Storlek: px
Starta visningen från sidan:

Download ""

Transkript

1

2 Fuktiga området, överhettad ånga, gas Hänvisningar till bok Cengel, kapitel En m tank innehåller luft med temperaturen +5 C och 500 kpa tryck. Behållaren ansluts till ytterligare en tank, vilken innehåller 5 kg luft med temperaturen +5 C och trycket 00 kpa. Ventilen mellan behållarna öppnas och hela systemet tillåts att anta termisk jämvikt med omgivningen som har temperaturen +0 C. Bestäm det slutliga lufttrycket i behållarna. SV: 84. kpa Ett grillgaller svetsas ihop med en ram av ett rör, konstruktionen blir tät varför ingen luft kan ta sig ut eller komma in i röret. Vi antar att luften i röret har temperaturen +0 C och trycket bar vid tillverkningstillfället. Om vi bortser från formförändringar dvs ansätter att röret fungerar som en stel kropp, vilket tryck erhålls inuti röret vid grillning. Luften värms till +600 C vid detta tillfälle. Luft antas vara en ideal gas. SV:,0 bar Heliumgas har trycket,05 bar och temperaturen +5 C. Den får först expandera utan värmeutbyte med omgivningen till trycket,00 bar. Därefter vid konstant volym återgå till sin ursprungliga temperatur. Bestäm slutligt tryck. SV:,0 bar (p (p (p 4 rgon gas vid atm och 5 C expanderar reversibelt och adiabatisk från 0.50 dm till.0 dm. Beräkna ; a sluttemperaturen b arbetet c ändringen i inre energi d sluttrycket e entalpiändringen. (p SV: a 88K, b 8J, c 8J, d.9 kpa, e 47J 5 En cylinder med en kolv innehåller,0 kg r vid 00,0 kpa och 00,0 K. Gasen komprimeras reversibelt till 600,0 kpa. Beräkna arbetet vid a Polytrop process med polytropexponenten,0 (.5p b Isotermisk process (.5p SV: a-06,6 kj, b-,9 kj

3 6 En stel behållare med volymen 0.50 m innehåller en blandning av flytande vatten och vattenånga med temperaturen 00 C. Värme tillföres nu blandningen som är så anpassad att kritiska punkten nås. Beräkna ångans volym i ursprungstillståndet, dvs före värmetillförseln. SV: 0.5 m (p 7 Genom ett värmeelement som finns i ett rum där temperaturen är +0 C strömmar mättad ånga med trycket 5 kpa. Ventilerna vid ångans inlopp och utlopp till elementet stängs. a Vad blir specifika ångmängden(x i elementet om det får svalna till +0 C? b Hur stort arbete uträttas under avsvalnings-processen och hur stort är värmeutbytet med omgivningen per kg innesluten massa? SV: a x=.4%, bw =0, q = -.7 MJ/kg (p kg vatten med temperaturen 0.0 C finns i en väl isolerad tank. För att kyla detta vatten stjälper man i 80.0 kg is med temperaturen -5.0 C. Isens specifika värmekapacitet är. kj/kgk och dess smältvärme.7 kj/kg, vätskefasens specifika värmekapacitet är 4.84 kj/kgk Bortse från tankens massa och bestäm a den slutliga jämviktstemperaturen i tanken SV: a + C :a H.sats Slutet system Hänvisningar till bok Cengel, kapitel B Luft komprimeras i en cykelpump.till 5,00 bars tryck. Processen antas vara en polytropisk process med exponentvärdet, n=.. Begynnelsetillstånd +0.0 C, trycket.00 bar samt massan 0.0 gram. Luften kan behandlas som ideal gas. Bestäm avgiven värmemängd vid kompressionen. SV: -,09 J (p B En stel och mycket välisolerad tank innehåller luft med temperaturen 5 o C och trycket 00 kpa. Tankens volym är 44 m. Inuti tanken ett litet elektriskt element med effekten 50 W som nu slås på. Beräkna luftens temperatur efter 0 timmar.utnyttja värmekapacitetsvärde vid temperaturen 00K. (p SV: +58 C B För att höja temperaturen hos en gas mycket snabbt kan följande metod användas: En projektil skjuts in i ena änden av en mycket kraftig stålcylinder (stel kropp vars andra ände är sluten. Projektilen antas verka som en tättslutande kolv. Under det att den bromsas upp i cylindern pressar den samman luften i cylindern. Förloppet sker så snabbt att inget värmeutbytet med omgivningen sker. Låt projektilens hastighet just utanför cylinderöppningen vara v = 500

4 m/s och dess massa m = 00 gram. Vi bortser från friktionen med cylinderväggarna. Cylindern vars volym är V, innehåller vid försökets början.00 mol luft vid trycket P =.0 atm och temperaturen T = 00 K. äkna med luft som en ideal gas med konstant värmekapacitet samt att processen är reversibel. a Vilken blir temperaturen på luften i cylindern efter det att projektilen bromsats ned? (p b Hur stor blir luftens procentuella volymsändring i cylindern? (p (Ledning: När projektilen bromsas upp så uträttar den ett arbete på gasen som är lika stort som projektilens förändring i rörelseenergi SV: a,50*0, b 98,% B4 I ett rum med lufttrycket,00 bar återfinns en stående cylinder med en friktionsfri rörlig kolv. Inneslutet medium består av en blandning av vatten i vätskefas samt i ångfas, specifika ångmängden är x=0.5, vidare är volymen,0 liter. Kolven väger 0,0 kg och har en tvärsnittsarea av 7 mm. Stoppklackar på cylinderväggen gör att volymen maximalt kan fördubblas från ursprungliga läget. Värme tillförs till systemet. Bestäm tillförd värmemängd när vattnets (blandningens temperatur stigit med 6,7 C SV: 6,5 kj B5 I en stel, sluten behållare finns.00 kg H O med trycket 800 kpa och temperaturen 40 C. Behållaren avkyles så att trycket sjunker till 500 kpa. Beräkna det värme som avgivits under avkylningen SV: 875 kj (p (p B6 En cylinder innehåller en friktionsfri kolv som kan röra sig mellan de två stopplägena i figur. När kolven vilar på de nedre klackarna är den innestängda volymen under kolv 400 l. När kolven når övre klackarna är den innestängda volymen 800 l. Initialt innesluts vatten med trycket 00 kpa samt specifika ångmängden 0%. Värme tillförs tills allt vatten består av mättad ånga. För att röra kolven krävs ett tryck av 00 kpa. Bestäm det slutliga trycket, tillförd värmemängd samt arbetet för processen. (p Vatten SV: 00 kpa, 06 kj, 94 kj

5 4 B7 En sluten cylinder är uppdelad i två separata volymer genom en friktionslös kolv som initialt hålls på plats av ett stift, enligt figur. Utrymme innehåller 0 l luft vid trycket 00 kpa och temperaturen +0 C. Utrymme B är fyllt med 00 l mättad vattenånga med temperaturen +0 C. Stiftet tas bort varvid kolven frigörs och båda utrymmena kommer till jämvikt vid +0 C. Om man utgår från en kontrollvolym bestående av luft och vattendelen, dvs längs cylinderns innerväggar, bestäm arbetet som systemet uträttar samt den värmemängd som överförs till cylindern under beskriven process. (p um Luft um B Vatten SV: W=0, Q=-5,7 kj B8 En sfärisk, stel glasbehållare med volymen 4 cm innehåller enbart vatten. Den placeras i en mikrovågsugn och värms försiktigt samtidigt som man mäter tryck och temperatur i behållaren. Den process som vi studerar startar när trycket i behållaren är.00 bar och 0% av behållarens volym upptas av vatten i vätskefas, resten är vatten i ångfas. Processen slutar när temperaturen når 45 C och behållaren exploderar. a Hur mycket värme har tillförts vattnet i behållaren under processen? b Kommer vätskeytan att röra sig uppåt eller nedåt under processen? Motivera, svar utan motivering ger inga poäng. (p SV: a 0,55 kj, b ytan rör sig uppåt :a H.sats Öppet system Hänvisningar till bok Cengel, kapitel 4 C Luft vid 0 C och 80kPa strömmar in i en diffusor med hastigheten 00 m/s. Inloppsarean är 0,40 m. Luften lämnar diffusorn med en mycket låg hastighet. Värmekapaciteten för luften antas vara konstant, C p0 =00.5 kj/kg K Bestäm: a massflödet av luft. b temperaturen på den utgående luften. (p SV: a 78,8 kg/s b 0 C

6 5 C Vattenånga med totaltrycket 0 MPa och temperaturen 550 C strömmar med hastigheten 60 m/s in i en turbin med inloppsarean 50 cm. På utloppssidan av turbinen är trycket 5 kpa, hastigheten 065 m/s och specifika ångmängden x=0.95. Stationära förhållanden antas råda, under processen avges värme till omgivningen motsvarande 0 kj/kg vattenånga. Bestäm avgiven turbineffekt under rådande förhållanden. SV: 0, MW C Luft vid temperaturen 7 o C och trycket 96 kpa strömmar in i en kompressor med försumbart låg hastighet. Efter kompressionen är trycket.0 MPa, temperaturen 7 o C och lufthastigheten 0 m/s. Kompressorns effekt är 00 kw och värmeförlusterna till omgivningen 5 kw. Beräkna massflödet av luft genom kompressorn. Luften kan betraktas som en ideal gas. SV: 0,85 kg/s C4 Genom arean 0.09 m i inloppet till turbinen i en Drakenmotor passerar 84.0 kg/s luft med T =09 K och P =4.46 bar. Luften lämnar turbinen med tillståndet T =954 K, P =. bar och hastigheten 5 m/s. Bestäm inloppshastigheten samt avgiven effekt från turbinen. Turbinen är adiabatisk och man kan bortse från ändringar av luftens lägesenergi. SV: 647 m/s resp 6.9 MW (p (p (p C5 - C6 - C7 Kvävgas komprimeras adiabatiskt i en kompressor från trycket P =.0 atm och temperaturen T = 0 C till trycket P = 0 atm och temperaturen T = 80 C. Gasen kan behandlas som ideal gas. a Beräkna ideala sluttemperaturen (p SV: a 585 K

7 6 Värmetransportmekanismer Hänvisningar till bok Cengel, kapitel 8 D En villaägare upplever problem med kondens på insidan av husets fönster när temperaturen utomhus är 0 C (avser lufttemperatur och utomhusytors temperatur ej aktuellt fönster. Genom att ersätta befintliga tvåglasfönster med nya treglasfönster hoppas personen att bli kvitt kondensproblemen. Inomhustemperatur +0 C. Värmeövergångstalen pga konvektion på fönsterrutans insida (mot rum respektive utsida (mot luft utomhus antas vara h konv, insida =8 W/m C respektive h konv, utsida =5 W/m C. Värden gäller för bägge fönstertyperna. Både tvåglas- och treglasfönstren är konstruerade av 4 mm tjocka fönsterglas med värmeledningstalet k glas =0,78 W/m C. Varje glasruta är åtskilda av ett mm:s stillastående luftskikt. Luftens värmeledningstal k luft =0,06 W/m C. Vi ansätter att strålningsbidraget för värmetransporten mellan fönsterrutorna är 0% av ledningsbidraget. På utsidan av fönstret utgör strålningsbidraget för värmetransporten 0% av det konvektiva bidraget. På insidan av fönstret bortser vi från strålningen. Hur många grader varmare blir fönsterrutans insida efter bytet till treglasfönster. SV:,4 C (p D I en kärnreaktor alstras värmeenergi i långa cylindriska bränslestavar med radien 0.00 m innehållande anrikat U-5. Värmeledningsförmågan i stavarna är 0 W/mK. Värmeövergången från stavarna till omgivningen sker med cirkulerande vatten, vars temperatur är 40 o C. Vi kan anta att värmealstringen i stavarna är homogen, alltså att varje volymselement i staven alstrar lika mycket värme. Vid ett tillfälle var den alstrade värmeeffekten per volymsenhet i stavarna W/m. Värmeövergångstalet mellan stavarna och vattnet kan sättas till.5. 0 W/m K. ll värmetransport kan antas ske i radiell riktning i stavarna. a Beräkna temperaturen på ytan av bränsleelementen. (p b Beräkna temperaturen i centrum av bränsleelementen. (p (Ledning; utgå från Fourier s lag SV: a 80 C, b C D En husvägg består av tre skikt som, inifrån räknade, har följande tjocklek och värmeledningsförmåga. Träpanel 5 mm k = 0.4 W/mK Isolering 75 mm k = W/mK Tegel 0 mm k = 0.70 W/mK Värmeövergångstal på väggens insida är 5.0 W/m K och på väggens utsida 8.0 W/m K. Inomhustemperaturen är + C och utomhustemperaturen -0 C. Vi bortser från strålningens inverkan. a Beräkna värmeflödet genom en yttervägg med denna konstruktion om väggens area är 80 m. (.5p b Beräkna temperaturen i kontaktytan mellan isolering och tegel. (.5p SV : a. kw b -5,6 C

8 D4 De varma förbränningsgaserna i en ugn avskiljs från omgivande luft av en tegelvägg med tjockleken 5 cm. Teglet har värmeledningsförmågan k =. W/mK och emissionsförmågan ε = 0.8. Vid stationära förhållande uppmäts temperaturen +00 C på ugnens utsida. Värmeövergångstalet till följd av egenkonvektion från ugnens utsida till luft är 0 W/m K. a Vilken temperatur har tegelväggen på ugnens insida om ugnen befinner sig i en stort rum där luftens och väggarnas temperatur är +5 C. b Med ett totalt värmeövergångstal på ugnens insida (konv+strålning av 4 W/m K, bestäm temperaturen inne i ugnen. (4p SV : a 5 C b 40 C 7 D5 En vägg är uppbyggd av två skikt. Invändigt består väggen av timmer med tjockleken 7,5 cm och utvändigt av 0,0 cm cellplast. Värmeledningsförmågan hos timret är 0,4 W/m, K och värmeledningsförmågan hos cellplasten är 0,0W/m, K. Det är ihållande -0 C utomhus medan inomhustemperaturen är +0 C. Värmeövergångstalen på grund av konvektion på väggens insida 0W/m K respektive utsida 0 W/ m K. Strålningsutbyte kan försummas. Beräkna var i väggen nollpunkten är belägen. Med nollpunkten menas den position i väggen där temperaturen är 0 C. nge positionen i antal centimeter från väggens utsida. (p SV: 57 mm D6 Vatten i en aluminiumkastrull med diametern 5 cm kokar vid temperaturen +95 o C. Kastrullen står på en spisplatta och värmeeffekten 600 W tillförs stationärt vattnet genom kastrullens 0.50 cm tjocka flata botten. Kastrullbottens insida har yttemperaturen 08 o C. a Beräkna värmeövergångstalet vid kastrullbottens insida. (p b Beräkna skillnaden mellan yttemperaturerna på kastrullbottens utsida och insida. (p SV: a 0,94 kw/m K, b 0,5 C D7 En braskamin får högst ha en yttemperatur på +70 C mot husets rum för att förhindra brandrisk. Vid en rökgastemperatur på +50 C och en omgivande rumstemperatur på +0 C, har vi följande totala värmeövergångstal; på insidan av kamin 0,0 W/m K samt på isoleringens utsida 9,0 W/m K. Kaminen har en godstjocklek av mm och värmeledningstalet k=5 W/mK, brandisoleringens värmeledningstal är k=0,046 W/mK. Vi bortser från hörn varför ytan för värmeflöde är densamma på kaminens insida och isoleringens utsida. a Hur tjock isolering krävs för att uppfylla brandbestämmelserna b Om man fördubblar isoleringens tjocklek vilken blir då dess yttemperatur mot rummet (4p

9 8 Isolering Kaminvägg ökgas +50 C Lufttemperatur +0 C SV: a 44 mm, b +47 C

10 9 Lösningsförslag Helim gasen betraktas som ideal gas Pv = T ( = J / kg, K enl Tab T 076,9 98,5 v = = = 5 P,050 P k = v = P 5,90 m / diabatisk proc ( k =, 667 ur Tab Poissons ekv : k v P ( 6 6 v = sid P kg, 00,667 v 5,90 6,07m, 05 = Isokor proc v = v T 076,9 98,5 097,0 P = = = Pa bar v 6,07 6 Enligt Tab. gäller för vatten i kritiska punkten att volymiteten vc = m / kmol = m / kg = m / kg. Detta innebär att totala 8.05 V 0.5 vattenmassan i behållaren är; mtot = = = kg vc Under processen ändras ej volymiteten ty behållaren är stel. Enligt Tab. 4 gäller för vatten vid 00 o C att v f = m /kg och v g =.679 m /kg. vc vf vc = vf + x( vg vf x= = och därmed att ångmassan är ( v v g f m = x m = kg. Vi får då att ångvolymen i ursprungstillståndet är ånga Vånga tot = = 0.46 m. Forts. 6 Eventuellt vc = m /kg om Tab 4 eller 5 utnyttjas m tot = kg x=0.006 m ånga =0,00 kg V ånga =0.48 m Svar: I ursprungstillståndet är ångvolymen 0.5 m

11 8 Cis =. kj / kgk Cvatten = 4.84 kj / kgk ls =.7 kj / kg Smälttemperatur för is =0.0 C. Låt T vara den slutliga jämvikts-temperaturen och antag att den är över 0 C a Upptagen värmemängd av isen= vgiven värmemängd av vattnet ger dvs 0 ( 0 s 0 som ger ( ( ( ( mc T + ml + mc T = mc T T (-54 fast vätska is vatten (. ( 0 ( ( T ( T = T ( ( ( ( = T =.4 C ntagandet stämmer! a T = C Svar: jämvikt B Begynnelsetemperatur = T = 00 K Projektilens massa = m p = 0.00 kg, v = 500 m/s, Luften: massa m, n = mol, Molekylvikt = M = 8.97 kg/kmol (tab Gasens arbete = W = - kinetisk energi hos projektilen = - m p v / Processen sker adiabatiskt dvs. δq = 0, bortser från ändring av pot och kin. energi :a h.s. ger: U U = - W (.9 Luft antas vara ideal gas du = mc v0 dt U U = mc v0 (T -T = MnC v0 (T -T (.4 lltså: MnC v0 (T -T = - W T = 00 + (0.500 /( = 50.9 K C Poissons ekv. ger: T V k- = T V k- (V /V = (T /T /(k- (sid6-6 Volymsändring: (V V /V = (V /V = - (T /T /(k- = (00/50.9 /(.400- = 0.98 Svar: a Temperaturen är.500 K b Volymsändringen blir 98. %

12 B7 Luften kan betraktas som ideal gas, slutet system IG ger m P V luft = = = luft T 0, 870 0,5 luft luft = = P B 0, 0494 kg ( via tab ( 4 erhålls sluttryck( + 0 C P = P = 4,46 kpa IG ger slutvolym V B B B B B vatten = = = vb,89 B B = = mvatten m T 4,460 0, , ,5 V = V ( V V = 0,00 (0, 00 0, 55 = 0, 0745 m Ur tab 4 för vattenånga v = v =,89 m / kg g u = u = 46, 6 kj / kg m v x v g V V v 0,00 0, 009 kg 0,0745 = 8,6768 m / kg 0, 009 B f = = = v fg,89 0, B f fg 8,6768 0, , 48 u = u + x u = 5, , 48 90,8 = 694, 6 kj / kg : a H sats slutet system : ( 9 Q = U U + W rbetet noll, inget arbete uträttas över systemgräns ideal gas : du = mc ( T T = 0 ( T = T ( 4 v B B ( för vattnet du = m( u u = 0, , 6 46, 6 = 5, 7 kj Q = 5,7+ 0 = 5,7 kj = 0, 55 m C q = 0 kj / kg ( systemet avger värme vid inlopp ( index ( v ur Tab 6 4 v m= δ V = δ v = = = 5,5kg/ s v 0, 0564 : a H sats öppet system w= q+ ( h h + (v v (4 h = 500,9 kj / kg ( urtab 6 h = 7,9+ 0,9546, = 500,9 kj / kg ( ur Tab 5 w= + + = 0 (500,9 500,9 ( , 67 k / 5,5 404,67 0, 0 0, W = m w= = kw = MW J kg

13 C4 P = 4.46 bar P =. bar Tab, ger T = 09 K T = 954 K = kj/kgk = 0.09 m m = 84.0 kg/s Luft är en ideal gas vid givna förhållanden, dvs T Pv = T v = P Kontinuitetsekv ger V m v m = V = ; V = hastighet v (4-5 till 4-7 med ovanstående m T V = = m/ s = 647. m/ s 5 P ϑ ϑ h gz h gz :a huvudsatsen för öppet system q w = ( ( + + (4 ϑ ϑ där q=0 och Z = Z ger w = h h + för ideal gas gäller h h = CP0( T T ( 4 ϑ ϑ vgiven effekt blir alltså (4 5 W = m w= m CP0( T T + = T medel =0.5K, Tab ger C p0 =.4 kj/kgk i W = ( W = MW SV 647 m/s resp 6.9 MW

14 D Konv; Q konv = T utsida T uteluft konv,utsida Strå ln ing,0, Q konv utsida = konv,utsida + = T utsida T ute, ytor strå ln 5 konv,utsida utsida = ( konv,utsida 5 konv,utsida (+ 5 = 5 6 konv,utsida pss för luftskikt mellan glasrutor Ledning, plan vägg, Q Strå ln ing,0, Q luft = + ledning 0 ledning luft = ( ledning 0 ledning ( +0 = 0 ledning = 5 T utsida T uteluft konv,utsida ledning = T glas,utsida T glas,insida ledning ledning = T glas,utsida T glas, insida strå ln ing = 0 T glas,utsida T glas,insida ledning total = konv,insida + glas + luft + glas + utsida total = konv,insida + glas + 0 ledning konv,utsida total = ( h konv,insida + L glas k glas + 0 L luftskikt k luftskikt h konv,utsida total = ( 8 Q + 0,004 0,78 = T rumsluft T uteluft total + 0 0,0 0, = 0,604 (W / C Q = 0 ( 0 0,604 = 65,5 (W / m Q = h konv,insida (T rumsluft T glas,innersida T glas,innersida = T rumsluft Q = 0 65,5 =,8 C h konv,insida 8

15 pss för treglas fönstret erhålls Q Q T total total total = = h = T + ( T h + T Q + C = konv, insida + glas + ledning + 6 0, ,0 5 = ( = 8 0,78 0, glas, innersida konv, insida konv, insida rumsluft glas rumsluft luft 0 ( 0 = = 8,64 ( W / m,05 glas, innersida konv, insida T = 5,7 -,8 =,6,4 glas luft glas + konv, utsida 8,64 = 0 = 5,7 C 8 utsida Skillnad i temperatur på glasrutan mot rummet blir därför,05 ( W / C strål strål konv ledn ledn konv D Lösning: Låt ro, k, h, Tomg och P beteckna radien, värmeledningsförmågan, värmeövergångstalet, vattentemperaturen och alstrad värmeeffekt per kubikmeter, alla givna numeriskt ovan. Låt vidare T s och L beteckna sökt temperatur i a -uppgiften samt stavlängden. Q. a Vi får då att uttrycket = πr 0 L P för den alstrade effekten i W. och uttrycket Q = h (T s T omg = h πr 0 L(T s T omg för den bortförda effekten. Dessa är lika vid stationärt tillstånd. Lösning ger att Ts=80oC. b llmänt gäller vid cylindrisk symmetri att Q = k dt (se lärobok. Observera att inte dr bara beror av radien utan även Q (inneslutet kärnbränsle vid radien r. Vi får då att Q = πr L P och att = πrl vilket insatt ger sambandet

16 5 πr L P = kπrl dt. Efter omformning erhålles Pr dr = kdt. Temperaturen i dr centrum To (r = 0 söks medan temperaturen Ts enligt a-uppgiften är känd. Integration; r 0 T s P rdr = k dt ger efter förenkling och uträkning att 0 T 0 T 0 = T s + Pr 0 4k = o C SV: a Temperaturen på ytan av bränslestaven är 80oC b Temperaturen i bränslestavens centrum är ca oc D d =5 mm k =0.4 W/mK α i =5 W/m K T i = C d =75 mm k =0.050 W/mK α u =8 W/m K T u =-0 C d =0 mm k =0.70 W/mK =80 m a Värmetransporten genom väggen ges av ( Ti Tu Q = ( där väggens värmemotståndstal total ges av total total = total konv, insida = ( h + + konv, insida L + k + L + k + L + k konv, utsida + h 0,05 0,075 0,0 total = ( ,4 0,050 0,70 8 ( ( 0 Q = = 77 W, kw 0,07 konv, utsida = 80,75 = 0,07 ( W / b Vid stationära förhållanden är värmeflödet lika genom alla skikt i väggen. Vi beräknar ett värmemotståndstal b som gäller från teglets insida till uteluften. ger då = + b b L = ( k + h 0,0 b = ( + = 0,96 = 0,007 ( W / C 0, ( Tyta Tute ( Tyta ( 0 Q = = = 77 Tyta = (77 0,007 0 = 5,64 5,6 0,007 b konv, utsida konv, utsida C C SV : a. kw b -5,6 C

17 6 D4 Vid stationära förhållanden måste samma värmeflöde passera genom varje kvadratmeter av väggen som det som avges från väggens utsida via strålning och konvektion, dvs; q = q + q ledn konv strål λ q ledn = ( T T, q L där utbytesfaktorn F 4 4 konv omg strål omg = α( T T, q = F σ( T T = ε (liten ugn i stor omgivning λ 4 4 ( T T = α( T Tomg + εσ( T Tomg L. ( ( T = + ( vilket ger T = 65.8 K = C (65.5 K = 5.5 C om 7K = 0 C används alt. om värden utnyttjas : ut, konv = = ( W / C h 0 ut, konv ut, strål ut, strål ε σ ut, yta omg, yta ut, yta omg, yta ut, strål = = h ( T + T ( T + T = = ( W / C ( ( L 0.5 ( / ledn = = = W C k. 8 = + = ut, total ut, konv ut, strål = 0.07 ( W / C ut, total total ut, total ledn = + = ( = 0.6 ( W / C T T T T Q = = T yta, insida omg. luft yta, utsida omg. luft total ut, total ( T T 0.6 ( = + T = = K 0.07 total yta, utsida omg. luft yta, insida omg. luft ut, total b q insida lika specifikt värmeflöde ovan dvs q λ qinsida = αinsida ( Tugn T = ( T T L. ( T ugn = K = C 40 C 4 ledn

18 7 alt. med värden insida = = h 4 insida T T T T Q = = T ugn yta, insida yta, insida yta, utsida insida ( T T insida yta, insida yta, utsida ugn = + ledn yta, insida ( T 4 ugn = = 67.9 K 8 D5 ut, konv = = ( W / C h 0 ut, konv in, konv ledn in, konv = = ( W / C h 0 L L ledn = + = + W C k k T ( / total = in, konv + ledn + ut, konv = ( = 5.07 ( W / C Q Tluft, inne Tluft, ute 0 ( 0 = = = 7.07 ( W / m 5.07 total Vid stationära förhållanden måste samma värmeflöde passera genom varje del av väggen Q Q = hut, konv ( Tutsida vägg Tluft, ute T utsida vägg = + T, h ut, konv luft ute T utsida vägg 7.97 = + ( 0 = 9.7 C 0 dt Q Q= k dx= kdt dx L x= 0 To = 0 Q dx = k dt Tutsida vägg Q ( L 0 = k (0 T utsida vägg 0.0(0 ( 9.7 L= = m 7.97 dvs 57 mm från utsida vägg återfinns nollpunkten negativt värde pga gradientens lutning.

19 8 D6 a För konvektion allmänt (FYS sid 0 gäller. Q = h T. där =πd/4 vilket ger 4Q 4600 h= = W / m K = 940 W / m K πd T π ( b För ledning gäller sambandet (sid 94, 8-. k Q= ( T T och då stationärt värmeflöde gäller erhålles L. ( QL= k Tu Ti där Tu och Ti är temperaturen på utsida respektive insida. Värmeledningsförmågan för aluminium k = 40 W/mK enligt 4 (T=400K Vi erhåller då. 4Q x o Tu Ti = = = C kπd 40π 0.5 Svar: Värmeövergångstalet mellan yta och vatten är 0.94 kw/mk och temperaturdifferensen mellan utsida och insida är 0.5 oc

20 9 D7 Värmeflödet från isoleringens utsida till rumsluften ges av q=h ( T T utsida isol. utsida rumsluft q= 9, 0 (70 0 = 450 W / m Vid stationära förhållanden är värmeflödet detsamma genom alla skikt. För hela värmeflödet från rökgas till rumsluft gäller ( Trökgas Trumsluft q=, tot tot Lka min Lisol = ( h k k h insida. ka min ka min ( Trökgas Trumsluft (50 0 tot = = =, ( W / m C q 450 därmed kan L ka min isol beräknas ka min isol k = 5 W / mk, L = 0,00 m k isol = 0, 046 W / mk Lisol 0, 00 =, 0,046 0,0 5 9,0 L = 0, 047 0, 044 m isol utsida isol dvs isoleringen måste vara 44 mm tjock för att bestämmelserna skall klaras. b Värmeflödet konstant genom vägg varför ( Trökgas Tisol. utsida hisol.utsida ( Tisol. utsida Trumsluft = i ny L L = + + = + + = k k ny ka min isol ( (.95 ( W / m C hinsida. ka min ka min isol T isol. utsida h T + T h isol.utsida ny rumsluft rökgas = = = isol.utsida ny C

21 0 Institutionen för Maskinteknik vdelningen för Exp.mekanik Tentamen i: Värme- och våglära Totala antalet uppgifter: 6 Ämneskod-linje Tentamensdatum Skrivtid Lärare: Karl-Evert Fällström Tel: 0 Jourhavande lärare: Lars Westerlund / Kalle Fällström Tel: / 0 esultatet anslås senast: 5/ 00 MTF Korridoren, E-huset Tentamensrättningen får granskas: Meddelas senare Tillåtna hjälpmedel: FYSIKLI (och/ eller TEFYM, BET samt räknedosa. Jönsson: Elementär våglära Yunus. Çengel: Introduction to Thermodynamics and heat transfer. alt. Wylen-Sonntag-Borgnakke: Fundamentals of classical thermodynamics. Övriga anvisningar: I böckerna får anteckningar som rör teoriavsnitten finnas. Motivera dina lösningar Skrivningen omfattar 6 uppgifter om totalt 0 p. Varje delmoment omfattar 0 p.för godkänt krävs 4 p på varje delmoment..opolariserat ljus går genom en vätska med brytningsindex n. När den når ytan som gränsar mot luft finner man att det reflekterade ljuset är fullständigt linjärpolariserat. Infallsvinkeln är 5, grader. a Bestäm brytningsindex n. b Bestäm intensiteten på det reflekterade ljuset om det infallande ljuset har intensiteten I 0. ( p

22 . Två identiska högtalare och B är riktade åt samma håll och står på,00 m avstånd från varandra. De matas med en sinusformad växelspänning från samma oscillator. Ljudet från högtalarna har frekvensen 680 Hz. En liten mikrofon rör sig längs en linje från B vinkelrät mot sammanbindningslinjen mellan och B.,00 m B C x a På vilka avstånd från B får vi destruktiv respektive konstruktiv interferens? b Om man minskar frekvensen finner man att under en viss frekvens finns inga min längs B till C. Bestäm gränsfrekvensen c Bestäm intensiteten I när man befinner sig,75 m från B längs linjen mellan B och C. respektive B sänder ut ljud som har intensiteten I 0 när vi befinner oss meter från respektive sändare. (Ledning: Vi måste här räkna med sfärisk vågutbredning. För sfäriska vågor gäller att intensiteten avtar med faktorn r där r är avståndet från källan.. (4 p. Fyra sändare ligger längs en rät linje på det inbördes avståndet d m. Sändarna sänder ut synkrona elektromagnetiska vågor med samma effekt och med frekvensen f Hz. Den resulterande intensiteten observeras på stort avstånd från sändarna. a I vilken riktning i förhållande till normalen till linjen genom sändarna ligger :a ordningens huvudmax? I vilken riktning ligger :a min? b De två sändarna i mitten stängs av. I vilken riktning ligger :a min respektive :a huvudmax? (4p 4. Ett cylindriskt tryckkärl för lagring av trycksatt luft har volymen 0,0 kubikmeter. Vid ett tillfälle är övertrycket i tryckkärlet, bar och temperaturen +5,4 C. Efter en helg har övertrycket sjunkit till 0, bar och temperaturen +8, C utan att någon tryckluft har använts. Hur många kilogram luft har läckt ut ur tryckkärlet under helgen? Du kan förutsätta att tryckkärlets volym inte förändrats trots att temperaturen i verkstadslokalen har sjunkit några grader. Lufttrycket inne i verkstadslokalen är,00 bar, vidare antas luft vara en ideal gas. (p 5. En vägg är uppbyggd av två skikt. Invändigt består väggen av timmer med tjockleken 7,5 cm och utvändigt av 0,0 cm cellplast. Värmeledningsförmågan hos timret är 0,4 W/m, K och värmeledningsförmågan hos cellplasten är 0,0W/m, K. Det är ihållande - 0 C utomhus medan inomhustemperaturen är +0 C. Värmeövergångstalen på grund av konvektion på väggens insida 0W/m K respektive utsida 0 W/ m K. Strålningsutbyte kan försummas. Beräkna var i väggen nollpunkten är belägen. Med nollpunkten menas den position i väggen där temperaturen är 0 C. nge positionen i antal centimeter från väggens utsida. (p

23 6. En cylinder försedd med en friktionsfri kolv innesluter 0.0 kg vattenånga av 40 C. Begynnelsevolymen är,0 m. Genom en reversibel isoterm process sker en kompression till dess att man får en blandning av vätska och ånga med specifika ångmängden 50 %. Beräkna det arbete som erfordras för den beskrivna processen. Vattenångan kan under rådande förhållanden anses vara en ideal gas under kompressionen fram till övre gränskurvan. (4p Lösningar till tentamen i Våg- värmelära (MTF090 4 December 00 Uppgift. a Det reflekterade ljuset är fullständigt polariserat i = Brewstervinkel vilket medför att i + b =90 o. Snells brytningslag ger att nsin(i =sin (90-i nsin (i =cos (i tan (i =/n. Detta ger att n = /tan (5, 0 n =,48. b= 90 i =90 5, = 54,8 0 b Fresnels formler ger I r = I i sin (i b sin (i+b och I r// = I i// tan (i b tan (i+b Vi ser att om i + b = 90 0 så är I r// = 0. Eftersom det är opolariserat ljus som kommer in så är I 0 = I i// + I i. Eftersom I i// = I i så är I i =I 0 /. Vi får då att I I r = 0 (5, 0 54,8 0 sin = I 0 I sin (90 0 sin ( 9,6 0 = 0 0,5 = 0,056 Svar; a n =,4 b Det reflekterade ljuset har intensiteten 0,056. Uppgift a,00 m B Sträckan C = x C + x. Om vi tittar på vägskillnaden C BC = + x x p λ(max + x x = ( p + λ (Min

24 Om vi tittar på max får vi + x = p λ + x + x + x = p λ + p λ x + x 4= p λ + p λ x x = 4 p λ där v = λf p λ ( = p λ + x ( Vi får min då + x x =( p + λ 4 ( p + λ Detta ger att x = 4 ( p + λ Numeriskt v=40 m/s, f = 680 Hz λ =0,5 m Detta ger max för x=,75 m,5 m, 0,58 m,0,58 m, 0 m. Det är de enda värden på x som ger max. llmänt uttryck x max = 4 p 0,5 p Det ger min för x= 7,88 m,,9 m, 0,98 m, 0,7 m. Detta är de enda värden på x som ger min. llmänt x min = 8 ( p + 0,5 ( p + b Om vi tittar på min så gäller x min = x min = v f 4 ( p + 4 f ( p + v 4 ( p + λ 4 ( p + λ Men x min 0 6 f ( p + v 0 f som ger min är för p = 0 f v 4 f 85Hz ( p + v 4 Det minsta värde c Vi har tvåstråleinterferens. Detta ger att I = I + I + I I cos(δ δ I 0 I = och I 4 + x = I 0 ger att x I = I x x 4 + x x cos(δ δ där δ δ = k ( + x x = π λ ( + x x I vårt fall skulle x =,75 m δ δ = π 0,5 ( +, 75,75 = π I = I 0 8,06 + 4,06 + 8,06 4,06 cos(80 0 = 0,5 I 0 Svar: a max för x=,75 m,5 m, 0,58 m,0,58 m, 0 m och min för x= 7,88 m,,9 m, 0,98 m, 0,7 m b Inget min om frekvensen är mindre än 85 Hz c I = 0,5 I 0

25 Uppgift I = I 0 sin (γ / sin (N δ / (γ / sin (δ / δ = k n d sin( θ γ = k n b sin( θ I detta fall behöver vi inte ta hänsyn till diffraktionen. Vi har huvudmax då sin(δ / = 0 δ /= pπ k n d sin( θ= p π π λ n d sin (= θ p π Vi har huvudmax då n d sin(= θ p λ 4 I detta fall skall n = och p = sin(= θ λ d Vidare är c = fλ Detta ger att vi har första huvudmax då sin(= θ c f d Vi har min då sin (N δ / =0 och sin (δ / 0. Detta ger att (om vi har N = 4 att 4 δ = p π och δ / q π. Detta ger att vi har min då p=,,, 5, 6, 7,9,... Första min har vi då p =. Vi får då min då 4 δ (= π π d sin(= θ π d sin(= θ λ 4 sinθ (= λ 4d = = π δ = π k d sin θ c 4d f b Vi får i detta fall en dubbelspalt med d = d För en dubbelspalt har vi max om nd sin(θ = pλ För första max är p = sin(= θ λ = λ d d = c d f Vi har min då n d sin θ sin(= θ λ = d (=( p + λ / Första min inträffar för p = 0 λ d = λ 6 d = c 6 d f Svar: a :a huvudmax för sin(= θ c b :a huvudmax för sin(= θ f d c f d λ och :a min för sin (= c θ 4 f d och första min för sin θ (= c 6 f d

26 5 Uppgift 4 Luft antas vara en ideal gas IG: PV = mt isokor process dvs volym konstant m = P V T m = P V T Ur tabell hämtas - värde för luft bsolut tryck erhålls genom att summera övertryck och omgivande tryck m m = V (P P = 0 T T 87.0 ( Uppgift 5 ut,konv = h ut,konv = (W / C 0 in,konv = h in,konv = (W / C 0 ledn = L k + L k = (W / C =.8. kg total = in,konv + ledn + ut,konv = ( = 5.07 (W / C Q = T T luft,inne luft,ute 0 ( 0 = = 7.07 (W / m total 5.07 Vid stationära förhållanden måste samma värmeflöde passera genom varje del av väggen Q = h ut,konv (T utsida vägg T luft,ute T utsida vägg = T utsida vägg = ( 0 = 9.7 C Q h ut,konv + T luft,ute Q = k dt dx Q L x = 0 dx = k T o =0 T utsida vägg Q dx = kdt dt Q (L 0 = k (0 T utsida vägg 0.0(0 ( 9.7 L = = m 7.97 dvs 57 mm från utsida vägg återfinns nollpunkten negativt värde pga gradientens lutning.

27 6 Uppgift 6 P Isoterm T = 40 C övre gränskurva V I begynnelseläge erhålls volymiteten v = V =.0 m 0. m / kg = 0 m / kg Vid 40 C erhålls ur tabell v = v g = 9,5 < v. Läge i gasområde och V = 0,. 9,5 =,95 m. För slutläge erhålls med hjälp av specifik ångmängd och tabell v = v f + x. v fg = 0, ,50 (9,5-0,00 = 9,7605. dvs V = 0,. 9,7605 = 0,97605 m. Delprocessen sker isotermt i gasfas. Delprocessen sker isotermt och isobart i fuktiga området. Ur tabell erhålls trycket p = p = 7,84 kpa. Trycket P < P är så lågt att vattenångan kan betraktas som en ideal gas under. För erhålls med hjälp av ideala gaslagen dv W = PdV = mt = mt V ln V V W = 0,0,465,5ln.95 kj = 0.58 kj För den isobara delen erhålls W = P (V - V = 7,84 (0, ,95 = -7,06 kj W totalt = - 0,58-7,06 = - 7,560 = -7,6 kj.

Fuktiga området, överhettad ånga,gas MTF 090

Fuktiga området, överhettad ånga,gas MTF 090 Fuktiga området, öerhettad ånga,gas MF 090 ntar luft är en ideal gas Behållare ges index respektie IG: P m 0,870 kj / kg, K enligt tab. P 00 m 0, 87 98 50,8708 500, m 5,846 kg + +,, m tot m m + m 5,846

Läs mer

Bestäm det slutliga lufttrycket i behållarna. SVAR: kpa

Bestäm det slutliga lufttrycket i behållarna. SVAR: kpa Fuktiga området, överhettad ånga, gas Wylén, 4:e upplaga; Kapitel (hänvisningar till bok; kursivt anger 5:e upplaga) Wylén, 5:e upplaga; Kapitel A) En m tank innehåller luft med temperaturen +5 C och 500

Läs mer

Tentamen i teknisk termodynamik (1FA527)

Tentamen i teknisk termodynamik (1FA527) Tentamen i teknisk termodynamik (1FA527) 2016-08-24 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook, miniräknare

Läs mer

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd.

Övningsuppgifter termodynamik ,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Övningsuppgifter termodynamik 1 1. 10,0 kg H 2 O av 40 C skall värmas till 100 C. Beräkna erforderlig värmemängd. Svar: Q = 2512 2516 kj beroende på metod 2. 5,0 kg H 2 O av 40 C skall värmas till 200

Läs mer

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta

Wilma kommer ut från sitt luftkonditionerade hotellrum bildas genast kondens (imma) på hennes glasögon. Uppskatta TENTAMEN I FYSIK FÖR V1, 18 AUGUSTI 2011 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 6. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 6 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 6 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Energi- och processtekniker EPP14

Energi- och processtekniker EPP14 Grundläggande energiteknik Provmoment: Tentamen Ladokkod: TH101A 7,5 högskolepoäng Tentamen ges för: Energi- och processtekniker EPP14 Namn: Personnummer: Tentamensdatum: 2015-03-20 Tid: 09:00 13:00 Hjälpmedel:

Läs mer

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit!

Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! Övningsuppgifter Till alla övningar finns facit. För de övningar som är markerade med * finns dessutom lösningar som du hittar efter facit! 1 Man har en blandning av syrgas och vätgas i en behållare. eräkna

Läs mer

PTG 2015 Övning 4. Problem 1

PTG 2015 Övning 4. Problem 1 PTG 015 Övning 4 1 Problem 1 En frys avger 10 W värme till ett rum vars temperatur är C. Frysens temperatur är 3 C. En isbricka som innehåller 0,5 kg flytande vatten vid 0 C placeras i frysen där den fryser

Läs mer

Omtentamen i teknisk termodynamik (1FA527) för F3,

Omtentamen i teknisk termodynamik (1FA527) för F3, Omtentamen i teknisk termodynamik (1FA527) för F3, 2012 04 13 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, miniräknare. Anvisningar:

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s 140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger

Läs mer

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion

3. En konvergerande-divergerande dysa har en minsta sektion på 6,25 cm 2 och en utloppssektion Betygstentamen, SG1216 Termodynamik för T2 26 augusti 2010, kl. 14:00-18:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling (typ

Läs mer

Lite kinetisk gasteori

Lite kinetisk gasteori Tryck och energi i en ideal gas Lite kinetisk gasteori Statistisk metod att beskriva en ideal gas. En enkel teoretisk modell som bygger på följande antaganden: Varje molekyl är en fri partikel. Varje molekyl

Läs mer

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]

TFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3] TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden

Läs mer

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)

Läs mer

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1

Linköpings tekniska högskola Exempeltentamen 1 IEI Mekanisk värmeteori och strömningslära. Exempeltentamen 1 Exempeltentamen 1 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på?

T / C +17. c) När man andas utomhus en kall dag ser man sin andedräkt som rök ur munnen. Vad beror det på? TENTAMEN I FYSIK FÖR V1, 11 JANUARI 2011 Skrivtid: 08.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand Förslag till lösningar TENTAMEN I TERMODYNAMIK, 5 p Typtewnta Del 1: Räkneuppgifter (20 p) 1 Hångin 2345 Hångut 556 t in 80 t ut 110 hin 335 hut 461 många 20 mv 283,9683 v 0,00104

Läs mer

Lösningar till Tentamen i Fysik för M, del 2 Klassisk Fysik (TFYY50) Lördagen den 24 April 2004, kl

Lösningar till Tentamen i Fysik för M, del 2 Klassisk Fysik (TFYY50) Lördagen den 24 April 2004, kl ösningar till entamen i Fysik för M, del Klassisk Fysik (FYY0) ördagen den 4 pril 004, kl. 4-8 Uppgift. a, b. c.3 a, b, d.4 b, d Uppgift a) m 0 röd och blå linje sammanfaller m m m 3 blå röd θ 0 injerna

Läs mer

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik

Övrigt: Uppgifterna 1-3 är på mekanik, uppgifterna 4-5 är på värmelära/termodynamik Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 2018-01-12 Skrivtid: 15.00 20.00 Totala antalet uppgifter: 5 Jourhavande lärare: Magnus Gustafsson, 0920-491983

Läs mer

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 7. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 7 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 7 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

MITTHÖGSKOLAN, Härnösand

MITTHÖGSKOLAN, Härnösand MITTHÖGSKOLAN, Härnösand TENTAMEN I TERMODYNAMIK, 5 p (TYPTENTA) Tid: XX DEN XX/XX - XXXX kl Hjälpmedel: 1. Cengel and Boles, Thermodynamics, an engineering appr, McGrawHill 2. Diagram Propertires of water

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna

Om-Tentamen Inledande kurs i energiteknik 7,5hp. Lösningsförslag. Tid: , Kl Plats: Östra paviljongerna UMEÅ UNIVERSITET Tillämpad Fysik & Elektronik A Åstrand Mohsen Soleimani-Mohseni 2014-11-15 Om-Tentamen Inledande kurs i energiteknik 7,5hp Lösningsförslag Tid: 141115, Kl. 09.00-15.00 Plats: Östra paviljongerna

Läs mer

2-52: Blodtrycket är övertryck (gage pressure).

2-52: Blodtrycket är övertryck (gage pressure). Kortfattad ledning till vissa lektionsuppgifter Termodynamik, 4:e upplagan av kursboken 2-37: - - Kolvarna har cirkulära ytor i kontakt med vätskan. Kraftjämvikt måste råda 2-52: Blodtrycket är övertryck

Läs mer

Laboration 6. Modell av energiförbrukningen i ett hus. Institutionen för Mikroelektronik och Informationsteknik, Okt 2004

Laboration 6. Modell av energiförbrukningen i ett hus. Institutionen för Mikroelektronik och Informationsteknik, Okt 2004 Laboration 6 Modell av energiförbrukningen i ett hus Institutionen för Mikroelektronik och Informationsteknik, Okt 2004 S. Helldén, E. Johansson, M. Göthelid 1 1 Inledning Under större delen av året är

Läs mer

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 5. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 5 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 5 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 2: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Metaller är kända för att kunna leda värme, samt att överföra värme från en hög temperatur till en lägre. En kombination

Läs mer

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola IEI / Mekanisk värmeteori och strömningslära Tentamen Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära, miniräknare.

Läs mer

Arbete är ingen tillståndsstorhet!

Arbete är ingen tillståndsstorhet! VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler

Läs mer

Tentamen i teknisk termodynamik (1FA527) för F3,

Tentamen i teknisk termodynamik (1FA527) för F3, Tentamen i teknisk termodynamik (1FA527) för F3, 2012 12 17 Tillåtna hjälpmedel: Cengel & Boles: Thermodynamics (eller annan lärobok i termodynamik), ångtabeller, Physics Handbook, Mathematics Handbook,

Läs mer

Lösningsförslag Tentamen Inledande kurs i energiteknik 7,5hp

Lösningsförslag Tentamen Inledande kurs i energiteknik 7,5hp UMEÅ UNIVERSITET Tillämad Fysik & Elektronik A Åstrand Mohsen Soleimani-Mohseni 014-09-9 Lösningsförslag Tentamen Inledande kurs i energiteknik 7,5h Tid: 14099, Kl. 09.00-15.00 Plats: Östra aviljongerna

Läs mer

Lösningar till repetitionsuppgifter

Lösningar till repetitionsuppgifter Lösningar till repetitionsuppgifter 1. Vågen antas röra sig i positiva x-axelns riktning dvs s = a sin(ω t k x +δ). Elongationen = +0,5 a för x = 0 vid t = 0 0,5 a = a sin(δ) sin(δ) = 0,5 δ 1 = π/6 och

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Tentamen ges för: Årskurs 1. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik Provmoment: Ten0 Ladokkod: TT05A Tentamen ges för: Årskurs Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 202-08-30 Tid: 9.00-3.00 7,5 högskolepoäng

Läs mer

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m))

- Rörfriktionskoefficient d - Diameter (m) g gravitation (9.82 m/s 2 ) 2 (Tryckform - Pa) (Total rörfriktionsförlust (m)) Formelsamling för kurserna Grundläggande och Tillämpad Energiteknik Hydromekanik, pumpar och fläktar - Engångsförlust V - Volymflöde (m 3 /s) - Densitet (kg/m 3 ) c - Hastighet (m/s) p - Tryck (Pa) m Massa

Läs mer

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3.

P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. P1. I en cylinder med lättrörlig(friktionsfri) men tätslutande kolv finns(torr) luft vid trycket 105 kpa, temperaturen 300 K och volymen 1.40 m 3. Luften värms nu långsamt via en elektrisk resistansvärmare

Läs mer

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ

mg F B cos θ + A y = 0 (1) A x F B sin θ = 0 (2) F B = mg(l 2 + l 3 ) l 2 cos θ Institutionen för teknikvetenskap och matematik Kurskod/kursnamn: F0004T, Fysik 1 Tentamen datum: 019-01-19 Examinator: Magnus Gustafsson 1. Friläggning av balken och staget: Staget är en tvåkraftsdel

Läs mer

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10

Godkänt-del. Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Hypotetisk tentamen för Termodynamik och ytkemi, KFKA10 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del För uppgift 1 9 krävs endast svar. För övriga uppgifter ska slutsatser

Läs mer

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14

Tentamen i Fysik TEN 1:2 Tekniskt basår 2009-04-14 Tentamen i Fysik TEN 1: Tekniskt basår 009-04-14 1. En glaskolv med propp har volymen 550 ml. När glaskolven vägs har den massan 56, g. Därefter pumpas luften i glaskolven bort med en vakuumpump. Därefter

Läs mer

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2

Linköpings tekniska högskola Exempeltentamen 2 IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 2 Exempeltentamen 2 (OBS! Uppgifterna nedan gavs innan kursen delvis bytte innehåll och omfattning. Vissa uppgifter som inte längre är aktuella har därför tagits bort, vilket medför att poängsumman är

Läs mer

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen

Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Termodynamik Föreläsning 2 Värme, Arbete, och 1:a Huvudsatsen Jens Fjelstad 2010 09 01 1 / 23 Energiöverföring/Energitransport Värme Arbete Masstransport (massflöde, endast öppna system) 2 / 23 Värme Värme

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2010-12-14 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00

Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 Betygstentamen, SG1216 Termodynamik för T2 25 maj 2010, kl. 9:00-13:00 SCI, Mekanik, KTH 1 Hjälpmedel: Den av institutionen framtagna formelsamlingen, matematisk tabell- och/eller formelsamling typ Beta),

Läs mer

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl

TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl TENTAMEN I MMVA01 TERMODYNAMIK MED STRÖMNINGSLÄRA, tisdag 23 oktober 2012, kl. 14.00 18.00. P1. En sluten cylinder med lättrörlig kolv innehåller 0.30 kg vattenånga, initiellt vid 1.0 MPa (1000 kpa) och

Läs mer

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18

Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

Observera att uppgifterna inte är ordnade efter svårighetsgrad!

Observera att uppgifterna inte är ordnade efter svårighetsgrad! TENTAMEN I FYSIK FÖR V1, 14 DECEMBER 2010 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad

Läs mer

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet.

Godkänt-del A (uppgift 1 10) Endast svar krävs, svara direkt på provbladet. Tentamen för Termodynamik och ytkemi, KFKA10, 2018-01-08 Tillåtna hjälpmedel: Miniräknare, utdelat formelblad och tabellblad. Godkänt-del A (endast svar): Max 14 poäng Godkänt-del B (motiveringar krävs):

Läs mer

Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng

Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 41K02B/41ET07 Tentamen ges för: En1, Bt1, Pu2, Pu3. 7,5 högskolepoäng Energiteknik I Energiteknik Provmoment: Tentamen Ladokkod: 4K0B/4ET07 Tentamen ges för: En, Bt, Pu, Pu3 7,5 högskolepoäng Tentamensdatum: 08-05-8 Tid: 4.00-8.00 Hjälpmedel: Valfri miniräknare, formelsamling:

Läs mer

Arbetet beror på vägen

Arbetet beror på vägen VOLYMÄNDRINGSARBETE Volymändringsarbete = arbete p.g.a. normalkrafter mot ytor (tryck) vid volymändring. Beteckning: W b (eng. boundary work); per massenhet w b. δw b = F ds = P b Ads = P b dv Exempel:

Läs mer

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare.

Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära. Exempeltentamen 8. strömningslära, miniräknare. Linköpings tekniska högskola Exempeltentamen 8 IEI / Mekanisk värmeteori och strömningslära Joakim Wren Exempeltentamen 8 Tillåtna hjälpmedel: Allmänt: Formelsamling i Mekanisk värmeteori och strömningslära,

Läs mer

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Tentamen i termodynamik. 7,5 högskolepoäng. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamen i termodynamik 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Ten01 TT051A Årskurs 1 Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: Tid: 2012-06-01 9.00-13.00

Läs mer

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105)

6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) 6. Värme, värmekapacitet, specifik värmekapacitet (s. 93 105) Termodynamikens nollte huvudsats säger att temperaturskillnader utjämnas i isolerade system. Med andra ord strävar system efter termisk jämvikt

Läs mer

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14.

Tentamen i termisk energiteknik 5HP för ES3, 2009, , kl 9-14. Tentamen i termisk energiteknik 5HP för ES3, 2009, 2009-10-19, kl 9-14. Namn:. Personnr: Markera vilka uppgifter som du gjort: ( ) Uppgift 1a (2p). ( ) Uppgift 1b (2p). ( ) Uppgift 2a (1p). ( ) Uppgift

Läs mer

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin

Bestäm brombutans normala kokpunkt samt beräkna förångningsentalpin H vap och förångningsentropin Tentamen i kemisk termodynamik den 7 januari 2013 kl. 8.00 till 13.00 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer

Läs mer

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning).

Om trycket hålls konstant och temperaturen höjs kommer molekylerna till slut att bryta sig ur detta mönster (sublimation eller smältning). EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

Svar och anvisningar

Svar och anvisningar 160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:

Läs mer

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation:

Överhettad ånga, Table A-6 (2.5 MPa): T [ C] v [m 3 /kg] ? Linjär interpolation: Exempel 1, Ch.3 Givet: H 2 O, P = 2.5 MPa = 2500 kpa, T = 265 C = 538.15 K. Sökt: v (volymitet). Table A-4: T = 265 C > T sat@2.5mpa = 223.95 C Table A-5: P = 2500 kpa < P sat@265 C = 5085.3 kpa Överhettad

Läs mer

EGENSKAPER FÖR ENHETLIGA ÄMNEN

EGENSKAPER FÖR ENHETLIGA ÄMNEN EGENSKAPER FÖR ENHETLIGA ÄMNEN Enhetligt ämne (eng. pure substance): ett ämne som är homogent och som har enhetlig kemisk sammansättning, även om fasomvandling sker. Vid jämvikt för ett system av ett enhetligt

Läs mer

6 Tryck LÖSNINGSFÖRSLAG. 6. Tryck Tigerns tryck är betydligt större än kattens. Pa 3,9 MPa 0,00064

6 Tryck LÖSNINGSFÖRSLAG. 6. Tryck Tigerns tryck är betydligt större än kattens. Pa 3,9 MPa 0,00064 6 Tryck 601. a) Då minskar arean till hälften. Tyngden är densamma. Trycket ökar då till det dubbla, dvs. 2Pa. b) Om man delar hundralappen på mitten så halveras både area och tyng. trycket blir då detsamma

Läs mer

PTG 2015 övning 1. Problem 1

PTG 2015 övning 1. Problem 1 PTG 2015 övning 1 1 Problem 1 Enligt mätningar i fortfarighetstillstånd producerar en destillationsanläggning 12,5 /s destillat innehållande 87 vikt % alkohol och 19,2 /s bottenprodukt innehållande 7 vikt

Läs mer

Tentamen i Kemisk Termodynamik kl 14-19

Tentamen i Kemisk Termodynamik kl 14-19 Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla

Läs mer

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V

TENTAMEN I TERMODYNAMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V CHLMERS 1 (3) TENTMEN I TERMODYNMIK för K2 och Kf2 (KVM090) 2009-08-27 kl. 14.00-18.00 i V Hjälpmedel: Kursböckerna Elliott-Lira: Introductory Chemical Engineering Thermodynamics och P. tkins, L. Jones:

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGSTÄVLING 23 januari 2014 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) När bilens fart är 50 km/h är rörelseenergin W k ( ) 2 1,5 10 3 50 3,6 2 J 145 10 3 J. Om verkningsgraden

Läs mer

Termodynamik Föreläsning 5

Termodynamik Föreläsning 5 Termodynamik Föreläsning 5 Energibalans för Öppna System Jens Fjelstad 2010 09 09 1 / 19 Innehåll TFS 2:a upplagan (Çengel & Turner) 4.5 4.6 5.3 5.5 TFS 3:e upplagan (Çengel, Turner & Cimbala) 6.1 6.5

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer

Final i Wallenbergs fysikpris

Final i Wallenbergs fysikpris Final i Wallenbergs fysikpris 5-6 mars 011. Teoriprov. Lösningsförslag. 1) Fysikern Hilda leker med en protonstråle i en vakuumkammare. Hon accelererar protonerna från stillastående med en protonkanon

Läs mer

Lösningar till tentamen i Kemisk termodynamik

Lösningar till tentamen i Kemisk termodynamik Lösningar till tentamen i Kemisk termodynamik 203-0-9. Sambandet mellan tryck och temperatur för jämvikt mellan fast och gasformig HCN är givet enligt: ln(p/kpa) = 9, 489 4252, 4 medan kokpunktskurvan

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSKPRS FNALTÄVLNG 3 maj 2014 SVENSKA FYSKERSAMFUNDET LÖSNNGSFÖRSLAG 1. a) Fasförskjutningen ϕ fås ur P U cosϕ cosϕ 1350 1850 ϕ 43,1. Ett visardiagram kan då ritas enligt figuren nedan. U L

Läs mer

Teknisk termodynamik repetition

Teknisk termodynamik repetition Först något om enheter! Teknisk termodynamik repetition Kom ihåg att använda Kelvingrader för temperaturer! Enheter motsvarar vad som efterfrågas! Med konventionen specifika enheter liten bokstav: E Enhet

Läs mer

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002

Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 UPPSALA UNIVERSITET Fysiska institutionen Sveinn Bjarman Tentamen i Termodynamik Q, F, MNP samt Värmelära för kursen Värmelära och Miljöfysik 20/8 2002 Skrivtid: 9-14 Hjälpmedel: Räknedosa, Physics Handbook

Läs mer

Tentamen i Termodynamik för K och B kl 8-13

Tentamen i Termodynamik för K och B kl 8-13 Tentamen i Termodynamik för K och B 081025 kl 8-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas.

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Termodynamik Föreläsning 7 Entropi

Termodynamik Föreläsning 7 Entropi ermodynamik Föreläsning 7 Entropi Jens Fjelstad 200 09 5 / 2 Innehåll FS 2:a upplagan (Çengel & urner) 7. 7.9 FS 3:e upplagan (Çengel, urner & Cimbala) 8. 8.9 8.3 D 6:e upplagan (Çengel & Boles) 7. 7.9

Läs mer

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors

Lösningsförslag. Tentamen i KE1160 Termodynamik den 13 januari 2015 kl Ulf Gedde - Magnus Bergström - Per Alvfors Tentamen i KE1160 Termodynamik den 13 januari 2015 kl 08.00 14.00 Lösningsförslag Ulf Gedde - Magnus Bergström - Per Alvfors 1. (a) Joule- expansion ( fri expansion ) innebär att gas som är innesluten

Läs mer

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω)

FUKTIG LUFT. Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft. ω = m v /m a m = m a (1 + ω) FUKTIG LUFT Fuktig luft = torr luft + vatten m = m a + m v Fuktighetsgrad ω anger massan vatten per kg torr luft Normalt är ω 1 (ω 0.02) ω = m v /m a m = m a (1 + ω) Luftkonditionering, luftbehandling:

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

ett uttryck för en våg som beskrivs av Jonesvektorn: 2

ett uttryck för en våg som beskrivs av Jonesvektorn: 2 Tentamen i Vågrörelselära(FK49) Datum: Tisdag, 6 Juni, 29, Tid: 9: - 5: Tillåten Hjälp: Physics handbook eller dylikt Förklara resonemang och uträkningar klart och tydligt. Tentamensskrivningen består

Läs mer

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek

Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 2 4 r Ljudintensitetsnivå I 12 2 LI 10lg med Io 1,0 10 W/m Io Dopplereffek Ljudhastighet (vätska & gas) RT v M Intensitet från en punktkälla P I medel 4 r Ljudintensitetsnivå I 1 LI 10lg med Io 1,0 10 W/m Io Dopplereffekt, ljud v v f m m fs v v s Relativistisk Dopplereffekt,

Läs mer

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum:

Lösningar/svar till tentamen i MTM119 Hydromekanik Datum: Lösningar/svar till tentamen i MTM9 Hydromekanik Datum: 005-05-0 Observera att lösningarna inte alltid är av tentamenslösningskvalitet. De skulle inte ge full poäng vid tentamen. Motiveringar kan saknas

Läs mer

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.

1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. 10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15

Läs mer

Räkneövning 2 hösten 2014

Räkneövning 2 hösten 2014 Termofysikens Grunder Räkneövning 2 hösten 2014 Assistent: Christoffer Fridlund 22.9.2014 1 1. Brinnande processer. Moderna datorers funktion baserar sig på kiselprocessorer. Anta att en modern processor

Läs mer

Kapitel 35, interferens

Kapitel 35, interferens Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson

Läs mer

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen)

DELPROV 2/TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR OKTOBER 2003, 08:00-11:00 (Delprov), 08:00-13:00 (Tentamen) Joakim Malm Teknisk Vattenresurslära LTH DELPROV /TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 4 OKTOBER 003, 08:00-:00 (Delprov), 08:00-3:00 (Tentamen) Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning:

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare

Läs mer

TFEI02: Vågfysik. Tentamen : Lösningsförslag

TFEI02: Vågfysik. Tentamen : Lösningsförslag 160530: TFEI0 1 Uppgift 1 TFEI0: Vågfysik Tentamen 016-05-30: Lösningsförslag a) Ljudintensiteten, I, är ett mått på hur stor effekt, P eff, som transporteras per area. Om vi vet amplituden på vågen kan

Läs mer

Övningstentamen i KFK080 för B

Övningstentamen i KFK080 för B Övningstentamen i KFK080 för B 100922 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För godkänt

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Final i Wallenbergs Fysikpris

Final i Wallenbergs Fysikpris Final i Wallenbergs Fysikpris 26-27 mars 2010. Teoriprov Lösningsförslag 1. a) Vattens värmekapacitivitet: Isens värmekapacitivitet: Smältvärmet: Kylmaskinen drivs med spänningen och strömmen. Kylmaskinens

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

FUKT I MATERIAL. Fukt i material, allmänt

FUKT I MATERIAL. Fukt i material, allmänt FUKT I MATERIAL Anders Jansson RISE Research Institutes of Sweden SAMHÄLLSBYGGNAD/BYGGTEKNIK Fukt i material, allmänt Porösa material har några g vattenånga per m3 porvolym Den fuktmängden är oftast helt

Läs mer

FUKT I MATERIAL. Fukt i material, allmänt. Varifrån kommer fukten på tallriken?

FUKT I MATERIAL. Fukt i material, allmänt. Varifrån kommer fukten på tallriken? FUKT I MATERIAL Anders Jansson RISE Research Institutes of Sweden SAMHÄLLSBYGGNAD/BYGGTEKNIK Fukt i material, allmänt Porösa material har några g vattenånga per m3 porvolym Den fuktmängden är oftast helt

Läs mer

Kap 5 mass- och energianalys av kontrollvolymer

Kap 5 mass- och energianalys av kontrollvolymer Kapitel 4 handlade om slutna system! Nu: öppna system (): energi och massa kan röra sig över systemgränsen. Exempel: pumpar, munstycken, turbiner, kondensorer mm Konstantflödesmaskiner (steady-flow devices)

Läs mer

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd.

undanträngda luften vilket motsvarar Flyft kraft skall först användas för att lyfta samma volym helium samt ballongens tyngd. FYSIKTÄVLINGEN Finalen - teori 1 maj 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFUNDET 1 Vi beräknar först lyftkraften för en ballong Antag att ballongen är sfärisk med diametern 4πr 4π 0,15 0 cm Den har då

Läs mer