att granska information, kommunicera

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Föreläsning 15: Repetition DVGA02

Föreläsning 15: Repetition DVGA02 Föreläsning 15: Repetition DVGA02 Vad handlar kursen om? Kursen kan i grova drag delas upp i tre delar: 1. Objekt-orienterad programmering 2. Grafiska användargränssnitt 3. Datastrukturer Dessutom genomsyras

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Flygingenjörsprogrammet, 180 högskolepoäng

Flygingenjörsprogrammet, 180 högskolepoäng Utbildningsplan Sida 1 av 6 Programkod: IMV20 Flygingenjörsprogrammet, 180 högskolepoäng Bachelor Program in Aeronautical Engineering, 180 Credits Denna utbildningsplan är fastställd av Fakultetsnämnden

Läs mer

Från snökaos till kvantkaos

Från snökaos till kvantkaos 020302 Kaosforskning var högsta mode på åttiotalet. Sedan blev det tyst. Men för väderprognoser är kaosmatematiken fortfarande högaktuell, liksom för den nya nanotekniken. Från snökaos till kvantkaos Av

Läs mer

Datavetenskapliga programmet, Allmän inriktning 180 högskolepoäng

Datavetenskapliga programmet, Allmän inriktning 180 högskolepoäng Utbildningsplan Sida 1 av 5 Programkod: TCV20 OINR liga programmet, Allmän inriktning 180 högskolepoäng Bachelor Program in Computer Science, General Profile 180 Credits Denna utbildningsplan är fastställd

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

UTBILDNINGSPLAN. Programmet för industriell systemekonomi, 120/160 poäng. Total Quality Maintenance Programme, 180/240 ECTS

UTBILDNINGSPLAN. Programmet för industriell systemekonomi, 120/160 poäng. Total Quality Maintenance Programme, 180/240 ECTS Dnr: 1002/2004-510 Grundutbildningsnämnden för matematik, naturvetenskap och teknik UTBILDNINGSPLAN Programmet för industriell systemekonomi, 120/160 poäng Total Quality Maintenance Programme, 180/240

Läs mer

Vad behöver eleverna kunna för a0 förstå programmeringsstruktur?

Vad behöver eleverna kunna för a0 förstå programmeringsstruktur? Vad behöver eleverna kunna för a0 förstå programmeringsstruktur? En pågående Lerning Study av Per Selin Johan Larsson Varför programmering? Är det mindre viktigt att förstå digitala byggstenar i den digitala

Läs mer

Språket Python - Del 1 Grundkurs i programmering med Python

Språket Python - Del 1 Grundkurs i programmering med Python Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Högskoleingenjörsutbildning i datateknik, 180 högskolepoäng. Computer Engineering Programme, 180 Higher Education Credits

Högskoleingenjörsutbildning i datateknik, 180 högskolepoäng. Computer Engineering Programme, 180 Higher Education Credits Dnr: 1048/2007-515 Utbildningsnämnden för grundnivå och avancerad nivå inom matematik, naturvetenskap och teknik Högskoleingenjörsutbildning i datateknik, 180 högskolepoäng Computer Engineering Programme,

Läs mer

INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points

INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points UTBILDNINGSPLAN INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points Utbildningsprogrammet inrättades den 31 november 2001 av fakultetsnämnden för

Läs mer

Poäng. Start v. Strömningslära B 7.5. 09 Institution Institutionen för fysik. Antal registrerade (män/kvinnor) 39 (32/7)

Poäng. Start v. Strömningslära B 7.5. 09 Institution Institutionen för fysik. Antal registrerade (män/kvinnor) 39 (32/7) TEK/NAT Kursrapport Kurs Kurskod Poäng År Start v. Strömningslära B 5FY14 7.5 213 9 Institution Institutionen för fysik Antal registrerade (män/kvinnor) 39 (32/7) Antal aktiva studenter (deltagit i minst

Läs mer

Varför modellering av luftkvalitet?

Varför modellering av luftkvalitet? 24 april 2015, Erik Engström Varför modellering av luftkvalitet? Varför är god luftkvalitet viktigt? Luftföroreningar Påverkar människors hälsa Ca 400 000 förtida dödsfall i Europa I Sverige 5000 förtida

Läs mer

TEKNIK/EKONOMIPROGRAMMET, 120/160 POÄNG Programme for Business Economics and Engineering, 120/160 points

TEKNIK/EKONOMIPROGRAMMET, 120/160 POÄNG Programme for Business Economics and Engineering, 120/160 points UTBILDNINGSPLAN TEKNIK/EKONOMIPROGRAMMET, 120/160 POÄNG Programme for Business Economics and Engineering, 120/160 points Utbildningsplanen är fastställd av fakultetsnämnden för medicin, naturvetenskap

Läs mer

Gymnasial vuxenutbildning

Gymnasial vuxenutbildning Gymnasial vuxenutbildning Kursutbud och schematider Skolan har gemensamma provtider vissa onsdagar klockan 13.00 16.00. Det innebär att skriftliga prov för en del kurser/lärare endast görs under denna

Läs mer

Utbildningsplan för masterprogrammet i hälsoinformatik 4HI10

Utbildningsplan för masterprogrammet i hälsoinformatik 4HI10 Utbildningsplan för masterprogrammet i 4HI10 Inrättad av Styrelsen för utbildning 2009-11-06 Fastställd av Styrelsen för utbildning 2009-11-24 Sid 2 (7) 1. Basdata 1.1. Programkod 4HI10 1.2. Programmets

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Fysik för poeter 2010 Professor Lars Bergström Fysikum, Stockholms universitet Vi ska börja med lite klassisk fysik. Galileo Galilei

Läs mer

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.

Läs mer

INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points

INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points UTBILDNINGSPLAN INGENJÖRSPROGRAMMET FÖR PROJEKTLEDNING, 120 POÄNG Programme for Project Management in Engineering, 120 points Utbildningsplanen är fastställd av fakultetsnämnden för medicin, naturvetenskap

Läs mer

DD1311 Programmeringsteknik för S1 Laborationer läsåret 2007-2008

DD1311 Programmeringsteknik för S1 Laborationer läsåret 2007-2008 DD1311 meringsteknik för S1 Laborationer läsåret 2007-2008 Fyll i ditt namn och personnummer med bläck eller motsvarande. Kursledare är Linda Kann, linda@nada.kth.se. Namn... Personnr... Laborationer Labb

Läs mer

Kan hagel bli hur stora som helst?

Kan hagel bli hur stora som helst? Lennart.wern@smhi.se 2010-03-12 Kan hagel bli hur stora som helst? Det dök upp ett ärende här på vår avdelning "Information och Statistik" på SMHI angående ett hagel som skulle ha vägt 600 gram och fallit

Läs mer

Labbrapport. Isingmodel

Labbrapport. Isingmodel Labbrapport Auhtor: Mesut Ogur, 842-879 E-mail: salako s@hotmail.com Author: Monica Lundemo, 8524-663 E-mail: m lundemo2@hotmail.com Handledare: Bo Hellsing Göteborgs Universitet Göteborg, Sverige, 27--

Läs mer

INSTITUTIONEN FÖR MATEMATIK OCH NATURVETENSKAP. Fastställd i institutionsstyrelsen 2003-06-11 Dnr 853/333-03

INSTITUTIONEN FÖR MATEMATIK OCH NATURVETENSKAP. Fastställd i institutionsstyrelsen 2003-06-11 Dnr 853/333-03 INSTITUTIONEN FÖR MATEMATIK OCH NATURVETENSKAP LOKAL UTBILDNINGSPLAN MEDIEINFORMATIKPROGRAMMET 120 POÄNG MI03 Fastställd i institutionsstyrelsen 2003-06-11 Dnr 853/333-03 INNEHÅLL LOKAL UTBILDNINGSPLAN

Läs mer

Högskolepedagogisk utbildning-modul 3-perspektivkurs nov 2004

Högskolepedagogisk utbildning-modul 3-perspektivkurs nov 2004 Genus och programmering av Kristina von Hausswolff Inledning Under läsåret 3/ var jag med i ett projekt om Genus och datavetenskap lett av Carin Dackman och Christina Björkman. Under samma tid, våren,

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen

Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen Vad lärare tycker om undervisningen i matematik på civilingenjörsprogrammen Martina Persson och Raimundas Gaigalas Matematiska institutionen Uppsala universitet Box 4, S-75 6 Uppsala Sammanfattning Som

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

FLOAT - (FLexibel Omplanering Av Tåglägen i drift) OT8 2 Väl fungerande resor och transporter i storstadsregionen

FLOAT - (FLexibel Omplanering Av Tåglägen i drift) OT8 2 Väl fungerande resor och transporter i storstadsregionen - (FLexibel Omplanering Av Tåglägen i drift) OT8 2 Väl fungerande resor och transporter i storstadsregionen Styrning genom planering Transparens, användaren förstår vad som händer - hur har algoritmen

Läs mer

Genicore AB. Modellbaserad ansats. En liten firma i Göteborg som gör stora datasystem. Systemspråk - När modellen är systemet. torsdag 10 maj 2012

Genicore AB. Modellbaserad ansats. En liten firma i Göteborg som gör stora datasystem. Systemspråk - När modellen är systemet. torsdag 10 maj 2012 Genicore AB En liten firma i Göteborg som gör stora datasystem Modellbaserad ansats Systemspråk - När modellen är systemet 1 Core Modellbaserad ansats i 3 delar Metodik Språk System Datateknik 3:e generationen

Läs mer