Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT Lars Larsson Algoritmer 1

Storlek: px
Starta visningen från sidan:

Download "Bakgrund och motivation. Definition av algoritmer Beskrivningssätt Algoritmanalys. Algoritmer. Lars Larsson VT 2007. Lars Larsson Algoritmer 1"

Transkript

1 Algoritmer Lars Larsson VT 2007 Lars Larsson Algoritmer 1

2 Lars Larsson Algoritmer 2

3 Ni som går denna kurs är framtidens projektledare inom mjukvaruutveckling. Som ledare måste ni göra svåra beslut som påverkar slutprodukten. Ni måste således ha koll gällande vilka datatyper och algoritmer som är lämpliga i en situation, och framförallt varför. Lars Larsson Algoritmer 3

4 et med denna föreläsning är att studenterna skall ha förvärvat kunskap om: vad en algoritm är och vilka krav som ställs på dem, hur algoritmer kan beskrivas entydigt, vilka aspekter av algoritmer som kan analyseras, varför algoritmer analyseras och hur algoritmer kan analyseras experimentellt. Lars Larsson Algoritmer 4

5 Informell definition Formell definition Informellt är en algoritm som ett recept som man följer för att lösa ett givet problem på ett strukturerat sätt: Ett ändligt antal steg beskriver en ändlig process. Lars Larsson Algoritmer 5

6 Informell definition Formell definition Den formella definition vi använder på kursen är följande: Definition En algoritm är en noggrann plan, en metod för att stegvis utföra något. Lars Larsson Algoritmer 6

7 Informell definition Formell definition Donald Knuth ställer upp följande krav på algoritmer för att de skall vara korrekta: 1 Ändlighet algoritmer måste sluta. 2 Bestämdhet varje steg måste vara entydigt. 3 Indata måste ha noll eller flera indata. 4 Utdata måste ha ett eller flera utdata. 5 Effektivitet/genomförbarhet varje steg i algoritmen måste gå att utföra på ändlig tid. Lars Larsson Algoritmer 7

8 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement På grund av Knuths andra krav om bestämdhet måste vi vara mycket noggranna när vi skriver algoritmer. Detta ställer krav på vårt sätt att uttrycka oss. Vi kan välja (bland annat) något av följande sätt: (i stort sett) naturligt språk, flödesscheman, pseudokod. Lars Larsson Algoritmer 8

9 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Naturligt språk är vanligt språk, så som vi talar till vardags. Vi kan begränsa oss till att åtminstone använda vissa väldefinierade termer, för att undvika synonymer utan att tappa mycket i uttrycksfullhet. Problemet kvarstår dock att naturligt språk inte är precist nog. Lars Larsson Algoritmer 9

10 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Datorn är en formell beräkningsmodell. Alla algoritmer måste förr eller senare uttryckas på ett formellt korrekt och entydigt sätt för datorn om den som utvecklar algoritmen lämnar något oklart till implementatören, är det upp till implementatören att göra de återstående valen. Lars Larsson Algoritmer 10

11 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Inte minst de som läser ID kommer med säkerhet att stöta på hierarchical task analysis som är ett mycket smidigt sätt att blanda naturligt språk med en hierarkisk indelning av hur uppgifter löses. Detta kan ses som ett sätt att beskriva algoritmer, och rekommenderas för den intresserade. Se för mer information (finns via UB och på nätet): Shepherd, Andrew (1998). HTA as a framework for task analysis. Ergonomics, Vol. 4. issue 11, sid Lars Larsson Algoritmer 11

12 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Flödesscheman visar, som namnet antyder, hur flödet i ett program går. Villkorssatser och slingor representeras grafiskt med hjälp av former som i figuren nedan. Lars Larsson Algoritmer 12

13 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Det sätt vi vanligtvis presenterar algoritmer (och kommer göra under kursens gång) på är i pseudokod. Pseudokod påminner om ett programmeringsspråk, men vi tillåts (sparsamt) använda vissa konstruktioner som påminner om naturligt språk. Delar av algoritmer som är uppenbara måste inte skrivas ut i kodform, utan kan bara beskrivas med en enkel mening. Lars Larsson Algoritmer 13

14 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Det sätt vi vanligtvis presenterar algoritmer (och kommer göra under kursens gång) på är i pseudokod. Pseudokod påminner om ett programmeringsspråk, men vi tillåts (sparsamt) använda vissa konstruktioner som påminner om naturligt språk. Delar av algoritmer som är uppenbara måste inte skrivas ut i kodform, utan kan bara beskrivas med en enkel mening. Pseudokod låter oss abstrahera bort sådant som hör implementationen till, exempelvis minneshanteringskod, felkontroller och så vidare. Algoritmen står helt i fokus. Lars Larsson Algoritmer 13

15 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Pseudokodens utseende varierar mycket beroende på författare, tillfälle och val av notation. Dock gäller Knuths fem krav, så algoritmen måste fortfarande vara entydig. Lars Larsson Algoritmer 14

16 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Pseudokodens utseende varierar mycket beroende på författare, tillfälle och val av notation. Dock gäller Knuths fem krav, så algoritmen måste fortfarande vara entydig. Det går att ha en egen stil på pseudokoden, men den måste gå att tolka på ett vettigt sätt. Eftersom läsaren antas vara programmerare kan man blanda friskt mellan matematisk notation ({, },,,...) och nyckelord från programmeringsspråk. Lars Larsson Algoritmer 14

17 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement Beslutsstrukturer: if (...) then... [else...] Villkorsslingor: while (...) do... done eller repeat... until (...) Räkneslingor: for (...) do... done Arrayindexering: A[i] Anrop: function(arg1, arg2,...) eller object.method(arg1, arg2,...) Returnera värden: return value Tilldelning: := (ej att förväxla med jämförelse =) Lars Larsson Algoritmer 15

18 Naturligt språk Flödesscheman Pseudokod Pseudokod språkelement function arraymax(a, n): input: an array A of n integer values output: the maximum integer in A currentmax := A[0] for (i = 1 to n - 1) do if (currentmax < A[i]) then currentmax := A[i] return currentmax Lars Larsson Algoritmer 16

19 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Innan vi implementerar vår färska entydiga och välskrivna algoritm i ett programmeringsspråk, vill vi med fördel analysera hur effektiv den är. Baserat på analysen kan vi sedan välja rätt algoritm för situationen. Lars Larsson Algoritmer 17

20 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Vi kan av olika teoretiska anledningar inte analysera allting om en algoritm. Vi kan dock analysera några väldigt viktiga egenskaper, inte minst deras komplexitet och deras exekveringstid och minnesåtgång. Lars Larsson Algoritmer 18

21 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Vi analyserar exekveringstid och minnesåtgång för att vi söker algoritmer som är praktiskt körbara och effektiva! En fråga att ta hänsyn till är vad effektivitet innebär i vissa lägen kan det duga med en algoritm som är snabbare att implementera än en som ger exekveringstidsförbättringar men som är jobbigare att implementera. Lars Larsson Algoritmer 19

22 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Av alla problem som finns är bara en delmängd beräkningsbara, alltså att en dator kan behandla dem överhuvudtaget. Av de beräkningsbara problemen är bara en delmängd hanterbara, alltså att en dator kan behandla dem effektivt. Det finns även problem som vi i nuläget ser som icke-hanterbara, eftersom vi ännu inte har vettiga effektiva lösningar på dem. Lars Larsson Algoritmer 20

23 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Det finns dock ett sätt att hantera icke-hanterbara problem (de är vanligare än man tror, exempelvis är schemaläggning ett sådant). Vad vi dock kan göra är att: vi löser nästan rätt problem, genom att införa begränsningar och således förenklar problemet eller vi kan också lösa problemet nästan rätt, alltså göra approximationer och nöja oss med ett svar som inte nödvändigtvis är det helt rätta men som duger i sammanhanget. Lars Larsson Algoritmer 21

24 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Vi kan mäta tidsåtgången och således få en bild av hur komplexiteten för algoritmen är genom att använda en stoppklocka, eller ännu hellre via ett program. I UNIX och på Mac finns exempelvis kommandot time som kan ge oss sådan information. Lars Larsson Algoritmer 22

25 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Vi kan mäta tidsåtgången och således få en bild av hur komplexiteten för algoritmen är genom att använda en stoppklocka, eller ännu hellre via ett program. I UNIX och på Mac finns exempelvis kommandot time som kan ge oss sådan information. Det finns dock ett problem: hur vet vi att programmet fortfarande körs? Tänk om det har hängt sig? Tänk om det störs av andra processer? Lars Larsson Algoritmer 22

26 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Antag att vi har en dator som klarar 1 operation på en µs och att vi har en lista som består av n = 10 9 element. Lars Larsson Algoritmer 23

27 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Antag att vi har en dator som klarar 1 operation på en µs och att vi har en lista som består av n = 10 9 element. Använder vi en dålig sorteringsalgoritm som kräver n 2 antal operationer, så tar det runt år att sortera listan. Lars Larsson Algoritmer 23

28 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Antag att vi har en dator som klarar 1 operation på en µs och att vi har en lista som består av n = 10 9 element. Använder vi en dålig sorteringsalgoritm som kräver n 2 antal operationer, så tar det runt år att sortera listan. Använder vi dock en smart sorteringsalgoritm som kräver n log(n) operationer tar det istället runt sekunder, ungefär motsvarande en arbetsdag. Lars Larsson Algoritmer 23

29 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Antag att vi har en dator som klarar 1 operation på en µs och att vi har en lista som består av n = 10 9 element. Använder vi en dålig sorteringsalgoritm som kräver n 2 antal operationer, så tar det runt år att sortera listan. Använder vi dock en smart sorteringsalgoritm som kräver n log(n) operationer tar det istället runt sekunder, ungefär motsvarande en arbetsdag. Men, givetvis är datorer snabbare än så! Och de blir snabbare för varje år! Problemet kvarstår dock: med en tusen gånger snabbare dator tar det ändå 31 år i n 2 -fallet... Lars Larsson Algoritmer 23

30 för analys Varför analys genomförs Beräkningsbarhet och hanterbarhet Experimentell mätning Exekveringstidsexempel Nästa föreläsning, den som följer direkt efter denna, handlar tack och lov om ett matematiskt sätt att bestämma komplexiteten exakt, så vi slipper sådana problem! Lars Larsson Algoritmer 24

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 5 Algoritmer & Analys av Algoritmer Algoritmer Vad är det? Innehåll Mer formellt om algoritmer beräkningsbarhet Att beskriva algoritmer Analysera algoritmer Exekveringstid,

Läs mer

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen

Datastrukturer och algoritmer. Föreläsning 15 Inför tentamen Datastrukturer och algoritmer Föreläsning 15 Inför tentamen 1 Innehåll Kursvärdering Vi behöver granskare! Repetition Genomgång av gammal tenta 2 Första föreläsningen: målsättningar Alla ska höja sig ett

Läs mer

Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016

Algoritmanalys. Inledning. Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Informationsteknologi Malin Källén, Tom Smedsaas 1 september 2016 Algoritmanalys Inledning Exempel 1: x n När vi talade om rekursion presenterade vi två olika sätt att beräkna x n, ett iterativt: x n =

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att

Läs mer

Föreläsning 13 Innehåll

Föreläsning 13 Innehåll Föreläsning 13 Innehåll Exempel på problem där materialet i kursen används Hitta k största bland n element Histogramproblemet Schemaläggning PFK (Föreläsning 13) VT 2013 1 / 15 Hitta k största bland n

Läs mer

Datastrukturer och algoritmer (Python) Algoritmer och listor

Datastrukturer och algoritmer (Python) Algoritmer och listor Datastrukturer och algoritmer (Python) Algoritmer och listor 1 Innehåll Algoritmer och pseudokod som ett sätt att beskriva dem. Abstrakta datatypen lista och algoritmmönster för lista. Olika sätt att konstruera

Läs mer

Innehåll. Mina målsättningar. Vad krävs för att nå dit? Obligatoriska uppgifter. Websajten. Datastrukturer och algoritmer

Innehåll. Mina målsättningar. Vad krävs för att nå dit? Obligatoriska uppgifter. Websajten. Datastrukturer och algoritmer Innehåll Datastrukturer och algoritmer Föreläsning 1! Introduktion och begrepp Kurspresentation! - Målsättning! - Kursutvärdering! - Upplägg! - Översikt! Viktiga begrepp "1 "2 Mina målsättningar Alla ska

Läs mer

CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008)

CS - Computer science. Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) CS - Computer science Datateknik Informationsbehandling Datalogi Datavetenskap (ÅA 2008) Vad datateknik INTE är: Att studera datorer Att studera hur man skriver datorprogram Att studera hur man använder

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

Föreläsning 1. Introduktion. Vad är en algoritm?

Föreläsning 1. Introduktion. Vad är en algoritm? Några exempel på algoritmer. Föreläsning 1. Introduktion Vad är en algoritm? 1. Häll 1 dl havregryn och ett kryddmått salt i 2 1 2 dl kallt vatten. Koka upp och kocka gröten ca 3minuter. Rör om då och

Läs mer

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter

Läs mer

Datastrukturer. föreläsning 3. Stacks 1

Datastrukturer. föreläsning 3. Stacks 1 Datastrukturer föreläsning 3 Stacks 1 Abstrakta datatyper Stackar - stacks Köer - queues Dubbeländade köer - deques Vektorer vectors (array lists) All är listor men ger tillgång till olika operationer

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

1 Klasser och objektorientering Vad är objektorientering?

1 Klasser och objektorientering Vad är objektorientering? 1 Klasser och objektorientering Vad är objektorientering? Det finns olika synsätt på programmering, dessa olika synsätt kallas för paradigm. De vanligaste paradigmen är det imperativa/proceduriella, det

Läs mer

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet

Hitta k största bland n element. Föreläsning 13 Innehåll. Histogramproblemet Föreläsning 13 Innehåll Algoritm 1: Sortera Exempel på problem där materialet i kursen används Histogramproblemet Schemaläggning Abstrakta datatyper Datastrukturer Att jämföra objekt Om tentamen Skriftlig

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 7 Anton Grensjö grensjo@csc.kth.se 14 oktober 2015 Anton Grensjö ADK Övning 7 14 oktober 2015 1 / 28 Översikt Kursplanering Ö6: Algoritmkonstruktion F19:

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 6 Anton Grensjö grensjo@csc.kth.se 9 oktober 2015 Anton Grensjö ADK Övning 6 9 oktober 2015 1 / 23 Översikt Kursplanering Ö5: Grafalgoritmer och undre

Läs mer

Uppgift (poäng) 1 (2) 2 (3) 3 (4) 4 (4) 5 (3) 6 (4) 7 (6) 8 (6) 9 (8) Summa

Uppgift (poäng) 1 (2) 2 (3) 3 (4) 4 (4) 5 (3) 6 (4) 7 (6) 8 (6) 9 (8) Summa Lena Kallin Westin 2005-08-22 Institutionen för datavetenskap Umeå universitet TENTAMEN Uppgift (poäng) 1 (2) 2 (3) 3 (4) 4 (4) 5 (3) 6 (4) 7 (6) 8 (6) 9 (8) Summa Inlämnad Poäng Kurs : Programmeringsteknisk

Läs mer

Föreläsning 4: Poster

Föreläsning 4: Poster Föreläsning 4: Poster Följande är genomgånget: type Person_Type is Namn : String(30); Skonr : Float; Kon : Boolean; Diskussion runt detta med olika typer m.m. Har tagit upp vilka operationer man kan göra

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Dugga Datastrukturer (DAT036)

Dugga Datastrukturer (DAT036) Dugga Datastrukturer (DAT036) Duggans datum: 2012-11-21. Författare: Nils Anders Danielsson. För att en uppgift ska räknas som löst så måste en i princip helt korrekt lösning lämnas in. Enstaka mindre

Läs mer

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering 2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:

Läs mer

Introduktion till programmering SMD180. Föreläsning 9: Tupler

Introduktion till programmering SMD180. Föreläsning 9: Tupler Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]

Läs mer

Problemlösning och funktioner Grundkurs i programmering med Python

Problemlösning och funktioner Grundkurs i programmering med Python Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till

Läs mer

Sätt att skriva ut binärträd

Sätt att skriva ut binärträd Tilpro Övning 3 På programmet idag: Genomgång av Hemtalet samt rättning Begreppet Stabil sortering Hur man kodar olika sorteringsvilkor Inkapsling av data Länkade listor Användning av stackar och köer

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Fortsättningskurs i programmering F 2. Algoritmer i Programutveckling Hugo Quisbert 20130122. Problemexempel 1

Fortsättningskurs i programmering F 2. Algoritmer i Programutveckling Hugo Quisbert 20130122. Problemexempel 1 Fortsättningskurs i programmering F 2 Algoritmer i Programutveckling Hugo Quisbert 20130122 1 Exempel 1 Problemexempel 1 En souvenirbutik behöver ett datorprogram som omvandlar ett pris i svenska kronor

Läs mer

Programmering för språkteknologer II, HT2014. Rum

Programmering för språkteknologer II, HT2014. Rum Programmering för språkteknologer II, HT2014 Avancerad programmering för språkteknologer, HT2014 evelina.andersson@lingfil.uu.se Rum 9-2035 http://stp.ling.uu.se/~evelina/uv/uv14/pst2/ Idag - Sökalgoritmer

Läs mer

Datastrukturer och algoritmer. Föreläsning 4 Test, Stack och Kö

Datastrukturer och algoritmer. Föreläsning 4 Test, Stack och Kö Datastrukturer och algoritmer Föreläsning 4 Test, Stack och Kö 1 Innehåll Test Datatyperna Stack och kö Specifikation och Gränssnitt Konstruktion Tillämpning 2 Testa VIKTIGT! Test går att göra under många

Läs mer

GPT The bitter end. Förra veckan: Rekursiva funktioner som läggs in externa filer har stor räckvidd

GPT The bitter end. Förra veckan: Rekursiva funktioner som läggs in externa filer har stor räckvidd GPT The bitter end Förra veckan: Rekursiva funktioner som läggs in externa filer har stor räckvidd Förra gången: Du är fel och du skall bort! Denna gång: Repetition Tentorna Kursvärdering Sammanfattande

Läs mer

SORTERING OCH SÖKNING

SORTERING OCH SÖKNING Algoritmer och Datastrukturer Kary FRÄMLING Kap. 9, Sid 1 C-språket 2/Kary Främling v2000 och Göran Pulkkis v2003 SORTERING OCH SÖKNING Sortering är ett av de bästa exemplen på problem där valet av lösningsalgoritm

Läs mer

Visual Basic, en snabbgenomgång

Visual Basic, en snabbgenomgång Visual Basic, en snabbgenomgång Variabler och Datatyper En variabel är som en behållare. Olika behållare passar bra till olika saker. I Visual Basic(härefter VB) finns olika typer av behållare för olika

Läs mer

Algoritmer och interaktiv Python

Algoritmer och interaktiv Python Algoritmer och interaktiv Python Linda Mannila 11.9.2007 Denna föreläsning Räkneövningstider Algoritmer Interaktiv Python Datatyper Variabler Typning Repetition Vad vi än skall göra måste vi veta hur vi

Läs mer

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till:

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Länkade listor i C Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Dynamiskt allokerad array Arrayer allokerade på stacken Kan alltså användas till att

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 8 Anton Grensjö grensjo@csc.kth.se 10 november 2015 Anton Grensjö ADK Övning 8 10 november 2015 1 / 34 Översikt Kursplanering F21: Introduktion till komplexitet

Läs mer

Grunderna i stegkodsprogrammering

Grunderna i stegkodsprogrammering Kapitel 1 Grunderna i stegkodsprogrammering Följande bilaga innehåller grunderna i stegkodsprogrammering i den form som används under kursen. Vi kommer att kort diskutera olika datatyper, villkor, operationer

Läs mer

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408.

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Programmering B PHP DTR1208 - Programmering B 50 poäng Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Mål Mål för kursen (Skolverket) Kursen skall ge fördjupade teoretiska

Läs mer

Program & programmering

Program & programmering Program & programmering Vad är program? Satser och instruktioner, toggla igenom exempel Program på olika nivåer, för olika maskiner, för olika saker Tolka program; kompilator, intepretator, binärbytekod,

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {

Läs mer

Föreläsning 2 Programmeringsteknik och C DD1316

Föreläsning 2 Programmeringsteknik och C DD1316 Föreläsning 2 Programmeringsteknik och C DD1316 Föreläsning 2 Programmeringsteknik och C Datatyp Aritmetiska operatorer Omvandling av typer Reserverade ord Mikael Djurfeldt Logiska operatorer

Läs mer

Twincat: PLC Control

Twincat: PLC Control Dokument Förklaring Dat. Revision KI-221-003-003 Kom igång med trukturerad Text 080402 1.0 Twincat: PLC Control Kom igång med Strukturerad Text (ST) programmering 1. Kod exempel. a. Exemplen som demonstreras

Läs mer

Föreläsning 1: Introduktion till kursen

Föreläsning 1: Introduktion till kursen (18 januari 2015 F1.1 ) Föreläsning 1: Introduktion till kursen Lärare: Anna, Carl, Johan, Tom och ca 20 assistenter Registrering / avregistrering Undervisningsformer: föreläsningar och laborationer Kursmaterial

Läs mer

Digitalt lärande och programmering i klassrummet

Digitalt lärande och programmering i klassrummet Digitalt lärande och programmering i klassrummet Innehåll Vad är programmering och varför behövs det? Argument för (och emot) programmering Programmering i styrdokumenten Kort introduktion till programmering

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Datastrukturer D. Föreläsning 2

Datastrukturer D. Föreläsning 2 Datastrukturer D Föreläsning 2 Jämförelse mellan olika sorteringsalgoritmer n Selection sort T(n) Insertion sort T(n) 2 1 1 1 Merge sort T(n) 4 6 3-6 4-5 8 28 7-28 12-17 16 120 15-120 32-49 Analysis of

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar

Läs mer

Vad handlar kursen om? Algoritmer och datastrukturer. Vad handlar kursen om? Vad handlar kursen om?

Vad handlar kursen om? Algoritmer och datastrukturer. Vad handlar kursen om? Vad handlar kursen om? Algoritmer och datastrukturer Allmänt om kursen Kort javagrund repetition - Klasser, metoder, objekt och referensvariabler, - Hierarkiska klass strukturer - Arrayer och arrayer av objekt - Collection ramverket

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008

Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008 Lösningsförslag till tentamen i EDA011/EDA017 Programmeringsteknik för F, E, I, π och N 27 maj 2008 Christian 27 maj 2008 Uppgift 1 Flera av dem jag talade med efter tentan hade blivit förskräckta när

Läs mer

Problemlösning och algoritmer

Problemlösning och algoritmer Problemlösning och algoritmer Human Centered Systems Inst. för datavetenskap Linköpings universitet Översikt Stegvis förfining Pseudokod Flödesdiagram Dekomposition KISS regeln Procedurell dekomposition

Läs mer

Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten 2010. Programmering: att instruera en maskin att utföra en uppgift, kräver olika språk:

Programmering, grundkurs, 8.0 hp, Elektro, KTH, hösten 2010. Programmering: att instruera en maskin att utföra en uppgift, kräver olika språk: Föreläsning 1 OH: Övergripande information Programmering: att instruera en maskin att utföra en uppgift, kräver olika språk: * maskinspråk = ettor och nollor, kan bara en maskin förstå. * programmeringsspråk

Läs mer

Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock

Inledning. Vad är ett datorprogram, egentligen? Olika språk. Problemlösning och algoritmer. 1DV433 Strukturerad programmering med C Mats Loock Inledning Vad är ett datorprogram, egentligen? Olika språk Problemlösning och algoritmer 1 (14) Varför använda en dator? Genom att variera de program som styr datorn kan den användas för olika uppgifter.

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

Algoritmer. Två gränssnitt

Algoritmer. Två gränssnitt Objektorienterad programmering E Algoritmer Sökning Linjär sökning Binär sökning Tidsuppskattningar Sortering Insättningssortering Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk;

Läs mer

Föreläsning 2. Operativsystem och programmering

Föreläsning 2. Operativsystem och programmering Föreläsning 2 Operativsystem och programmering Behov av operativsystem En dator så som beskriven i förra föreläsningen är nästan oanvändbar. Processorn kan bara ges enkla instruktioner såsom hämta data

Läs mer

Objektorienterad programmering. Grundläggande begrepp

Objektorienterad programmering. Grundläggande begrepp Objektorienterad programmering Grundläggande begrepp Hur beskriver vi objekt? Vill ha en representationsoberoende beskrivning Abstrakta datatyper! Data Operationer Objekt Representerar en verklig eller

Läs mer

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9 Quicksort Koffman & Wolfgang kapitel 8, avsnitt 9 1 Quicksort Quicksort väljer ett spcifikt värde (kallat pivot), och delar upp resten av fältet i två delar: alla element som är pivot läggs i vänstra delen

Läs mer

Föreläsning REPETITION & EXTENTA

Föreläsning REPETITION & EXTENTA Föreläsning 18 19 REPETITION & EXTENTA Programmeringsteknik på 45 minuter Klasser och objekt Variabler: attribut, lokala variabler, parametrar Datastrukturer Algoritmer Dessa bilder är inte repetitionsbilder

Läs mer

Tentamen OOP 2015-03-14

Tentamen OOP 2015-03-14 Tentamen OOP 2015-03-14 Anvisningar Fråga 1 och 2 besvaras på det särskilt utdelade formuläret. Du får gärna skriva på bägge sidorna av svarsbladen, men påbörja varje uppgift på ett nytt blad. Vid inlämning

Läs mer

Lösningsförslag för tentamen i Datastrukturer (DAT037) från

Lösningsförslag för tentamen i Datastrukturer (DAT037) från Lösningsförslag för tentamen i Datastrukturer (DAT7) från --9 Nils Anders Danielsson. Träd- och köoperationerna har alla tidskomplexiteten O(log s), där s är antalet element i trädet/kön (notera att jämförelser

Läs mer

Planering Programmering grundkurs HI1024 HT 2014

Planering Programmering grundkurs HI1024 HT 2014 Planering Programmering grundkurs HI1024 HT 2014 Föreläsning V36 Föreläsning 1 Vad är programmering? Boken! Kurs-PM Vad är ett program? Kompilerande- Interpreterande Programmeringsmiljö Hello World! Att

Läs mer

i=1 c i = B och c i = a i eller c i = b i för 1 i n. Beskriv och analysera en algoritm som löser detta problem med hjälp av dynamisk programmering.

i=1 c i = B och c i = a i eller c i = b i för 1 i n. Beskriv och analysera en algoritm som löser detta problem med hjälp av dynamisk programmering. Algoritmer och Komplexitet ht 8 Övning 3+4 Giriga algoritmer och Dynamisk programmering Längsta gemensamma delsträng Strängarna ALGORITM och PLÅGORIS har den gemensamma delsträngen GORI Denlängsta gemensamma

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Grundläggande programmering med C# 7,5 högskolepoäng

Grundläggande programmering med C# 7,5 högskolepoäng Grundläggande programmering med C# 7,5 högskolepoäng Provmoment: TEN1 Ladokkod: NGC011 Tentamen ges för: Omtentamen DE13, IMIT13 och SYST13 samt öppen för alla (Ifylles av student) (Ifylles av student)

Läs mer

Objektorienterad Programmering (TDDC77)

Objektorienterad Programmering (TDDC77) Objektorienterad Programmering (TDDC77) Föreläsning VI: eclipse, felsökning, felhantering Ahmed Rezine IDA, Linköpings Universitet Hösttermin 2016 Outline Felhantering Eclipse Felsökning Command line argumenter

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,

Läs mer

Kompilering och exekvering. Föreläsning 1 Objektorienterad programmering DD1332. En kompilerbar och körbar java-kod. Kompilering och exekvering

Kompilering och exekvering. Föreläsning 1 Objektorienterad programmering DD1332. En kompilerbar och körbar java-kod. Kompilering och exekvering Föreläsning 1 Objektorienterad programmering DD1332 Introduktion till Java Kompilering, exekvering, variabler, styrstrukturer Kompilering och exekvering Ett program måste översättas till datorns språk

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15

TENTAMEN I PROGRAMSPRÅK -- DVG C kl. 08:15-13:15 TENTAMEN I PROGRAMSPRÅK -- DVG C01 140605 kl. 08:15-13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Bilaga A: BNF-definition Betygsgräns: Kurs: Max 60p, Med beröm godkänd 50p, Icke utan beröm godkänd

Läs mer

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2

Objektorienterad programmering E. Algoritmer. Telefonboken, påminnelse (och litet tillägg), 1. Telefonboken, påminnelse (och litet tillägg), 2 Objektorienterad programmering E Algoritmer Linjär sökning Binär sökning Tidsuppskattningar Föreläsning 9 Vad behöver en programmerare kunna? (Minst) ett programspråk; dess syntax och semantik, bibliotek

Läs mer

Tentamen ID1004 Objektorienterad programmering October 29, 2013

Tentamen ID1004 Objektorienterad programmering October 29, 2013 Tentamen för ID1004 Objektorienterad programmering (vilande kurs), 29 oktober 2013, 9-13 Denna tentamen examinerar 3.5 högskolepoäng av kursen. Inga hjälpmedel är tillåtna. Tentamen består av tre sektioner.

Läs mer

Algoritmer, datastrukturer och komplexitet

Algoritmer, datastrukturer och komplexitet Algoritmer, datastrukturer och komplexitet Övning 4 Anton Grensjö grensjo@csc.kth.se 25 september 215 Anton Grensjö ADK Övning 4 25 september 215 1 / 28 Översikt Kursplanering F9: Dynamisk programmering

Läs mer

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö

Föreläsning 4. Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Föreläsning 4 Kö Implementerad med array Implementerad med länkad lista Djup kontra bredd Bredden först mha kö Kö (ADT) En kö fungerar som en kö. Man fyller på den längst bak och tömmer den längst fram

Läs mer

GRUNDKURS I C-PROGRAMMERING

GRUNDKURS I C-PROGRAMMERING SAMMANSTÄLLNING 1 (9) Inst för informationsteknologi GRUNDKURS I C-PROGRAMMERING del av 1TD442 ALGORITMER OCH DATASTRUKTURER DV1/ 1IT022 PROGRAMKONSTRUKTION II Period 3, 2006 DV/IT Sammanfattning: Vad

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Innehåll Datastrukturer och algoritmer Föreläsning 2 Fält Specifikation, Konstruktion och Specifikation, Konstruktion Dynamiska resurser Länk Länkade celler 23 24 Konstruktion av Fält Fysisk datatyp i

Läs mer

Välkommen till. Datastrukturer, algoritmer och programkonstruktion. eller DOA

Välkommen till. Datastrukturer, algoritmer och programkonstruktion. eller DOA Välkommen till Datastrukturer, algoritmer och programkonstruktion eller DOA Jag: Christer Labbassar: Caroline: Johan: Agenda, före lunch Inledning om DOA-kursen Backspegel Mål Syfte Examination Om lärande

Läs mer

Föreläsning 13. Rekursion

Föreläsning 13. Rekursion Föreläsning 13 Rekursion Rekursion En rekursiv metod är en metod som anropar sig själv. Rekursion används som alternativ till iteration. Det finns programspråk som stödjer - enbart iteration (FORTRAN)

Läs mer

Dekomposition och dynamisk programmering

Dekomposition och dynamisk programmering Algoritmer, datastrukturer och komplexitet, hösten 2016 Uppgifter till övning 3 Dekomposition och dynamisk programmering Max och min med dekomposition I vektorn v[1..n] ligger n tal. Konstruera en dekompositionsalgoritm

Läs mer

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk Föreläsning 2 steknik DD1310 python introduktion Variabler Datatyp Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer funktioner betyder att instruera en dator Ett program

Läs mer

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal??

Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? Programmera i C Varför programmera i C när det finns språk som Simula och Pascal?? C är ett språk på relativt låg nivå vilket gör det möjligt att konstruera effektiva kompilatorer, samt att komma nära

Läs mer

Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006

Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006 Lösningsförslag till tentamen i EDA011, lördagen den 16 december 2006 Detta lösningsförslag är skrivet i stor hast, så det är möjligt att det innehåller en del slarvfel jag ber i så fall om ursäkt för

Läs mer

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk

Föreläsning 2 Programmeringsteknik DD1310. Programmering. Programspråk Föreläsning 2 steknik DD1310 Python introduktion Variabler Datatyper Aritmetiska operatorer av typer Reserverade ord logiska operatorer If-sats kommentarer betyder att instruera en dator Ett program är

Läs mer

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm.

Algoritmanalys. Genomsnittligen behövs n/2 jämförelser vilket är proportionellt mot n, vi säger att vi har en O(n) algoritm. Algoritmanalys Analys av algoritmer används för att uppskatta effektivitet. Om vi t. ex. har n stycken tal lagrat i en array och vi vill linjärsöka i denna. Det betyder att vi måste leta i arrayen tills

Läs mer

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15

ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B kl. 08:15 13:15 ORDINARIE TENTAMEN I DATASTRUKTURER OCH ALGORITMER DVG B03 160119 kl. 08:15 13:15 Ansvarig Lärare: Donald F. Ross Hjälpmedel: Inga. Algoritmerna finns i de respektive uppgifterna eller i bilogarna. ***

Läs mer

Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad

Föreläsningsanteckningar, Introduktion till datavetenskap HT S4 Datastrukturer. Tobias Wrigstad 1 Datatyper Tobias Wrigstad Det finns flera olika typer av (slags) data Olika datatyper har olika egenskaper. T.ex. är ett personnummer inte ett tal. (Den sista siffran skall stämma enligt den s.k. Luhnalgoritmen

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna!

Tentamen Programmeringsteknik II Skrivtid: Hjälpmedel: Java-bok (vilken som helst) Skriv läsligt! Använd inte rödpenna! Tentamen Programmeringsteknik II 2014-01-09 Skrivtid: 0800-1300 Hjälpmedel: Java-bok (vilken som helst) Tänk på följande Skriv läsligt! Använd inte rödpenna! Skriv bara på framsidan av varje papper. Börja

Läs mer

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska

Komponentvisa operationer,.-notation Multiplikation (*), division (/) och upphöj till (ˆ) av vektorer följer vanliga vektoralgebraiska Matlab-föreläsning 3 (4), 17 september, 2015 Innehåll Sekvenser (från förra föreläsningen) Upprepning med for-slingor och while-slingor Villkorssatser med if - then -else - Logik Sekvenser - repetion från

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } }

public static void mystery(int n) { if (n > 0){ mystery(n-1); System.out.print(n * 4); mystery(n-1); } } Rekursion 25 7 Rekursion Tema: Rekursiva algoritmer. Litteratur: Avsnitt 5.1 5.5 (7.1 7.5 i gamla upplagan) samt i bilderna från föreläsning 6. U 59. Man kan definiera potensfunktionen x n (n heltal 0)

Läs mer

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd

Programmeringsmetodik DV1 Programkonstruktion 1. Moment 8 Om abstrakta datatyper och binära sökträd Programmeringsmetodik DV1 Programkonstruktion 1 Moment 8 Om abstrakta datatyper och binära sökträd PK1&PM1 HT-06 moment 8 Sida 1 Uppdaterad 2005-09-22 Tabeller En viktig tillämpning är tabellen att ifrån

Läs mer

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet

Introduktionsföreläsning. Outline. Beräkningsvetenskap I. Sara Zahedi Hanna Holmgren. Institutionen för Informationsteknologi, Uppsala Universitet Lärare Introduktionsföreläsning Beräkningsvetenskap I Institutionen för Informationsteknologi, Uppsala Universitet Sara Zahedi Hanna Holmgren 29 oktober, 2012 Outline 1 2 Information om kursen 3 Introduktion

Läs mer

Föreläsning 1: Intro till kursen och programmering

Föreläsning 1: Intro till kursen och programmering Föreläsning 1: Intro till kursen och programmering Kursens hemsida http:www.it.uu.se/edu/course/homepage/prog1/vt11 Studentportalen http://www.studentportalen.uu.se Lärare: Tom Smedsaas, Tom.Smedsaas@it.uu.se

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 1 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 1 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 1 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Kursinformation Imperativa delen av

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

Språket Python - Del 1 Grundkurs i programmering med Python

Språket Python - Del 1 Grundkurs i programmering med Python Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 11 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 11 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 11 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Designmönster Adapter, Factory, Iterator,

Läs mer

Föreläsning 3.1: Datastrukturer, en översikt

Föreläsning 3.1: Datastrukturer, en översikt Föreläsning.: Datastrukturer, en översikt Hittills har vi i kursen lagt mycket fokus på algoritmiskt tänkande. Vi har inte egentligen ägna så mycket uppmärksamhet åt det andra som datorprogram också består,

Läs mer