Matematik för språkteknologer

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Matematik för språkteknologer"

Transkript

1 1 / 21 Matematik för språkteknologer 3.3 Kontext-fria grammatiker (CFG) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014

2 2 / 21 Dagens saker Kontext-fria grammatiker (CFG). CFG kan definiera alla de språk som reguljära uttryck/ändliga automater kan definiera. CFG är mer kraftfulla än reguljära uttryck/ändliga automater. CFG har många tillämpningar både inom språkvetenskap och datavetenskap, både för naturliga och artificiella språk.

3 3 / 21 Kontextfri grammatik formellt En kontextfri grammatik (CFG) är en 4-tupel (V,Σ,R,), där V är en ändlig mängd. De icke-terminala symbolerna. Σ är en ändlig mängd. De terminala symbolerna. Σ och V är disjunkta. R är en ändlig relation mellan V och (V Σ). (R regler.) Relationssymbol. V är startsymbol.

4 4 / 21 CFG enkelt exempel G = (V,Σ,R,), där V = {} Σ = {a,b} R = { λ, ab} = Mer om denna snart.

5 5 / 21 CFG annat exempel G = (V,Σ,R,), där V = {JJ,NN,NP,,VB,VP}. Σ = {matematiska, studenter, texter, älskar} R = { NP NN, JJ matematiska, NP JJ NN, NN studenter, NP VP, NN texter, VP VP NP, VB älskar } =.

6 6 / 21 Härledning från G NP VP NN VB NP studenter älskar JJ NN matematiska texter

7 7 / 21 Reglerna för omskrivning Givet en CFG G = (V,Σ,R,) trängen kan härledas. Om en sträng β som innehåller åtminstone en icketerminal symbol A kan härledas och A γ ingår i R, så kan vi härleda strängen där en förekomst av A i β ersatts med γ. G definierar det språk som består av alla strängar över Σ som kan härledas. (På vägen härleder vi typiskt andra strängar över (V Σ).)

8 8 / 21 En härledning motsvarande trädet NP VP NN VP studenter VP studenter VB NP studenter älskar NP studenter älskar JJ NN studenter älskar matematiska NN studenter älskar matematiska texter Fångar aspekter av ordning som inte ett träd gör.

9 9 / 21 En annan härledning NP VP NP VB NP NP VB JJ NN NP VB JJ texter NP VB matematiska texter NP älskar matematiska texter NN älskar matematiska texter studenter älskar matematiska texter killnad?

10 10 / 21 Grammatik för {a n b n n 0} CFG G = (V,Σ,R,) V = {} Σ = {a,b} R = { λ, ab} = lutsats: pråket {a n b n n 0} kan definieras av en CFG. Med andra ord: Det är ett kontextfritt språk.

11 11 / 21 Exempelträd (4 st) a b a b a b a b a b a b λ λ λ λ {a n b n n 0} = {λ,ab,aabb,aaabbb,aaaabbbb,...}

12 12 / 21 Varje reguljärt språk är ett CF språk Varje reguljärt uttryck motsvarar en ekvivalent ändlig automat. (Förra gången.) Reguljärt uttryck och ändlig automater ekvivalenta. (Vi har sett halva beviset.) Nu: Varje ändlig automat motsvarar en ekvivalent CFG. edan: Men inte vice versa. Klassen CF språk är större än klassen reguljära språk.

13 13 / 21 Varje reguljärt språk är ett CF språk En automat A kan översättas till en CFG G så här: G s icketerminaler = A s tillstånd. G s startsymbol = A s starttillstånd. En regel s as i G för varje a-övergång från s till s i A. En regel s s i G för varje λ-övergång från s till s i A. En regel s λ i G för varje accepterande tillstånd s i A.

14 14 / 21 Automaten för ordformerna hos apa a start s 0 a s 1 p s 2 s 3 n s s s 4 s 5 a o s 6 s s 8 r s 7 n

15 15 / 21 Motsvarande CFG Grammatiken har 9 icketerminaler, s 0,...,s 8. tartsymbolen är s 0. Reglerna i grammatiken ser ut så här: s 0 as 1 s 1 ps 2 s 2 as 3 s 2 os 6 s 3 ss 4 s 3 ns 5 s 5 ss 4 s 6 rs 7 s 7 ss 4 s 7 ns 8 s 8 as 5 s 3 λ s 4 λ s 5 λ s 7 λ

16 16 / 21 Härledningsexempel s 0 as 1 aps 2 apos 6 apors 7 (aporλ = apor) aporns 8 apornas 5 (apornaλ = aporna) apornass 4 apornasλ = apornas Σ Σ Σ

17 17 / 21 Några CF språk är inte reguljära pråket {a n b n n 0} är (som vi såg) ett kontextfritt språk. pråket {a n b n n 0} kan inte definieras av en ändlig automat. Bevis via pumpning.

18 18 / 21 Pumplemma Om en automat accepterar en viss sträng z. och z p, där p är antalet tillstånd i automaten, så måste det finnas en cykel i automaten och vi kan dela in z i tre delar u,v,w v start u w och denna cykel kan tas flera gånger även uvvw, uvvvw, uvvvvw... måste accepteras.

19 19 / 21 Bevis pråket {a n b n n 0} kan inte definieras av en ändlig automat. Indirekt bevis: vi antar att det finns en ändlig automat M som accepterar {a n b n n 0}. Detta har orimliga konsekvenser. Vi kallar antalet tillstånd i M för p. Vi beaktar en sträng z = a k b k, där 2k p. Pumplemmat kan tillämpas: Om z = a k b k = uvw, så accepterar automaten även uvvw. Men uvvw {a n b n n 0}.

20 20 / 21 uvvw {a n b n n 0} varför? Om z = a k b k = uvw, så accepterar automaten även uvvw, enligt pumplemmat. Tre möjliga fall: Om v {a}, så innehåller uvvw fler a än b. Om v {b}, så innehåller uvvw fler b än a. Annars v = a x b y, x > 0, och y > 0, och då innehåller uvvw en sekvens b av omgiven av a. I alla tre fall: uvvw {a n b n n 0}. Överordnad slutsats: {a n b n n 0} är ett CF språk som inte kan definieras av en ändlig automat.

21 21 / 21 ammanfattning Ändlig-automat-språk och reguljära språk är samma klass av språk. (Förra gången.) Alla reguljära språk är också CF språk. Det finns CF språk som inte är reguljära. (CF språk är alltså en överordnad klass.) (Ingår i Chomskyhierarkin med fyra typer av språk: reguljära är typ 3 och CF typ 2. Och motsvarande fyra typer av grammatiker och fyra typer av automater.)

Datorlingvistisk grammatik

Datorlingvistisk grammatik Datorlingvistisk grammatik Kontextfri grammatik, m.m. http://stp.lingfil.uu.se/~matsd/uv/uv11/dg/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2011 Denna serie Formella grammatiker,

Läs mer

Automatateori (2) Idag: Sammanhangsfria språk. Dessa kan uttryckas med Grammatik PDA

Automatateori (2) Idag: Sammanhangsfria språk. Dessa kan uttryckas med Grammatik PDA Automatateori (2) Idag: Sammanhangsfria språk Dessa kan uttryckas med Grammatik PDA Grammatik = språkregler Ett mer kraftfullt sätt att beskriva språk. En grammatik består av produktionsregler (andra ord

Läs mer

Lite mer psykologi. L2: Automater, Sökstrategier. Top-down. Kimballs sju principer

Lite mer psykologi. L2: Automater, Sökstrategier. Top-down. Kimballs sju principer Lite mer psykologi Perception: yntaktiskt bearbetning: emantisk bearbetning PERON() & LIKE(, y) L2: Automater, ökstrategier Korttidsminnet D4510 Parsningsalgoritmer Höstterminen 200 Långtidsminne Anders

Läs mer

Kontextfria grammatiker

Kontextfria grammatiker Kontextfria grammatiker Kontextfria grammatiker 1 Kontextfria grammatiker En kontextfri grammatik består av produktioner (regler) på formen S asb S T T # Vänsterledet består av en icke-terminal (variabel)

Läs mer

Idag: Reguljära språk Beskrivs av Reguljära uttryck DFA Grammatik

Idag: Reguljära språk Beskrivs av Reguljära uttryck DFA Grammatik Idag: Reguljära språk Beskrivs av Reguljära uttryck DFA Grammatik Först några definitioner: Alfabet = en ändlig mängd av tecken. Ex. {0, 1}, {a,b}, {a, b,..., ö} Betecknas ofta med symbolen Σ Sträng =

Läs mer

Föreläsning 2 5/6/08. Reguljära uttryck 1. Reguljära uttryck. Konkatenering och Kleene star. Några operationer på språk

Föreläsning 2 5/6/08. Reguljära uttryck 1. Reguljära uttryck. Konkatenering och Kleene star. Några operationer på språk Reguljära uttryck Ändliga automater och reguljära uttryck Språk som är och inte är reguljära Konkatenering och Kleene star Två strängar u och v (på alfabetet )kan konkateneras till strängen uv Givet två

Läs mer

Innehåll. Syntax. Kan allt delas upp i små delar? Varför är syntax fascinerande? Vad är syntax? Olika språksyn

Innehåll. Syntax. Kan allt delas upp i små delar? Varför är syntax fascinerande? Vad är syntax? Olika språksyn Syntax Språkteknologi DH2418 Ola Knutsson knutsson@csc.kth.se Innehåll Grundläggande begrepp Två perspektiv på syntax Frasstrukturgrammatiker Olika frastyper och regler för dessa Dependensgrammatik Olika

Läs mer

DAB760: Språk och logik

DAB760: Språk och logik DAB76: Språk och logik /4: Finita automater och -7 reguljära uttryck Leif Grönqvist (leif.gronqvist@msi.vxu.se) Växjö Universitet (MSI) GSLT (Sveriges nationella forskarskola i språkteknologi) Göteborg

Läs mer

Programmering för språkteknologer II. OH-serie: Ändliga automater. reguljära uttryck i Java. Deterministiska ändliga automater

Programmering för språkteknologer II. OH-serie: Ändliga automater. reguljära uttryck i Java. Deterministiska ändliga automater Programmering för språkteknologer II OH-serie: ändliga automater reguljära uttryck i Java Mats Dahllöf Ändliga automater Abstrakt maskin, tillståndsmaskin, transitionssystem. (Den enklaste typ man brukar

Läs mer

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013

Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Författare: Marco Kuhlmann 2013 4 Grafer En graf är en struktur av prickar förbundna med streck.

Läs mer

729G09 Språkvetenskaplig databehandling

729G09 Språkvetenskaplig databehandling 729G09 Språkvetenskaplig databehandling Modellering av frasstruktur Lars Ahrenberg 2015-05-04 Plan Formell grammatik språkets oändlighet regler Frasstrukturgrammatik Kontextfri grammatik 2 Generativ grammatik

Läs mer

PROV I MATEMATIK Automatateori och formella språk DV1 4p

PROV I MATEMATIK Automatateori och formella språk DV1 4p UPPSALA UNIVERSITET Matematiska institutionen Salling (070-6527523) PROV I MATEMATIK Automatateori och formella språk DV1 4p 19 mars 2004 SKRIVTID: 15-20. POÄNGGRÄNSER: 18-27 G, 28-40 VG. MOTIVERA ALLA

Läs mer

729G09 Språkvetenskaplig databehandling

729G09 Språkvetenskaplig databehandling 729G09 Språkvetenskaplig databehandling Föreläsning 2, 729G09, VT15 Reguljära uttryck Lars Ahrenberg 150409 Plan för föreläsningen Användning av reguljära uttryck Formella språk Reguljära språk Reguljära

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2013 1 Inledning 2 Satslogik Inledning Satslogiska uttryck Resonemang och härledningar

Läs mer

Ord, lexem, ordformer (repetition) Ord och morfem (repetition) Fraser/konstituenter (repetition) Grammatisk analys i språkteknologin

Ord, lexem, ordformer (repetition) Ord och morfem (repetition) Fraser/konstituenter (repetition) Grammatisk analys i språkteknologin Datorlingvistisk grammatik OH-serie 1: introduktion http://stp.lingfil.uu.se/~matsd/uv/uv09/dlg/ LEKTION 1: innehåll Kursformalia Grammatik formell grammatik. Metod och data (lite). Språkteknologisk relevans.

Läs mer

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står skrivna: Oändligt

Läs mer

Kontextfri grammatik (CFG)

Kontextfri grammatik (CFG) Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem

Läs mer

FL 6: Definite Clause Grammars (kap. 7)

FL 6: Definite Clause Grammars (kap. 7) FL 6: Definite Clause Grammars (kap. 7) Teori Introducerar kontextfria grammatikor och några besläktade begrepp Introducerar definite clause - grammatikor, Prologs sätt att jobba med kontextfria grammatikor

Läs mer

K2 Något om modeller, kompakthetssatsen

K2 Något om modeller, kompakthetssatsen KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och fullständighetssatsen

Läs mer

Partiell parsning Parsning som sökning

Partiell parsning Parsning som sökning Språkteknologi: Parsning Parsning - definition Parsningsbegrepp Chartparsning Motivering Charten Earleys algoritm (top-down chartparsning) Partiell parsning (eng. chunking) med reguljära uttryck / automater

Läs mer

Labb 1 - Textbearbetning med reguljära uttryck. Formella språk. Definitioner. Chomskyhierarkin. Formella språk. Formella språk

Labb 1 - Textbearbetning med reguljära uttryck. Formella språk. Definitioner. Chomskyhierarkin. Formella språk. Formella språk Labb 1 - Textbearbetning med reguljära uttryck Textbearbetning: Dela upp en text i meningar Hitta alla namn i en text Hitta adjektiv i superlativ Lektion reguljära uttryck re modulen i Python Formella

Läs mer

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg

Föreläsning 5: Modellering av frasstruktur. 729G09 Språkvetenskaplig databehandling Lars Ahrenberg Föreläsning 5: Modellering av frasstruktur 729G09 Språkvetenskaplig databehandling Lars Ahrenberg 2014-05-05 1 Översikt Introduktion generativ grammatik och annan syntaxforskning Att hitta mönster i satser

Läs mer

Alfabeten, strängar och språk. String

Alfabeten, strängar och språk. String Alfabeten, strängar och språk Objektorienterad modellering och diskreta strukturer / design Språk och reguljära uttryck Ett alfabet är en ändlig icketom mängd vars element kallas symboler. Lennart Andersson

Läs mer

MÄLARDALENS HÖGSKOLA. CD5560 Formella språk, automater och beräkningsteori. Användarmanual. för simulatorn JFLAP

MÄLARDALENS HÖGSKOLA. CD5560 Formella språk, automater och beräkningsteori. Användarmanual. för simulatorn JFLAP MÄLARDALENS HÖGSKOLA CD5560 Formella språk, automater och beräkningsteori Användarmanual för simulatorn JFLAP Innehållsförteckning Att komma igång med JFLAP... 3 Att köra en sträng... 5 Att köra flera

Läs mer

Matematik för språkteknologer

Matematik för språkteknologer 1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos

Läs mer

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen.

Föreläsning 9: Turingmaskiner och oavgörbarhet. Turingmaskinen. Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Föreläsning 9: Turingmaskiner och oavgörbarhet Turingmaskinen Den maximalt förenklade modell för beräkning vi kommer använda är turingmaskinen. Data är ett oändligt långt band där nollor och ettor står

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik 729G09 Språkvetenskaplig databehandling (2016) Frasstrukturgrammatik Marco Kuhlmann Institutionen för datavetenskap Korpusdata 1 Folkpensionen folkpension NOUN 2 dobj 2 får få VERB 0 root 3 man man PRON

Läs mer

1 Inledning. 1.1 Programförklaring. 1.2 Innehållet. 1.3 Beteckningskonventioner - 1 -

1 Inledning. 1.1 Programförklaring. 1.2 Innehållet. 1.3 Beteckningskonventioner - 1 - - 1-1 Inledning 1.1 Programförklaring Detta kompendium är utvecklat för en introduktionskurs i datalingvistik som vänder sig till studenter med tidigare kännedom om grundläggande lingvistik och datavetenskap.

Läs mer

7, Diskreta strukturer

7, Diskreta strukturer Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner

Läs mer

Modellering med kontextfri grammatik Kontextfri grammatik - definition En enkel kontextfri grammatik Klasser av formella språk

Modellering med kontextfri grammatik Kontextfri grammatik - definition En enkel kontextfri grammatik Klasser av formella språk Modellering med kontextfri grammatik Kontextfri grammatik - definition Kontextfri grammatik (CFG) definition modellering av frasstruktur andra exempel Dependensgrammatik Trädbanker Varianter av kontextfri

Läs mer

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder Mängder Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Grundbegrepp: Mängder och element Delmängder Operationer på mängder: Union och snitt Differens och komplement

Läs mer

Tekniker för storskalig parsning

Tekniker för storskalig parsning Tekniker för storskalig parsning Grundläggande begrepp och metoder Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Tekniker för storskalig parsning

Läs mer

Våra vanligaste fördelningar

Våra vanligaste fördelningar Sida Våra vanligaste fördelningar Matematisk statistik för D3, VT Geometrisk fördelning X är geometriskt fördelad med parameter p, X Geo(p), om P (X = k) = ( p) k p P (X k) = ( p) k för k =,,... Beskriver

Läs mer

Automater. Matematik för språkteknologer. Mattias Nilsson

Automater. Matematik för språkteknologer. Mattias Nilsson Automater Matematik för språkteknologer Mattias Nilsson Automater Beräkningsmodeller Beräkning - (eng) Computation Inom automatateorin studeras flera olika beräkningsmodeller med olika egenskaper och olika

Läs mer

SPRÅKTEKNOLOGIPROGRAMMET

SPRÅKTEKNOLOGIPROGRAMMET SPRÅKTEKNOLOGIPROGRAMMET Kandidatprogram, 3 år, 180 hp. Mats Dahllöf Institutionen för lingvistik och filologi Augusti 2012 1 Språkteknologer arbetar med... att utveckla, utvärdera och underhålla system

Läs mer

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet

Formell logik Kapitel 1 och 2. Robin Stenwall Lunds universitet Formell logik Kapitel 1 och 2 Robin Stenwall Lunds universitet Kapitel 1: Atomära satser Drömmen om ett perfekt språk fritt från vardagsspråkets mångtydighet och vaghet (jmf Leibniz, Russell, Wittgenstein,

Läs mer

Definition. Mängden av reguljära uttryck på alfabetet Σ definieras av. om α och β är reguljära uttryck så är (α β) ett reguljärt uttryck

Definition. Mängden av reguljära uttryck på alfabetet Σ definieras av. om α och β är reguljära uttryck så är (α β) ett reguljärt uttryck Lunds tekniska högskola Datavetenskap Lennart Andersson Föreläsningsanteckningar EDAF10 6 Reguljära uttryck I unix-skal finns ange enkla mönster för filnamn med * och?. En del program, t ex emacs, egrep

Läs mer

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati Formell Verifiering Hur vet man att ett system fungerar korrekt? Lisa Kaati Innehåll Motivering Formell verifiering Modellkontroll (model checking) Verifiering av kod Forskning Dator system finns överallt

Läs mer

Matematiska metoder för språkvetare, 7,5 hp

Matematiska metoder för språkvetare, 7,5 hp Vårterminen 2017 Kurskod: LIN420 Matematiska metoder för språkvetare, 7,5 hp Kursbeskrivning Version: 19/3 2017 Institutionen för lingvistik, Avdelningen för datorlingvistik Undervisande lärare Kursansvarig

Läs mer

Innehåll. Syntax. Kan allt delas upp i små delar? Varför är syntax fascinerande? Olika språksyn. Vad är syntax?

Innehåll. Syntax. Kan allt delas upp i små delar? Varför är syntax fascinerande? Olika språksyn. Vad är syntax? Syntax Språkteknologi DH2418 Ola Knutsson knutsson@csc.kth.se Grundläggande begrepp Två perspektiv på syntax Frasstrukturgrammatiker Innehåll Olika frastyper och regler för dessa Dependensgrammatik Olika

Läs mer

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET

6 Formella språk. Matematik för språkteknologer (5LN445) UPPSALA UNIVERSITET UPPSALA UNIVERSITET Mtemtik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 Förfttre: Mrco Kuhlmnn 2013 (mindre revision Mts Dhllöf 2014) 6 Formell språk Det mänsklig språket

Läs mer

SPRÅKTEKNOLOGIPROGRAMMET (STP)

SPRÅKTEKNOLOGIPROGRAMMET (STP) SPRÅKTEKNOLOGIPROGRAMMET (STP) Kandidatprogram, 3 år, 180 hp. Institutionen för lingvistik och filologi 1 Utbildningsprogram Kunskapsmässig progression och yrkesmässig relevans. Antagning till ett paket

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språktekologer Språktekologi och grammatiska begrepp http://stp.ligfil.uu.se/~matsd/uv/uv11/gfst/ Mats Dahllöf Istitutioe för ligvistik och filologi November 2011 Dea serie Frasstrukturaalys

Läs mer

DD1361 Programmeringsparadigm. Formella Språk & Syntaxanalys. Per Austrin

DD1361 Programmeringsparadigm. Formella Språk & Syntaxanalys. Per Austrin DD1361 Programmeringsparadigm Formella Språk & Syntaxanalys Föreläsning 4 Per Austrin 2015-11-20 Idag Rekursiv medåkning, fortsättning Olika klasser av språk och grammatiker Parsergeneratorer Sammanfattning

Läs mer

Föreläsning 6: Induktion

Föreläsning 6: Induktion Föreläsning 6: Induktion Induktion är en speciell inferensregel. En mängd är välordnad om varje delmängd har ett minsta element Exempel: N är välordnad (under ) Låt P(x) vara ett predikat över en välordnad

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 3: Bevissystem, Hilbertsystem Henrik Björklund Umeå universitet 8. september, 2014 Bevissystem och Hilbertsystem Teorier och deduktionsproblemet Axiomscheman

Läs mer

9. Predikatlogik och mängdlära

9. Predikatlogik och mängdlära Objektorienterad modellering och diskreta strukturer 9. Predikatlogik och mängdlära Sven Gestegård Robertz Datavetenskap, LTH 2014 Rekaputilation Vi har talat om satslogik naturlig härledning predikatlogik

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2015-09-28 1 / 8 Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man granskar och opponerar på en annan kursdeltagares lösning.

Läs mer

DD1350 Logik för dataloger

DD1350 Logik för dataloger DD1350 Logik för dataloger Fö 8 Axiomatiseringar 1 Modeller och bevisbarhet Sedan tidigare vet vi att: Om en formel Φ är valid (sann i alla modeller) så finns det ett bevis för Φ i naturlig deduktion.

Läs mer

TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000

TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Lars Ahrenberg, sid 1(5) TENTAMEN TDDA94 LINGVISTIK, 3 poäng tisdag 19 december 2000 Inga hjälpmedel är tillåtna. Maximal poäng är 36. 18 poäng ger säkert godkänt. Del A. Besvara alla frågor i denna del.

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det finns inget så praktiskt som en bra teori" November 2011 Bakgrund Introduktion till test Introduktion Formulera lämplig hypotes Bestäm en testvariabel Bestäm en beslutsregel Fatta ett beslut När det

Läs mer

Hur bestämmer man vilka fonem ett språk har? Fonologi. Kommutationstest. Hur bestämmer man vilka fonem ett språk har?

Hur bestämmer man vilka fonem ett språk har? Fonologi. Kommutationstest. Hur bestämmer man vilka fonem ett språk har? Fonologi Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Hur bestämmer man vilka fonem ett språk har? Hur bestämmer man vilka fonem ett språk har? Fonem = minsta betydelseskiljande ljudenhet i

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Matematik för språkteknologer

Matematik för språkteknologer 1 / 23 Matematik för språkteknologer Mängdlära Mats Dahllöf Institutionen för lingvistik och filologi Januari 2015 Mängdlära matematik för kategorier En mängd svarar mot en helt godtycklig kategori. Elementrelationen

Läs mer

Ord och morfologi. Morfologi

Ord och morfologi. Morfologi Ord och morfologi DD2418 Språkteknologi Johan Boye Morfologi Läran om hur orden är uppbyggda av mindre betydelsebärande enheter som kallas morfem. Morfem tillhör en av två klasser: stam: den grundläggande

Läs mer

Semantik och pragmatik (Serie 3)

Semantik och pragmatik (Serie 3) Semantik och pragmatik (Serie 3) Satser och logik. Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 37 Logik: språk tanke (Saeed kapitel 4.) Satser uttrycker (ofta) tankar. Uttrycksrikedom

Läs mer

ARITMETIK 3. Stockholms universitet Matematiska institutionen Avd matematik Torbjörn Tambour

ARITMETIK 3. Stockholms universitet Matematiska institutionen Avd matematik Torbjörn Tambour Stockholms universitet Matematiska institutionen Avd matematik Torbjörn Tambour ARITMETIK 3 I det här tredje aritmetikavsnittet ska vi diskutera en följd av heltal, som kallas Fibonaccis talföljd. Talen

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter

Kimmo Eriksson 12 december 1995. Att losa uppgifter av karaktaren \Bevisa att... uppfattas av manga studenter Kimmo Eriksson 12 december 1995 Matematiska institutionen, SU Att genomfora och formulera ett bevis Att losa uppgifter av karaktaren \Bevisa att..." uppfattas av manga studenter som svart. Ofta ar det

Läs mer

Fonologi. Kommutationstest. Minimala par. Hur bestämmer man vilka fonem ett språk har?

Fonologi. Kommutationstest. Minimala par. Hur bestämmer man vilka fonem ett språk har? Hur bestämmer man vilka fonem ett språk har? Fonologi Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se (Morfem = minsta betydelsebärande enhet i ett språk) Fonem = minsta betydelseskiljande ljudenhet

Läs mer

Konvergens och Kontinuitet

Konvergens och Kontinuitet Kapitel 7 Konvergens och Kontinuitet Gränsvärdesbegreppet är väldigt centralt inom matematik. Som du förhoppningsvis kommer ihåg från matematisk analys så definieras tex derivatan av en funktion f : R

Läs mer

Grammatik i Samtal I. Mathias Broth Lingvistik (729G08) ht -12

Grammatik i Samtal I. Mathias Broth Lingvistik (729G08) ht -12 Grammatik i Samtal I Mathias Broth Lingvistik (729G08) ht -12 1 Per Linell Språkande. Samtal, språk och grammatik 2 Ett dialogiskt perspektiv på språk och språkande: människor är sociala varelser betonar

Läs mer

Lite om bevis i matematiken

Lite om bevis i matematiken Matematik, KTH Bengt Ek februari 2013 Material till kursen SF1662, Diskret matematik för CL1: Lite om bevis i matematiken Inledning Bevis är centrala i all matematik Utan (exakta definitioner och) bevis

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

4.2.1 Binomialfördelning

4.2.1 Binomialfördelning Ex. Kasta en tärning. 1. Vad är sannolikheten att få en 6:a? 2. Vad är sannolikheten att inte få en 6:a? 3. Vad är sannolikheten att få en 5:a eller 6:a? 4. Om vi kastar två gånger, vad är då sannolikheten

Läs mer

Övning 5 - Tillämpad datalogi 2013

Övning 5 - Tillämpad datalogi 2013 /afs/nada.kth.se/home/w/u1yxbcfw/teaching/13dd1320/exercise5/exercise5.py October 1, 2013 1 0 # coding : latin Övning 5 - Tillämpad datalogi 2013 Automater, reguljära uttryck, syntax Sammanfattning Idag

Läs mer

Matematiska definitioner i gymnasie- & universitetsläromedel

Matematiska definitioner i gymnasie- & universitetsläromedel Matematiska definitioner i gymnasie- & universitetsläromedel http://www.runforshelta.com/2011/01/31/rosta-pa-bast-datum-for-andralangdagen-2011/ Ett steg mot bättre förståelse av övergångsproblematiken

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Logik och bevisteknik lite extra teori

Logik och bevisteknik lite extra teori Logik och bevisteknik lite extra teori Inger Sigstam 2011-04-26 1 Satslogik (eng: propositional logic) 1.1 Språket Alfabetet består av följande symboler: satssymbolerna p 0, p 1, p 2,.... konnektiverna,,,,.

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

Semantik och pragmatik (serie 5)

Semantik och pragmatik (serie 5) Semantik och pragmatik (serie 5) (Predikat)logik Mängdlära överkurs (och repetition för en del). Mats Dahllöf Institutionen för lingvistik och filologi April 2015 1 / 41 Korsning av två egenskaper E 1

Läs mer

AUBER 95 9 jan LÖSNINGAR STEG 1:

AUBER 95 9 jan LÖSNINGAR STEG 1: AUBER 95 9 jn AR. Den finit utomten nedn ccepterr ett språk L över = {, }. A B ε Konstruer ) ett reguljärt uttryck för L. ) L = ( ( ) ) = ( ) ) en reguljär grmmtik för L S A S A c) en miniml DFA för L.

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

i=1 c i = B och c i = a i eller c i = b i för 1 i n. Beskriv och analysera en algoritm som löser detta problem med hjälp av dynamisk programmering.

i=1 c i = B och c i = a i eller c i = b i för 1 i n. Beskriv och analysera en algoritm som löser detta problem med hjälp av dynamisk programmering. Algoritmer och Komplexitet ht 8 Övning 3+4 Giriga algoritmer och Dynamisk programmering Längsta gemensamma delsträng Strängarna ALGORITM och PLÅGORIS har den gemensamma delsträngen GORI Denlängsta gemensamma

Läs mer

Syntax S NP VP. AdjP. sleep. ideas. DH2418 Språkteknologi Johan Boye. Syntax

Syntax S NP VP. AdjP. sleep. ideas. DH2418 Språkteknologi Johan Boye. Syntax Syntax S NP VP AdjP NP JJ AdjP JJ NP N V sleep AdvP Adv Colorless green ideas furiously DH2418 Språkteknologi Johan Boye Syntax Frågor vi vill besvara: Vilka sekvenser av ord tillhör språket? Vilka relationer

Läs mer

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1.

Logisk semantik I. 1 Lite om satslogik. 1.1 Konjunktioner i grammatisk bemärkelse. 1.2 Sant och falskt. 1.3 Satssymboler. 1. UPPSALA UNIVERSITET Datorlingvistisk grammatik I Institutionen för lingvistik och filologi Oktober 2007 Mats Dahllöf http://stp.ling.uu.se/ matsd/uv/uv07/dg1/ Logisk semantik I 1 Lite om satslogik 1.1

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:

Läs mer

MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken

MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken Explorativ övning LMA100 ht 2002 MATEMATIS INDUTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför

Läs mer

lex källkod lex.l lexkompilator lex.yy.c C- kompilator lex.yy.c a.out sekvens av tokens a.out input specifikation av tokens mha reguljära uttryck

lex källkod lex.l lexkompilator lex.yy.c C- kompilator lex.yy.c a.out sekvens av tokens a.out input specifikation av tokens mha reguljära uttryck input läs tecken stoppa tillbaka ett tecken skicka ett token och dess attribut parser Eliminera white space och kommentarer Gruppera lästa tecken till tokens identifierare, nyckelord, numeriska konstanter,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 8: Predikatlogik Henrik Björklund Umeå universitet 2. oktober, 2014 Första ordningens predikatlogik Signaturer och termer Första ordningens predikatlogik Formler

Läs mer

BER AKNINGSBARHET F OR DATALOGER. Kent Petersson. Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden

BER AKNINGSBARHET F OR DATALOGER. Kent Petersson. Institutionen for Datavetenskap Goteborgs Universitet / Chalmers Goteborg, Sweden BER AKNINGSBARHET F OR DATALOGER Fran till P Kent Petersson Institutionen for Datavetenskap Goteborgs Universitet / Chalmers 412 96 Goteborg, Sweden ii Kent Petersson Department of Computer Science Goteborgs

Läs mer

Poäng. Start v. DV2: Algoritmer och problemlösning 7.5. Antal registrerade (män/kvinnor) 23 (23/0)

Poäng. Start v. DV2: Algoritmer och problemlösning 7.5. Antal registrerade (män/kvinnor) 23 (23/0) TEK/NAT Kursrapport Kurs Kurskod Poäng År Start v. DV2: Algoritmer och problemlösning 5DV161 7.5 215 4 Institution Institutionen för datavetenskap Antal registrerade (män/kvinnor) 23 (23/) Antal aktiva

Läs mer

Satser och satsdelar. 1 Satser och satsdelar inledning. 2 Primära satsdelar predikatet. 2.1 Översikt. Grammatik för språkteknologer

Satser och satsdelar. 1 Satser och satsdelar inledning. 2 Primära satsdelar predikatet. 2.1 Översikt. Grammatik för språkteknologer UPPSALA UNIVERSITET Grammatik för språkteknologer Institutionen för lingvistik och filologi Föreläsningsanteckningar Mats Dahllöf November 2015 Satser och satsdelar Översikt i stolpform. Terminologin följer

Läs mer

Parsning I. Disposition. Parsning användingsområden. Vad menas med parsning inom språkteknologin? Top-down parsning. Parsning som sökning

Parsning I. Disposition. Parsning användingsområden. Vad menas med parsning inom språkteknologin? Top-down parsning. Parsning som sökning Parsning I Disposition Ola Knutsson knutsson@nada.kth.se Del 1: Traditionell parsning och parsningsteknik Del 2: Alternativa metoder och synsätt Språkteknologi 2D1418 HT 2001 Parsning användingsområden

Läs mer

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem

LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, HT10 SMT. En fördjupning i statistiska maskinöversättningssystem LINKÖPINGS UNIVERSITET 729G11, Artificiell Intelligens II, SMT En fördjupning i statistiska maskinöversättningssystem johka299@student.liu.se 2010-10-01 Innehållsförteckning 1. Introduktion till översättning...

Läs mer

x 23 + y 160 = 1, 2 23 = ,

x 23 + y 160 = 1, 2 23 = , Matematiska Institutionen KTH Lösningar till några övningar, inför tentan moment B, på de avsnitt som inte omfattats av lappskrivningarna, Diskret matematik för D2 och F, vt08.. Ett RSA-krypto har n =

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF1631 och SF1630, den 25 mars 2008. DEL I 1. (3p Bestäm antalet binära ord av längd

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språkteknologer Fraser http://stp.lingfil.uu.se/~matsd/uv/uv12/gfs/ Språkteknologiska grammatikkomponenter Tokenisering urskilja graford. Ordklasstaggning och annan taggning tilldela dem

Läs mer

Föreläsning 8: Intro till Komplexitetsteori

Föreläsning 8: Intro till Komplexitetsteori Föreläsning 8: Intro till Komplexitetsteori Formalisering av rimlig tid En algoritm som har körtid O(n k ) för någon konstant k är rimligt snabb. En algoritm som har körtid Ω(c n ) för någon konstant c>1

Läs mer

Logik Filosofiska Institutionen Göteborgs Universitet B-uppsats Vt 08 Handledare: Martin Kaså Palmé MICHAEL KASSLERS TOLVTONSSYSTEM DAVID OLOFSSON

Logik Filosofiska Institutionen Göteborgs Universitet B-uppsats Vt 08 Handledare: Martin Kaså Palmé MICHAEL KASSLERS TOLVTONSSYSTEM DAVID OLOFSSON Logik Filosofiska Institutionen Göteborgs Universitet B-uppsats Vt 08 Handledare: Martin Kaså Palmé MICHAEL KASSLERS TOLVTONSSYSTEM DAVID OLOFSSON MICHAEL KASSLERS TOLVTONSSYSTEM DAVID OLOFSSON Sammanfattning.

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språkteknologer http://stp.lingfil.uu.se/~matsd/uv/uv12/gfs/ är konstruktioner (fraser) som innehåller ett predikat och ett subjekt (Josefssons, s. 151, definition, som är en vanlig definition).

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

Kompilatorer och interpretatorer

Kompilatorer och interpretatorer 1 of 6 Örebro universitet Institutionen för teknik Thomas Padron-McCarthy (Thomas.Padron-McCarthy@oru.se) Tentamen i Kompilatorer och interpretatorer för Dataingenjörsprogrammet m fl lördag 7 november

Läs mer

Semantik och pragmatik

Semantik och pragmatik Semantik och pragmatik OH-serie 6 http://stp.lingfil.uu.se/~matsd/uv/uv13/semp/ Mats Dahllöf Institutionen för lingvistik och filologi Februari 2013 Tillämpningar av semantik allmänt Analys av grammatik:

Läs mer

MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken

MATEMATISK INDUKTION. Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken ) Explorativ övning MA00 vt 00 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Diskret matematik: Övningstentamen 4

Diskret matematik: Övningstentamen 4 Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen

Läs mer

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel

Läs mer

Lingvistiska grundbegrepp

Lingvistiska grundbegrepp 729G09 Språkvetenskaplig databehandling (2016) Lingvistiska grundbegrepp Marco Kuhlmann Institutionen för datavetenskap Vad är korpuslingvistik? Korpuslingvistik handlar om att undersöka språkvetenskapliga

Läs mer