Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi

Storlek: px
Starta visningen från sidan:

Download "Beräkningsvetenskap I. Exempel på tillämpningar: Vad är beräkningsvetenskap? Informationsteknologi"

Transkript

1 Beräkningsvetenskap I Jarmo Rantakokko Josefin Ahlkrona Kristoffer Virta Katarina Gustavsson Vårterminen 2011 Beräkningsvetenskap: Hur man med datorer utför beräkningar och simuleringar baserade på matematiska modeller Talrepresentation Numerisk lösning av ekvationer simulering av komplexa fysikaliska förlopp Beräkningsvetenskap handlar om hur man gör detta på ett effektivt, noggrannt och pålitligt sätt! Ämnet är tvärvetenskapligt och har gränsytor mot matematik, datavetenskap och olika tillämpningar, främst inom naturvetenskap och teknik. Exempel på tillämpningar: Simulering av snödrift för ett av ombyggnadsförslagen Sylarnas fjällstation innan ombyggnaden Meteorologi: Vad blir det för väder imorgon eller hur kommer klimatet att förändras? Alla prognoser från SMHI beräknas numeriskt och tolkas sedan av meteorologer. Oceanografi: Hur kommer vattenflöden, salthalt, temperatur och isutbredning att variera I Östersjöområdet? Var och när behöver isbytarna skickas ut? 1

2 Bioinformatik: Var i genomet finns gener som påverkar exempelvis storlek? + = - Identifiera sekvenser av gener i DNA bestående av 3 miljader baser - Numerisk simulering för design av effektiva läkemedel Hur sprider sig den medicin som injiceras i ögat mot exempelvis starr? Fysik: Vad händer i ett flygplan när blixten slår ner? Hur designar man ett flygplan för minsta möjliga radarreflektion? Molekyldynamik: Om man ändrar ett material på molekylnivå vilka egenskaper förväntas materialet få? 2

3 Mekanik: Hur bygger man krocksäkra bilar? Astronomi: Hur bildas stjärnor, supernova och svarta hål? Virtuella krocktester av preliminär design spar både tid och pengar. Numeriska beräkningar av luftflödet för optimal design av aerodynamiska egenskaper Kemi: Hur får man en effektiv förbränning och bra bränsleekonomi? Simulering av hur förbränning övergår i detonation (vilket vill undvikas i bilmotor) Datavetenskap: I vilken ordning ska träffarna visas? OBS, de flesta program innehåller alltid någon numerisk komponent (t.ex. talrepresentation, bildtransformation, simulering, beräkning) - Internetservrar - Databaser - Spel 3

4 Dual-core laptop 280 core PC-cluster 2x quad-core => 8-core PC 1+8 Multicore playstation Numeriska beräkningar och simuleringar är ofta mycket dataintensiva och utförs på parallelldatorer. Tillämpningarna är exempel på problem som kan beskrivas med matematiska modeller Problem! Kan som regel inte lösas analytiskt, på vanligt sätt. Lösning: Lös problemet på dator måste använda numeriska lösningsmetoder. Resultat: Ger approximativ lösning. Verkligheten Dålig noggrannhet Idealisering Matematisk modell Approximation Numerisk metod Implementering Bugg, indata Datorkörning Lösning Nej OK? Ja Otillräcklig modell verklighet Lösning Numeriska metoder Beräkningsvetenskap Ett (trivialt) exempel Beräkna arean på jorden med den matematiska modellen A=4πr2 Ett mer realistiskt exempel Innehåller flera approximationer och fel: Jorden approximeras av en sfär idealisering av jordens verkliga yta Värdet på radien baseras på empiriska mätningar och tidigare beräkningar Värdet på π kräver trunkering (avhuggning) av oändlig decimalutveckling Indata och resultat avrundas av datorn modeller Verkligheten Beräkna egenfrekvenser och svängningsmoder för bron. 4

5 Modellera bron som en tunn sträng: Matematisk modell Matematisk modell Där u förskjutningen i y-led, T spänningen i strängen och p dess densitet. Modellen är en förenkling av verkligheten (1D) Kan bygga ut den till flera dimensioner för att göra den mer realistisk blir då mer komplicerad Svårt bestämma parametrarna T,p. Kan variera för olika material (ställen). Modellen innehåller inte bärlinor Svårt eller omöjligt att göra en modell som helt överensstämmer med verkligheten Slutsats: Modellen en idealisering av verkligheten! Numerisk metod Problem! Kan ej lösas med vanliga matematiska (analytiska) metoder. Vi använder istället en numerisk metod. Numeriska metoder bygger i detta fall på diskretisering, dvs kontinuerliga intervall ersätts med diskreta punkter. Beräkning sker endast i dessa punkter medför diskretiseringsfel Metoderna har olika egenskaper och kan vara bra ur en synvinkel men dåliga ur en annan. Exempelvis kan en viss metod vara effektiv (snabb), men i vissa lägen vara instabil Implementera metoden, dvs skriv program för den numeriska metoden (C++, Java, MATLAB,...) eller Använd befintlig programvara, t ex MATLAB Ofta krävs en kombination av båda! Indata till programmet, t ex T,p baseras vanligen på mätningar och är inte exakta Krävs ett initialtillstånd, dvs böjningen vid tiden t=0. Detta mäts ej exakt utan innehåller fel Datorn avrundar alla beräkningar Lösning Lösningen OK? Tolka resultat Tillräckligt effektivt och snabbt? Är felet tillräckligt litet? Exempel: Vilken betydelse har datorns noggrannhet i beräkningarna? Betrakta uttrycket: y=((1/3-(1/3-3/10)*10)*10^12)^100 På räknare: y=5.15*10^47 Exakt: y=0! Vad hände? Slutsats: Även exakta matematiska uttryck kan ge betydande fel vid numerisk beräkning (exempel på instabil beräkning) 5

6 Frågeställningar inom beräkningsvetenskap Datavetenskap Numeriska metoder Matematik Tillämpningsämnen Exekveringstid? Minnesutnyttjande? Vilken typ av dator? Numeriska metoder Noggrannhet? Stabilitet? Kondition? Realistisk lösning? Tillräcklig model? Talrepresentation Felanalys Lösning av ekvationer Linjära ekv system Icke-linjär ekv Integraler Simulering av dynamiska förlopp Kurvanpassning Ordinära diff ekv Partiella diff ekv Egenvärdesproblem BV I BV II BV III Fem olika block Varje block har strukturen Datorlab => Föreläsning (en eller två) => Workout + problemlösning på dator Problemlösningspass => Miniprojekt Alla delar hänger ihop om man t ex missat labben förstår man föreläsningen sämre Alla delar tillsammans ger fullständig förståelse av blocket Laborationer Verifiering/ Förståelse Upptäckt (Varför/hur?) Teori Simuleringar/datorberäkningar Beskrivning/ Idealisering Citat från tidigare kursvärderingar: Det är framförallt sampelet mellan de olika formerna som varit bra. Att först ha laboration, sen föreläsning, workout och sist problemlösning gav förståelse och väl behövlig repetition. När man var klar med ett block kunde man det väl. Jag tycker det hänger ihop bra. Först får man testa praktiskt utan att förstå och sen får man förklarat för sig och till sist så faller teorin på plats när man gör workouten. 6

7 Kursens mål Kursens mål, forts För godkänt betyg ska studenten kunna redogöra för de grundläggande begreppen algoritm, diskretisering, noggrannhet, noggrannhetsordning, stabil- resp ickestabil algoritm, maskinepsilon, diskretiseringsfel (trunkeringsfel), iteration, kondition; översiktligt förklara idén bakom de algoritmer som behandlas i kursen; Visa hur algoritmerna som behandlas kan användas för lösning av tillämpningsproblem Redogöra för skillnaden i metodik vid datorberäkningar i jämförelse med analytisk lösning och de effekter som flyttalsrepresentation och diskretisering medför; Använda grundläggande programmeringsstrukturer (if, while, for) i algoritmer och i programmeringskod vid problemlösning; Givet ett mindre beräkningsproblem, strukturera och dela upp i underproblem, formulera algoritm för lösning av problemet, samt implementera i ett programmeringsspråk Redogöra för hur parametrar överförs till funktioner samt skillnaden mellan globala och lokala variabler i program Förstå enkel programmeringskod och skriva egna välstrukturerade mindre beräkningsprogram Mål, forts I en mindre rapport förklara och sammanfatta lösningsmetoder och resultat på ett överskådligt sätt. 7

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi

Beräkningsvetenskap. Vad är beräkningsvetenskap? Vad är beräkningsvetenskap? stefan@it.uu.se. Informationsteknologi. Informationsteknologi Beräkningsvetenskap stefan@it.uu.se Finns några olika namn för ungefär samma sak Numerisk analys (NA) Klassisk NA ligger nära matematiken: sats bevis, sats bevis, mer teori Tekniska beräkningar Mer ingenjörsmässigt,

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå

Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå Naturvetenskapliga fakulteten Dnr G 2015/59 Utbildningsplan för Matematikprogrammet (N1MAT) Bachelor s Programme in Mathematics Grundnivå 1. Utbildningsprogrammets benämning och omfattning Programmet benämns

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6.

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Differentialekvationer. Repetition av FN5 (GNM kap 6. Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN6 09-03-17 Hedvig Kjellström hedvig@csc.kth.se Repetition av FN5 (GNM kap 6.1-2B) Differentialekvationer Standardform för begynnelsevärdesproblem

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Analys av elektriska nät med numeriska metoder i MATLAB

Analys av elektriska nät med numeriska metoder i MATLAB Analys av elektriska nät med numeriska metoder i MATLAB Joel Nilsson Martin Axelsson Fredrik Lundgren 28-2-12 Kurs DN1215 - Numeriska metoder för ME Moment Laboration 1 - Bli bekväm med MATLAB Handledare

Läs mer

LINKÖPINGS TEKNISKA HÖGSKOLA

LINKÖPINGS TEKNISKA HÖGSKOLA Utdrag ur LITHs Studiehandbok Programspecifik infromation Matematik ht-1998 Studiehandboken finns på http://www.lith.liu.se/sh/ LINKÖPINGS TEKNISKA HÖGSKOLA c4 UTBILDNINGSPROGRAMMET FÖR MATEMATIK, 120-160

Läs mer

Utbildningsplan för kandidatprogram i fysik, 180

Utbildningsplan för kandidatprogram i fysik, 180 GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för kandidatprogram i fysik, 180 högskolepoäng Grundnivå Bachelor of Science in Physics 1. Beslut om fastställande Utbildningsplan

Läs mer

7 november 2014 Sida 1 / 21

7 november 2014 Sida 1 / 21 TANA09 Föreläsning 2 Talrepresentation i datorer. Flyttalssystem. Datoraritmetik och Beräkningsfel. Beräkningsfelsanalys och Kancellation. Serier och Resttermsuppskattningar. Tillämpning - Beräkning av

Läs mer

2D1210, Numeriska Metoder, GK I för V 2.

2D1210, Numeriska Metoder, GK I för V 2. Kursöversikt Numme för V, 2003. 1 Beatrice Frock NADA, KTH 030612 ANADA 2D1210, Numeriska Metoder, GK I för V 2. Kursprogram. Läsanvisningar. Om WWW: I World Wide Web på Internet finns aktuell information

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder? Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet

NUMERISKA METODER HT01. Energiteknik & Teknisk fysik HT01. Institutionen för Datavetenskap Umeå Universitet NUMERISKA METODER HT01 för Energiteknik & Teknisk fysik HT01 Institutionen för Datavetenskap Umeå Universitet Dagens pass (föreläsning 1-2) Allmän info del 1 (kursens poäng, utlåning av Matlab, Matlab

Läs mer

Datavetenskapligt program, 180 högskolepoäng

Datavetenskapligt program, 180 högskolepoäng GÖTEBORGS UNIVERSITET UTBILDNINGSPLAN IT-fakultetsstyrelsen 2013-02-14 Datavetenskapligt program, 180 högskolepoäng (Computer Science, Bachelor s Programme, 180 credits) Grundnivå/First level 1. Fastställande

Läs mer

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2.

GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden. Utbildningsplan för Matematikprogrammet (N1MAT) 1. Beslut om fastställande. 2. GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Matematikprogrammet (N1MAT) 180 högskolepoäng Grundnivå Bachelor Program in Mathematics 1. Beslut om fastställande Utbildningsplanen

Läs mer

Symboler och abstrakta system

Symboler och abstrakta system Symboler och abstrakta system Warwick Tucker Matematiska institutionen Uppsala universitet warwick@math.uu.se Warwick Tucker, Matematiska institutionen, Uppsala universitet 1 Vad är ett komplext system?

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Praktisk beräkning av SPICE-parametrar för halvledare

Praktisk beräkning av SPICE-parametrar för halvledare SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi

Läs mer

Modell och verklighet och Gy2011

Modell och verklighet och Gy2011 Modell och verklighet och Gy2011 Innehållet i Modell och verklighet stämmer väl överens med ämnesplanen och det centrala innehållet i Gy2011. I ämnesplanen för Kemi, www.skolverket.se, betonas att undervisningen

Läs mer

FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015

FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS032: MATEMATISK STATISTIK AK FÖR V OCH L KURSPROGRAM HT 2015 HEMSIDA Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms032/

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1

Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1 1 2 3 4 5 Lars Larsson Algoritmer 2 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut

Läs mer

Valinformation Mekatronik VT 2015

Valinformation Mekatronik VT 2015 Valinformation Mekatronik VT 2015 Mekatronik 180hp Campus Lindholmen Mekatronikprogrammet, åk 3 Åk3 Läsår 2014/15 (rekommenderat) Tillämpad reglerdesign (Valbar) Mekatronikprojekt Industriell ekonomi och

Läs mer

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng)

SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering. för Bio3, 9 hp (högskolepoäng) Kursöversikt numpbio, 2013. 1 Beatrice Frock KTH Matematik, 130620 SF1513 (tidigare DN1212) Numeriska metoder och grundläggande programmering för Bio3, 9 hp (högskolepoäng) Kursprogram 6 Design i Matlab

Läs mer

A-Ö Ämnet i pdf Ämne - Fysik Fysik är ett naturvetenskapligt ämne som har sitt ursprung i människans behov av att förstå och förklara sin omvärld. Fysik behandlar allt från växelverkan mellan materiens

Läs mer

U T B I L D N I N G S P L A N

U T B I L D N I N G S P L A N Dnr: 1053/2008-515 Utbildningsnämnden för grundnivå och avancerad nivå inom matematik, naturvetenskap och teknik U T B I L D N I N G S P L A N erprogrammet, 180 högskolepoäng Programme in Physics, 180

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

Sportteknologi maskiningenjör inom innovativ produktutveckling, 180 hp

Sportteknologi maskiningenjör inom innovativ produktutveckling, 180 hp 1 (6) Utbildningsplan för: Sportteknologi maskiningenjör inom innovativ produktutveckling, 180 hp Sports Technology Mechanical Engineering within Innovative Product Development, 180 Credits Allmänna data

Läs mer

4.7 Utbildningsplan för masterprogrammet i matematik

4.7 Utbildningsplan för masterprogrammet i matematik 4.7 Utbildningsplan för masterprogrammet i matematik 4.7.1 Beskrivning av programmet Kurserna inom programmet är på avancerad nivå. Efter genomgånget program kan studenten avlägga Masterexamen i matematik.

Läs mer

SF Numeriska metoder, grundkurs

SF Numeriska metoder, grundkurs - Numeriska metoder, grundkurs Introduktionsföreläsning, September 1, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/16 Föreläsning 1 Om föreläsaren Om ämnet Om kursen Matlab

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Kursmål och pluggtips Institutionen för matematik KTH Kursmål Kursmålen står på sidan Kursplan mm (länk i menyn). De anger vad man ska kunna för att bli godkänd på kursen. I den här pdf:en går jag igenom

Läs mer

Laboration 3. Funktioner, vektorer, integraler och felskattning

Laboration 3. Funktioner, vektorer, integraler och felskattning 1 SF1520 K2 HT2014 NA 21 december 2015 Laboration 3 Funktioner, vektorer, integraler och felskattning Efter den här laborationen skall du kunna använda och skriva egna funktioner med flera in- och utparametrar,

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden

Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Historiskt moment i Numerisk analys 1 Monte Carlo-metoden Grupp 2 Jonas Haulin Kathrin Mattiasson Mateo Tarazona Elin Vinger Bakgrund och teori Monte Carlo-metoden är en metod för statistisk simulering.

Läs mer

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör. Prövning i Fysik1 Prövning i Fy 1 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen 2: Laborationer I kursen ingår laborationer och att skriva rapporter. Laborationerna görs en torsdag

Läs mer

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING

CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING Lokal examensbeskrivning Dnr: 541-2072-10 Sid 1 (5) CIVILINGENJÖRSEXAMEN MASTER OF SCIENCE IN ENGINEERING INRIKTNING: TEKNISK DATAVETENSKAP SPECIALISATION: COMPUTING SCIENCE AND ENGINEERING 1 Fastställande

Läs mer

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del

Läs mer

PROGRAMMERING. Ämnets syfte. Kurser i ämnet

PROGRAMMERING. Ämnets syfte. Kurser i ämnet PROGRAMMERING Ämnet programmering behandlar programmeringens roll i informationstekniska sammanhang som datorsimulering, animerad grafik, praktisk datoriserad problemlösning och användaranpassad konfiguration

Läs mer

MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola

MIO310 Optimering & Simulering. Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola MIO310 Optimering & Simulering 2015 Kursansvarig: Universitetslektor Fredrik Olsson Produktionsekonomi Lunds tekniska högskola Antal poäng: 6 hp. Obligatorisk för: Industriell Ekonomi åk 3. Nivå: G2 Rek.

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

En pendels svängningstid

En pendels svängningstid Använd denna exempelrapport som mall för din rapport. Mer detaljer hittar du i Lathund för rapportskrivning av Merkel, Andersson, Lundquist och Önnegren. Notera att denna exempelrapport beskriver ett mycket

Läs mer

Systemidentifiering för läkemedelsutveckling modeller, skattning och analys.

Systemidentifiering för läkemedelsutveckling modeller, skattning och analys. Systemidentifiering för läkemedelsutveckling modeller, skattning och analys. My-dagen 28 oktober, 2013, Göteborg Jacob Leander, Industridoktorand Avdelningen System och dataanalys 25 minuter av modellering

Läs mer

Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap

Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap Exempel på gymnasiearbete september 2012 Exempel på gymnasiearbete inom naturvetenskapsprogrammet naturvetenskap Mpemba-effekten Elevens idé Rana ska utföra sitt gymnasiearbete i grupp tillsammans med

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Naturvetenskapsprogrammet (NA)

Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) Naturvetenskapsprogrammet (NA) ska utveckla elevernas kunskaper om sammanhang i naturen, om livets villkor, om fysikaliska fenomen och skeenden och om kemiska processer.

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Visa vägen genom bedömning

Visa vägen genom bedömning Visa vägen genom bedömning För att du alltid ska veta var du befinner dig i din utveckling, har vi tagit fram Sveaskolans mål i olika ämnen och olika skolår. Dessa mål när du och läraren samtalar om vad

Läs mer

FYSIKPROGRAMMET, 180 HÖGSKOLEPOÄNG

FYSIKPROGRAMMET, 180 HÖGSKOLEPOÄNG AKADEMIN FÖR NATURVETENSKAP OCH TEKNIK Utbildningsplan Dnr CF 52-26/2009 Sida 1 (7) FYSIKPROGRAMMET, 180 HÖGSKOLEPOÄNG Physics Programme, 180 Higher Education Credits Utbildningsprogrammet är inrättat

Läs mer

Koppling mellan styrdokumenten på naturvetenskapsprogrammet och sju programövergripande förmågor

Koppling mellan styrdokumenten på naturvetenskapsprogrammet och sju programövergripande förmågor Koppling mellan styrdokumenten på naturvetenskapsprogrammet och sju programövergripande förmågor Förmåga att Citat från examensmålen för NA-programmet Citat från kommentarerna till målen för gymnasiearbetet

Läs mer

Anders Logg. Människor och matematik läsebok för nyfikna 95

Anders Logg. Människor och matematik läsebok för nyfikna 95 Anders Logg Slutsatsen är att vi visserligen inte kan beräkna lösningen till en differentialekvation exakt, men att detta inte spelar någon roll eftersom vi kan beräkna lösningen med precis den noggrannhet

Läs mer

Naturvetenskapsprogrammet Mål för programmet

Naturvetenskapsprogrammet Mål för programmet Naturvetenskapsprogrammet Mål för programmet Naturvetenskapsprogrammet är ett högskoleförberedande program och utbildningen ska i första hand förbereda för vidare studier inom naturvetenskap, matematik

Läs mer

Teknisk modellering: Bärverksanalys VSM150

Teknisk modellering: Bärverksanalys VSM150 Teknisk modellering: Bärverksanalys VSM150 Kursprogram 2008 Inledning Kursens syfte är att ge kunskaper om att välja fysikaliskt riktiga modeller samt att använda dessa för att lösa ingenjörsproblem.

Läs mer

Föreläsning 1: Intro till kursen och programmering

Föreläsning 1: Intro till kursen och programmering Föreläsning 1: Intro till kursen och programmering λ Kursens hemsida http:www.it.uu.se/edu/course/homepage/prog1/mafykht11/ λ Studentportalen http://www.studentportalen.uu.se UNIX-konton (systemansvariga

Läs mer

SKOLFS. beslutade den -- maj 2015.

SKOLFS. beslutade den -- maj 2015. SKOLFS Föreskrifter om ändring i Skolverkets föreskrifter (SKOLFS 2010:247) om ämnesplan för ämnet programmering i gymnasieskolan och inom kommunal vuxenutbildning på gymnasial nivå; beslutade den -- maj

Läs mer

Föreläsning 1: Intro till kursen och programmering

Föreläsning 1: Intro till kursen och programmering Föreläsning 1: Intro till kursen och programmering Kursens hemsida http:www.it.uu.se/edu/course/homepage/prog1/vt11 Studentportalen http://www.studentportalen.uu.se Lärare: Tom Smedsaas, Tom.Smedsaas@it.uu.se

Läs mer

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte

Inledning. Kapitel 1. 1.1 Bakgrund. 1.2 Syfte Sammanfattning Vi har i kursen Modelleringsprojekt TNM085 valt att simulera ett geléobjekt i form av en kub. Denna består av masspunkter som är sammankopplade med tre olika typer av fjädrar med olika parametrar.

Läs mer

Utbildningsplan för Masterprogram i matematiska vetenskaper (N2MAT)

Utbildningsplan för Masterprogram i matematiska vetenskaper (N2MAT) GÖTEBORGS UNIVERSITET Naturvetenskapliga fakultetsnämnden Utbildningsplan för Masterprogram i matematiska vetenskaper (N2MAT) 120 högskolepoäng Avancerad nivå Two-year Masters Program in Mathematical Sciences

Läs mer

Föreläsning 1 & 2 INTRODUKTION

Föreläsning 1 & 2 INTRODUKTION Föreläsning 1 & 2 INTRODUKTION Denna föreläsning Vad händer under kursen? praktisk information Kursens mål vad är programmering? Skriva små program i programspråket Java Skriva program som använder färdiga

Läs mer

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000

Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 2011-12-21 Matematik: Det centrala innehållet i kurserna i Gy 2011 i relation till kurserna i Gy 2000 Kurs 1a och 2a i Gy 2011 jämfört med kurs A och B i Gy 2000 Poängomfattningen har ökat från 150 poäng

Läs mer

Föreläsning 1: Introduktion till kursen

Föreläsning 1: Introduktion till kursen (17 januari 2017 F1 1 ) Föreläsning 1: Introduktion till kursen Lärare: Anna Eckerdal och Tom Smedsaas samt ca 20 assistenter Registrering / avregistrering Undervisningsformer: föreläsningar och laborationer

Läs mer

Fakulteten för ekonomi, kommunikation och IT. Utbildningsplan. Högskoleingenjörsprogrammet i datateknik

Fakulteten för ekonomi, kommunikation och IT. Utbildningsplan. Högskoleingenjörsprogrammet i datateknik Fakulteten för ekonomi, kommunikation och IT Utbildningsplan Högskoleingenjörsprogrammet i datateknik Programkod: Programmets benämning: TGDDI Högskoleingenjörsprogrammet i datateknik Study Programme in

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR PRÖVNINGSANVISNINGAR Prövning i Matematik D Kurskod Ma 104 Gymnasiepoäng 100 Läromedel Prov Muntligt prov Inlämningsuppgift Kontakt med examinator Övrigt Valfri aktuell lärobok för kurs Matematik D t.ex.

Läs mer

Maskiningenjör - produktutveckling, 180 hp

Maskiningenjör - produktutveckling, 180 hp 1 (6) Utbildningsplan för: Maskiningenjör - produktutveckling, 180 hp Mechanical Engineering - Product Development, 180 Credits Allmänna data om programmet Programkod Tillträdesnivå Diarienummer TMPRG

Läs mer

KONSTRUKTION. Ämnets syfte. Kurser i ämnet

KONSTRUKTION. Ämnets syfte. Kurser i ämnet KONSTRUKTION Ämnet konstruktion behandlar konstruktionsprocesser från idé till färdig produkt, där syftet är att utforma och dimensionera produkter med sikte på ändamålsenlig formgivning, funktion och

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Fakulteten för teknik och naturvetenskap. Utbildningsplan. Matematisk modellering

Fakulteten för teknik och naturvetenskap. Utbildningsplan. Matematisk modellering Fakulteten för teknik och naturvetenskap Utbildningsplan Matematisk modellering Programkod: Programmets benämning: Högskolepoäng/ECTS: 120 Beslut om inrättande: NANAT Inriktningar FSGR, RESI, TIMA Matematisk

Läs mer

Vilket behov av matematik finns inom högskoleingenjörsutbildningen?

Vilket behov av matematik finns inom högskoleingenjörsutbildningen? Vilket behov av matematik finns inom högskoleingenjörsutbildningen? Ett miniprojekt inom ramen för kursen Att utbilda blivande ingenjörer 7 presenterad vid ett seminarium i Manchester 1999-05-20-25 Owe

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

TANA81: Simuleringar med Matlab

TANA81: Simuleringar med Matlab TANA81: Simuleringar med Matlab - Textsträngar och Texthantering. - Utskrifter till fil eller skärm. - Exempel: Slumptal och Simulering. - Exempel: Rörelseekvationerna. - Vanliga matematiska problem. Typeset

Läs mer

Mätning av fokallängd hos okänd lins

Mätning av fokallängd hos okänd lins Mätning av fokallängd hos okänd lins Syfte Labbens syfte är i första hand att lära sig hantera mätfel och uppnå god noggrannhet, även med systematiska fel. I andra hand är syftet att hantera linser och

Läs mer

Matematikerprogrammet, 180 högskolepoäng Applied Mathematics Programme, 180 credits

Matematikerprogrammet, 180 högskolepoäng Applied Mathematics Programme, 180 credits Dnr: 2014/2308 3.1.1 Utbildningsplan Fakulteten för teknik Matematikerprogrammet, 180 högskolepoäng Applied Mathematics Programme, 180 credits Nivå Grundnivå Fastställande av utbildningsplan Fastställd

Läs mer

BML131, Matematik I för tekniskt/naturvetenskapligt basår

BML131, Matematik I för tekniskt/naturvetenskapligt basår BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik

Läs mer

SVÄNGNINGSTIDEN FÖR EN PENDEL

SVÄNGNINGSTIDEN FÖR EN PENDEL Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt

Läs mer

TEKNIK. Ämnets syfte. Undervisningen i ämnet teknik ska ge eleverna förutsättningar att utveckla följande:

TEKNIK. Ämnets syfte. Undervisningen i ämnet teknik ska ge eleverna förutsättningar att utveckla följande: TEKNIK Ämnet teknik är till sin karaktär tvärvetenskapligt. Teknik handlar om att uppfylla människors behov och önskemål genom att omvandla naturens fysiska resurser eller immateriella tillgångar i produkter,

Läs mer

Utbildningsplan för Datavetenskapligt program, 180 högskolepoäng

Utbildningsplan för Datavetenskapligt program, 180 högskolepoäng IT-FAKULTETEN Dnr G 2015/217 Utbildningsplan för Datavetenskapligt program, 180 högskolepoäng Computer Science, Bachelor s Programme, 180 higher education credits Grundnivå/programkod (N1COS) 1. Fastställande

Läs mer

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar.

Uppgift 1. (SUBPLOT) (Läs gärna help, subplot innan du börjar med uppgiften.) 1 A) Testa och förklara hur nedanstående kommandon fungerar. INLÄMNINGSUPPGIFT 2 Linjär algebra och analys Kurskod: HF1006, HF1008 Skolår: 2016/17 armin@kth.se www.sth.kth.se/armin Redovisas under sista två (av totalt fem) labbövningar i Analys-delen. Preliminärt:

Läs mer

Användningen av nätet i undervisningen Bilaga 1 Institution: "Bioblocket": biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F)

Användningen av nätet i undervisningen Bilaga 1 Institution: Bioblocket: biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F) Användningen av nätet i undervisningen Bilaga 1 Institution: "Bioblocket": biologi (BL), biokemi (BK), biovetenskap (BV), farmaci (F) BV Ämneskurser: Computers / Computational Methods in bioresearch nätet

Läs mer

Utbildningsplan Dnr CF 52-66/2007. Sida 1 (7)

Utbildningsplan Dnr CF 52-66/2007. Sida 1 (7) Utbildningsplan Dnr CF 52-66/2007 Sida 1 (7) PROGRAMMET FÖR SIMULERING OCH DATASPELSUTVECKLING, 180 HÖGSKOLEPOÄNG Programme in Simulation and Computer Game Development, 180 ECTS Utbildningsplanen är inrättad

Läs mer

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel

Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc. Lab. 1 Mätning av ytspänning och kontaktvinkel Linköpings Universitet 2010-12-14 IFM - Kemi Yt- och Kolloidkemi - NKEC21 NOP/Kontaktvinkel_10.doc Lab. 1 Mätning av ytspänning och kontaktvinkel Mätning av ytspänning. Många olika metoder finns för att

Läs mer

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor.

Approximerande Splines. B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. TANA09 Föreläsning 8 Approximerande Splines B-splines. Minsta kvadrat anpassning. Design av kurvor och ytor. Exempel Parametriska Kurvor. Ritprogram. Beziér kurvor. Design av kurvor och ytor. Tillämpning

Läs mer

Beslut i Fakultetesnämnden för Naturvetenskap och teknik Reviderad

Beslut i Fakultetesnämnden för Naturvetenskap och teknik Reviderad Mälardalens högskola Mälardalen University Utbildningsplan för Flygingenjörsprogrammet 180 hp Programkod: IMV20 Planeringsdel Läsåret 2008/2009 Beslut i Fakultetesnämnden för Naturvetenskap och teknik

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin

Linjärprogramming. EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin Linjärprogramming EG2205 Föreläsning 7, vårterminen 2015 Mikael Amelin 1 Kursmål Formulera korttidsplaneringsproblem för vatten- och värmekraftsystem. 2 Tillämpad matematisk programming Korttidsplanering

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Kemi 2 PRÖVNINGSANVISNINGAR Kurskod KEMKEM02 Gymnasiepoäng 100 Läromedel Prov Teoretiskt prov (240 min) Muntligt prov Kemi B, Andersson, Sonesson m.fl, Liber. Kap. 2-4 och 7-14 Ett skriftligt

Läs mer

Integration av matematik och teknik på ingenjörsutbildningar

Integration av matematik och teknik på ingenjörsutbildningar Integration av matematik och teknik på ingenjörsutbildningar BTH, Sektionen för teknik: Anders Hultgren Wlodek Kulesza Magnus Nilsson Lunds universitet, Matematikcentrum Björn Walther m m v2(t) 2 k2 b2

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1

Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Facit Tentamen i Beräkningsvetenskap I, STS ES W K1 Viktig information om övningstentamen Betygsgränserna är endast preliminära. Del B och del C behöver inte beröra samma problem som inlämningsuppgifterna.

Läs mer

Platser för att skriva och testa kod online. Workshop om programmering i matematikkurser, version 0.7 senast sparat

Platser för att skriva och testa kod online. Workshop om programmering i matematikkurser, version 0.7 senast sparat Cheat sheets Nedan finns referensblad för fyra olika programmeringsspråk, som kan bli aktuella att använda i matematikundervisning. MATLAB är en välkänd programvara för att göra matematiska beräkningar,

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör.

3: Muntlig redovisning Vid tveksamhet om betygsnivå, kommer du att få ett kompletterande muntligt förhör. Prövning i Fysik 2 Prövningen i Fy 2 omfattar 1: Skriftligt prov Ett skriftligt prov görs på hela kursen. 2: Laborationer I kursen ingår att laborera och att skriva rapporter. Laborationerna görs en torsdag

Läs mer

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt

Lektioner Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt Föreläsning 8.15-10.00 Lektioner 10.15-12.00 Datum Lokal Grupp 1 Grupp 2 Grupp 3 Grupp 4 Avsnitt ons-3-dec Hörsal G C: 5.1-5.2 tor-4-dec Hörsal G N210 A302 A303 MC413 C: 5.3-5.4 fre-5-dec Hörsal G C: 2.10,

Läs mer