Pythagoreiska taltripplar

Storlek: px
Starta visningen från sidan:

Download "Pythagoreiska taltripplar"

Transkript

1 Pythagoreiska taltripplar Mellan sidlängderna a, b, c i en rätvinklig triangel råder som bekant sambandet a + b = c och det finns heltal som uppfyller detta: 3 +4 = = = = = 15 Nyfikna som vi är, frågar vi oss då: Hur många sådana s.k. pythagoreiska heltalstripplar finns det? Är de ändligt eller oändligt många? Finns någon formel som genererar dem alla? Vi noterar att ett av historiens mest berömda problem, Fermats stora sats, eller rättare sagt Fermats förmodan, som blev en sats först 1995 efter att ha varit en öppen fråga i drygt 350 år, tycks handla om ekvationer av samma typ: Det finns inga positiva heltal a, b, c och heltal n>, sådana att a n + b n = c n? 1. Enkel potensräkning visar att de pythagoreiska taltripplarna är oändligt många hur då? Tripplar som (6, 8, 10), (9, 1, 15),... är emellertid inte så intressanta, när vi väl känner (3, 4, 5) redan, så vi modifierar frågeställningen något. Vi intresserar oss endast för tripplar, där talen inte har någon gemensam faktor > 1, och struntar i resten! För korthetens skull kallar vi tripplar utan gemensamma faktor primitiva.. Förklara varför det minsta ev. motexemplet till Fermats förmodan bör sökas då n =4samt n = primtal. Finns det ändligt eller oändligt många primitiva pythagoreiska tripplar? De gamla grekerna (möjligen Pythagoras själv) kom på följande bevis för att antalet är oändligt: Skriv om Pythagoras likhet som a = c b Om vi inskränker vår sökning till tripplar där såskallvialltsåha c = b +1 a =(b +1) b =b +1 När b genomlöper de positiva heltalen, så genomlöper b +1alla udda heltal 3. Bland dem finns oändligt många kvadrater: 9, 5, 49, 81,... Så fort b +1är en jämn kvadrat 1 och det inträffar oändligt många gånger! får vi en pythagoreisk trippel ³ b +1,b,b+1 och den är primitiv, eftersom b och b +1inte kan ha någon gemensam faktor > Verifiera att följande två formler genererar idel pythagoreiska taltripplar : a = n +1 b = n +n c = n +n +1, n positivt heltal a = k b = 1 k 1 c = 1 k +1, k udda heltal > 1 (Varför bara udda?) 4. Övertyga dig att ovanstående två formler bara är två varianter av en och samma formel och att de producerar just de tripplar som förekom i grekernas bevis för att antalet är oändligt. Får man alla tripplar på detta sätt? 1 Jämn kvadrat betyder här inte att talet skulle vara jämnt, utan att rotutdragning "går jämnt ut". Det är en synonym för kvadrattal, d.v.s. något av talen 1, 4, 9, 16, 5, 36,... Att verifiera ett påstående betyder att kontrollera att påståendet är riktigt. 1

2 Att lösa diofantiska ekvationer 3 genom att titta på delbarhet Vi börjar med följande observationer: För ett heltal a har vi a jämnt a =a 1 för något heltal a 1 a =4a 1 för något heltal a 1 a udda a =a 1 +1för ngt heltal a 1 a =4a 1 +4a 1 +1för ngt heltal a 1 a =4a +1för ngt heltal a Konsekvens av ovanstående: Inget tal, som vid division med 4 ger rest eller 3, kan vara en jämn kvadrat! Kvadrattal ger rest 0 eller 1 vid division med 4. Nu till vår ekvation a + b = c Förvartochettavtalena, b, c, har vi två alternativ: jämnt eller udda. Om a och b vore båda jämna, så måste även c = a + b vara jämnt och därmed måste även c vara jämnt men då har alla de tre talen a, b, c faktorn och det var vi inte intresserade av vi sökte tripplar utan gemensam faktor. Om a och b vore båda udda, så finns enligt ovan heltal a och b så att c = a + b = = 4a +1+4b +1= = 4(a + b )+ men detta är omöjligt, åter enl. ovan en kvadrat kan inte ha rest vid division med 4. Så enda möjligheten är att ett av talen a och b är jämnt och det andra udda. Då måste även c vara udda. 3 Diofantisk kallas en polynomekvation där alla koefficienter är heltal och man söker endast heltalslösningar. Låt oss säga att b är jämnt, a och c är udda. Konjugatidentiteten ger oss a + b = c b = c a b = (c + a)(c a) Då a och c båda är udda, är c + a och c a båda jämna, men c + a och c a är relativt prima (d.v.s. saknar gemensam faktor > 1) för om primtalet p delar såväl c+a som c a, så måste det dela även c + a + c a = c och c + a c a = a och delar det såväl c som a, så måste det dela även b (p.g.a. b = c a ) och sådana tripplar var vi inte intresserade utav. Alltså b = 4 c + a där c + a c a och c a är relativt prima M.h.a. aritmetikens fundamentalsats att primtalsfaktoriseringen av ett heltal är entydig (ej trivialt, men något man gärna tror på) kan man ur detta avläsa att c+a måste vara kvadrattal var för sig (för motivering se nästa spalt) : c + a = u för något heltal u c a = v för något heltal v (varvid u och v är relativt prima) Därmed b =4u v och b = uv a = c + a c a = u v c = c + a + c a = u + v Alla primitiva pytagoreiska taltripplar kan alltså fås så här med lämpliga val av u och v. 5. Visa att a, b, c har ingen gemensam faktor u och v har ingen gemensam faktor och är av olika paritet (d.v.s. det ena udda, det andra jämnt)

3 Hur aritmetikens fundamentalsats kommer in Resonemanget med aritmetikens fundamentalsats i fallet då b =60(som exempel) : Iochmedatt60 har primtalsfaktoriseringen 60 = 3 5 så är primtalsfaktoriseringen av = och det finns ingen annan : En produkt som t.ex kan inte vara =60, kan vi säga direkt, utan räkning, för den innehåller ett annat primtal, och potenserna stämmer inte heller. Om vi nu skall ha = c + a c a så måste primtalsfaktoriseringarna av c+a sammanlagt innehålla exakt st. :or, st. 3:or och st. 5:or. Om inget primtal skall dela båda, så måste båda :orna komma antingen från c+a eller från c a. Likadant för 3:orna och för 5:orna. Alltså, de enda alternativen är (skrivsättet nedan skall tolkas som så att det som står till vänster om är c+a, det som står till höger är c a ): c + a c a = eller = 3 5 =6 5 eller = 5 3 eller = 3 5 eller = 3 5 eller = 3 5 eller = 5 3 eller = I och med att alla primtal i faktoriseringen av b förekommer i en jämn potens, och de splittras inte mellan c+a, så kommer varje primtal i faktoriseringarna av c+a att förekomma i en jämn potens, vilket innebär att dessa är jämna kvadrater. Se också hur det blir i följande fall: = = ( ) ( ) = = Ett givet primtal hamnar antingen hos den andra eller den tredje faktorn i högerledet, men inte i båda. 6. När Arnold började som matematiklärare gillade han s.k. A-uppgifter, som krävde endast svar. Vid ett prov hade han följande som A-uppgift: Hur stor area har den rätvinkliga triangel vars hypotenusa är 10 cm och ena katet är 6 cm? Efter provet råkade Arnold höra en av eleverna (som fått det godkända svaret 4 Arnold hade bestämt sig för att inte kräva enheter) förklara för en kamrat hur han löst uppgiften. Först, sa eleven glatt, utnyttjar man Pythagoras sats för att få den andra kateten. (Arnold kände sig stolt.) Och den blir ju 8, fortsatte eleven. Sedan är det bara att lägga ihop det man har, , så får man 4. Alltsedan dess har Arnold ogillat A-uppgifter och har undrat: Finns det fler rätvinkliga trianglar med heltalssidor för vilka mätetalen för arean och omkretsen är lika? Förlös Arnold utred hans fråga! (Försök göra det utan att tillgripa den allmänna formeln för pythagoreiska taltripplar den är ju inte alldeles lätt att härleda.) 7. Visa att i en rätvinklig triangel, där den ena kateten är fyra gånger så stor som den andra, är hypotenusan inkommensurabel med kateterna, d.v.s. det finns ingen sträcka, "mätsträcka", sådan att såväl hypotenusa som kateter är (exakt) multiplar av mätsträckan. 3

4 Att lösa diofantiska ekvationer genom att studera kurvor När man läser om Wiles bevis av Fermats stora sats, stöter man på begreppet elliptiska kurvor. Hur skulle kurvor kunna vara till hjälp, när man söker efter heltalslösningar enbart? Följande alternativa härledning av formeln för pythagoreiska tripplar kan ge en antydan. Vi skriver om Pythagoras sats till ³ µ a b + =1 c c Härav ses att vårt problem kan formuleras: 11. Med föregående två frågor i bagaget, kandunuangeenformelsom genererar alla pythagoreiska taltripplar. Kontrollera att den är identisk med den som härleddes ovan med delbarhetsresonemang. 1. Kontrollera att ovan angivna formel a = k, b = 1 k 1, c = 1 k +1, k udda > 1 fås som ett specialfall av den generella formeln. Sök alla punkter på enhetscirkeln, vars båda koordinater är positiva rationella tal. Kalla första kvadrantens del av enhetscirkeln för E. Givet en punkt P :(x, y) på E, dra räta linjesträckan från P till punkten ( 1, 0). Denna skär positiva y-axeln mellan 0 och 1 kalla den sträckan Y i någon punkt Q :(0,t). På detta sätt får vi en avbildning (funktion) från E till Y en slags projektion, som parar ihop punkterna på E med punkterna på Y : till varje punkt på E svarar en entydigt bestämd punkt på Y,ochomvänt: till varje punkt på Y svarar en punkt på E. (En bijektion mellan E och Y.) Talteori och geometri andra beröringspunkter 13. Rektangeldiagonalen. Låt a och b vara positiva heltal och betrakta ett rektangulärt rutnät med a b kvadratiska rutor. Dra diagonalen. Hur många rutor passerar den igenom? a =,b=3: Diagonalen genom 4 rutor Uttryck t som funktion av x och y. 9. Uttryck x och y som funktioner av t. (Eliminera x och lös ut y först. Det går i omvänd ordning också, men leder till något krångligare räkningar.) 10. Förklara varför de sökta punkterna på E med rationella koordinater svarar mot punkter på Y med rationellt t, d.v.s. t av typen t = v/u, där u och v är heltal. a = 5,b = 7:Diagonalen genom 11 rutor 4

5 Vad Fermat gjorde Fermat bevisade att ekvationen a 4 + b 4 = c inte har några positiva heltalslösningar, vilket genast medför att inte heller a 4 + b 4 = c 4 har några sådana, ty c 4 = c. Fermats bevisidé (på engelska: the method of infinite descent) innebär att man bevisar att, om det funnes en lösning (a, b, c), a,b,c heltal > 0, så finns också en lösning (a 1,b 1,c 1 ), där a 1,b 1,c 1 är positiva heltal och c 1 <c. Detta betyder att om vi hade en lösning, så skulle vi kunna få en oändlig kedja av allt mindre, men positiva heltalslösningar. Detta är en omöjlighet förr eller senare måste vi komma ner till 1 och mellan 0 och 1 finns inga heltal. Slutsatsen blir: det finns ingen lösning. Detaljerna: Det är ingen inskränkning att endast betrakta lösningstripplar utan gemensam faktor: Om ett primtal p delar såväl a som b, så delar p 4 såväl a 4 som b 4 ochdärmedävenc, vilket innebär att p delar c och vi har den strängt mindre lösningstrippeln µ a p, b p, c p Iochmedatt a 4 + b 4 = c a + b m = c är formeln för pythagoreiska tripplar tillämpbar. Har vi en lösning (a, b, c), där talen inte har någon gemensam faktor > 1, så måste det finnas heltal p och q, sådana att a = p q b = pq c = p + q, p och q av olika paritet och utan gemensam faktor Av likheten a + q = p följer nu att p är udda, q är jämnt och a = r s q = rs p = r + s, r och s heltal av olika paritet och utan gemensam faktor Av likheten b =pq, det att p och q inte har någon gemensam faktor, samt att p är udda och q jämnt, följer att Av p = u, u udda q = v q = rs v = rs och det att r och s inte har någon gemensam faktor, följer att och därmed r = w s = z p = r + s u = w 4 + z 4 I och med att alla heltal här är > 0 och u = p p <p + q = c<c så är (w, z, u) en mindre lösning än (a, b, c) till samma ekvation. 5

6 Fermats method of infinite descent 14. Hitta alla heltalslösningar till x 3 +y 3 =4z Visa att x + y + z =xyz inte har några andra heltalslösningar än den triviala x = y = z = Visa att x y + x z + y z = z 4 inte har några heltalslösningar, andra än de triviala då något av talen är =0. Fermats stora sats igen 18. Visa att, om a p + b p = c p skulle vara det minsta motexemplet mot Fermats förmodan, så skulle, för något heltal m, ½ m a + b = p, om p - c p p 1 m p, om p c (Vi har utrett fallet n =4, så p måste vara ett primtal 3.) 17. Letar man med dator efter positiva heltal a och b sådana att a + b 1+ab också är ett heltal får man följande träffar a b a +b 1+ab Noterbart är att alla kvoterna är kvadrattal. Visa att det måste vara så! Antag att (a, b) är ett par av positiva heltal med a + b = heltal, som inte är ett kvadrattal 1+ab och utnyttja det till att konstruera ett par (a 1,b 1 ) med samma egenskap, men med max (a 1,b 1 ) < max (a, b). Problem?? (utan ledningen som ges här!) kom på förslag till IMO, d.v.s. Internationella matematikolympiaden (för gymnasister), 1988 i Canberra. Arthur Engel, ledare för det västtyska laget, berättar i sin bok Problem-Solving Strategies : The problem was submitted by West Germany. Nobody of the six members of the Australian problem committee (som skall testa de föreslagna problemen) could solve it. Two of the members were G.Szekeres and his wife, both famous problem solvers and problem creators. Since it was a number theoretic problem, it was sent to the four most renowned Australian number theorists. They were asked to work on it for six hours. (Tävlingsdeltagarna har att lösa 3 problem på 4 1 timmar, två dagar i rad.) None of them could solve it in this time. The problem committee submitted it to the jury with a double asterisk, which meant a superhard problem, possibly too hard to pose. After a long discussion, the jury finally had the courage to choose it as the last problem of the competition. Eleven students gave perfect solutions. 6

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 65, 982 Årgång 65, 982 Första häftet 3260. På var och en av rutorna på ett schackbräde (med 8 rutor) ligger en papperslapp. Kan man flytta papperslapparna så att samtliga kommer att ligga

Läs mer

Några satser ur talteorin

Några satser ur talteorin Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan

Läs mer

Rätvinkliga rationella trianglar och kongruenta tal

Rätvinkliga rationella trianglar och kongruenta tal U.U.D.M. Project Report 2016:11 Rätvinkliga rationella trianglar och kongruenta tal Hanna Otthén Examensarbete i matematik, 15 hp Handledare: Gunnar Berg Examinator: Veronica Crispin Quinonez Juni 2016

Läs mer

Hela tal LCB 1999/2000

Hela tal LCB 1999/2000 Hela tal LCB 1999/2000 Ersätter Grimaldi 4.3 4.5 1 Delbarhet Alla förekommande tal i fortsättningen är heltal. DEFINITION 1. Man säger att b delar a om det finns ett heltal n så att a Man skriver b a när

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Lösningar till utvalda uppgifter i kapitel 5

Lösningar till utvalda uppgifter i kapitel 5 Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar

Läs mer

Diskret matematik: Övningstentamen 1

Diskret matematik: Övningstentamen 1 Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Geometri, talteori och kombinatorik

Geometri, talteori och kombinatorik Geometri, talteori och kombinatorik Föreläsning 2: Primtal Eric Järpe C 2015 Eric Järpe MPE-lab ITE-akademin Högskolan i Halmstad January 14, 2015 Eric Järpe (Högskolan i Halmstad) Geometri, talteori och

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Niels Chr. Overgaard & Johan Fredriksson 3 september 205 Problem 0. Skriv följande summor mha summationstecken. ( Dvs på formen q k=p a k där k är en räknare som löper med heltalssteg mellan

Läs mer

Pythagoreiska taltripplar

Pythagoreiska taltripplar Pythagoreiska taltripplar In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle. Euclid s Elements, Book I, Proposition

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Student 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER

PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER Explorativ övning 4 PRIMTALEN, MULTIPLIKATION OCH DIOFANTISKA EKVATIONER Syftet med detta avsnitt är att bekanta sig med delbarhetsegenskaper hos heltalen. De viktigaste begreppen är Aritmetikens fundamentalsats

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

Avdelning 1. Trepoängsproblem

Avdelning 1. Trepoängsproblem vdelning 1. Trepoängsproblem Kängurutävlingen Matematikens hopp 1. Hur många tärningsögon finns det sammanlagt på de sidor som du inte kan se på bilden? ) 15 B) 1 C) 7 D) 7 E) Inget av dessa svar (Bulgarien).

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om heltal Mikael Hindgren 17 september 2018 Delbarhet Exempel 1 42 = 6 7 Vi säger: 7 är en faktor i 42 eller 7 delar 42 Vi skriver: 7 42 Definition 1 Om a, b

Läs mer

Kvalificeringstävling den 30 september 2014

Kvalificeringstävling den 30 september 2014 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,

Läs mer

Delbarhet och primtal

Delbarhet och primtal Talet 35 är delbart med 7 eftersom 35 = 5 7 Delbarhet och primtal 7 är en faktor i 35 kan skrivas 7 35 7 är en delare (divisor) till 35 35 är en multipel av 7 De hela talen kan delas in i jämna och udda

Läs mer

Pythagoreiska trianglar

Pythagoreiska trianglar 173 Pythagoreiska trianglar Sten Kaijser Uppsala Universitet Kort beskrivning av specialarbetet. Pythagoreiska trianglar har varit kända i minst 4000 år och kanske ännu längre. De utgör därmed ett av de

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Kvalificeringstävling den 26 september 2017

Kvalificeringstävling den 26 september 2017 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 6 september 017 1. Bestäm alla reella tal x, y, z som uppfyller ekvationerna x + = y y + = z z + = x Lösning 1. Addera

Läs mer

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4.

4. Bestäm alla trippler n 2, n, n + 2 av heltal som samtliga är primtal. 5. Skriv upp additions- och multiplikationstabellen för räkning modulo 4. Uppvärmningsproblem. Hur kan man se på ett heltal om det är delbart med, 2, 3, 4, 5, 6, 7, 8, 9, 0 respektive? Varför? 2. (a) Tänk på ett tresiffrigt tal abc, a 0. Bilda abcabc genom att skriva talet två

Läs mer

TALTEORI FÖR ALLA 1 Juliusz Brzezinski

TALTEORI FÖR ALLA 1 Juliusz Brzezinski TALTEORI FÖR ALLA 1 Juliusz Brzezinski För exakt 10 år sedan publicerade Andrew Wiles sitt bevis av Fermats Stora Sats. Nyheten om hans resultat väckte enorm uppmärksamhet i hela världen. Vägen till lösningen

Läs mer

Kapitel 2: De hela talen

Kapitel 2: De hela talen Kapitel 2: De hela talen Divisionsalgoritmen ( a a Z, d Z\{0} q, r Z : d = q + r ) d, 0 r d c 2005 Eric Järpe Högskolan i Halmstad där q kallas kvoten och r kallas principala resten vid heltalsdivision.

Läs mer

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v

Läs mer

Moment Viktiga exempel Övningsuppgifter

Moment Viktiga exempel Övningsuppgifter Moment Viktiga exempel Övningsuppgifter Inga Inga Inga Fler exempel på optimering Exempel 1. Utifrån en rektangulär pappskiva med bredden 7 dm och längden 11 dm, vill man åstadkomma en kartong utan lock,

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012)

Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) Talteori (OBS en del frågor gäller diofantiska ekvationer och de tas inte upp från och med hösten 2012) T4.4-T4.7, 4.3, 4.7,T4.13-T4.14 S: Jag har svårt för visa-uppgifter. i kapitel 4 Talteori. Kan du

Läs mer

Delkursplanering MA Matematik A - 100p

Delkursplanering MA Matematik A - 100p Delkursplanering MA1201 - Matematik A - 100p som du skall ha uppnått efter avslutad kurs Du skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Funktioner. Räta linjen

Funktioner. Räta linjen Sidor i boken 14-143, 145-147 Funktioner. Räta linjen Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter

Läs mer

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Liten tävling Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Uttryck talet 2013 genom att bara använda fyror. Försök att använda så få fyror som möjligt. Tillåtna operationer är de fyra

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Kängurun Matematikens Hopp

Kängurun Matematikens Hopp Kängurun Matematikens Hopp Student 2009 Här följer svar och lösningar, samt rättningsmall och redovisningsblanketter. Vi ger förslag till lösningsmetod. Bland eleverna i klassen finns säkert andra lösningsmetoder

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet

Svar och lösningar. Kängurutävlingen 2009 Cadet för gymnasiet Svar och lösningar 1: D 200 9 Ett tal är jämnt om entalssiffran är jämn. Det enda talet som uppfyller det villkoret är 200 9 = 1800 2: C 18 cm Stjärnans yttre består av 12 lika långa sidor med sammanlagd

Läs mer

Arbeta vidare med Junior 2010

Arbeta vidare med Junior 2010 Arbeta vidare med Junior 010 Känguruproblemen är kanske inte av samma karaktär som de problem eleverna möter i läroboken. De är inga rutinuppgifter utan bygger på förståelse och grundläggande kunskaper.

Läs mer

Polynomekvationer (Algebraiska ekvationer)

Polynomekvationer (Algebraiska ekvationer) Polynomekvationer (Algebraiska ekvationer) Faktorsatsen 1. Pettersson: teori och exempel på sid. 21-22 Det intressanta är följande idé: Om man på något sätt (Vilket det är en annan fråga, se nedan!) har

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Utforska cirkelns ekvation

Utforska cirkelns ekvation Utforska cirkelns ekvation Målet med denna aktivitet är att eleverna förstår definitionen av en cirkel som en uppsättning av punkter som är lika långt från en given punkt. eleverna förstår att koordinaterna

Läs mer

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart PLANERING MATEMATIK - ÅR 9 Bok: Z (fjärde upplagan) Kapitel : 3 Geometri Kapitel : 4 Samband och förändring Elevens namn: markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE

Läs mer

Övningshäfte 3: Polynom och polynomekvationer

Övningshäfte 3: Polynom och polynomekvationer LMA100 VT2005 ARITMETIK OCH ALGEBRA DEL 2 Övningshäfte 3: Polynom och polynomekvationer Syftet med denna övning är att repetera gymnasiekunskaper om polynom och polynomekvationer samt att bekanta sig med

Läs mer

, S(6, 2). = = = =

, S(6, 2). = = = = 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.

Läs mer

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8)

2 (6) k 0 2 (7) n 1 F k F n. k F k F n F k F n F n 1 2 (8) De naturliga talen. Vi skall till att börja med stanna kvar i världen av naturliga tal, N 3. Vi har redan använt (i beviset av Euklides primtalssats) att de naturliga talen är uppbyggda (genom multiplikation)

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag

Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag Högstadiets matematiktävling 2016/17 Finaltävling 21 januari 2017 Lösningsförslag 1. Lösningsförslag: Låt oss först titta på den sista siffran i 2 0 1 7. Ett tal som är delbart med 2 och 5 är då också

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Pythagoreiska taltripplar

Pythagoreiska taltripplar Pythagoreiska taltripplar In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle. Euclid s Elements, Book I, Proposition

Läs mer

Lösningsförslag till problem från Sonja-Kovalevsky-dagarna 2006, Göteborg

Lösningsförslag till problem från Sonja-Kovalevsky-dagarna 2006, Göteborg Lösningsförslag till problem från Sonja-Kovalevsky-dagarna 2006, Göteborg Jag vill först och främst uppmana läsaren att ha papper och penna till hands och aktivt sätta sig in i lösningarna, och själv fylla

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 28 oktober 2001 1 Heltalen Det första kapitlet handlar om heltalen och deras aritmetik, dvs deras egenskaper som

Läs mer

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant

MATEMATIK ÅK 9 TAL. Matematik - Måldokument Lena Folkebrant Matematik - Måldokument MATEMATIK ÅK 9 TAL Talet nio anses i många kulturer vara ett mystiskt och ibland också ett heligt tal. Innan kristendomen infördes i Norden ansågs talet 9 vara det mest heliga talet.

Läs mer

Matematik 5 Kap 2 Diskret matematik II

Matematik 5 Kap 2 Diskret matematik II Matematik 5 Kap 2 Diskret matematik II Inledning Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_äm nesplan_matematik/struktur_ämnesplan_matematik.html

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3)

Låt eleverna lösa uppgifterna med huvudräkning och sedan jämföra med resultatet av ett program, t.ex. print(6 + 4 * 3) 1 Print 1 Tal, Prioriteringsregler 3 Procent, Procentuella förändringar 2 Variabler Teckna och tolka uttryck Ekvationslösningens grunder 1236 Beräkna utan räknare. a) 6 + 4 3 b) 9 4 12 3 c) 7 (3 + 12)

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

MVE365, Geometriproblem

MVE365, Geometriproblem Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Student. a: 5 b: 6 c: 7 d: 8 e: 3

Student. a: 5 b: 6 c: 7 d: 8 e: 3 Student Avdelning. Trepoängsproblem. Talen 3 och 4 samt två okända tal skrivs in i de fyra rutorna. Summan av talen i raderna blir 5 och 0 och summan av talen i den ena kolumnen blir 9. Vilket är det största

Läs mer

Matematisk kommunikation för Π Problemsamling

Matematisk kommunikation för Π Problemsamling Problemsamling Charlotte Soneson & Niels Chr. Overgaard september 200 Problem. Betrakta formeln n k = k= n(n + ). 2 Troliggör den först genom att exempelvis i summan +2+3+4+5+6 para ihop termer två och

Läs mer

Repetition inför kontrollskrivning 2

Repetition inför kontrollskrivning 2 Sidor i boken Repetition inför kontrollskrivning 2 Problem 1. I figuren ser du två likformiga trianglar. En sida i den större och motsvarande i den mindre är kända. Beräkna arean av den mindre triangeln.

Läs mer

Definitionsmängd, urbild, domän

Definitionsmängd, urbild, domän 5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är

Läs mer

Extraproblem Uppsalas matematiska cirkel

Extraproblem Uppsalas matematiska cirkel Extraproblem Uppsalas matematiska cirkel Gustav Hammarhjelm Våren 2019 Kapitel 1 Ett primtal p är ett heltal skilt från ±1 vars enda heltalsfaktorer är ±1 och ±p. I alla uppgifter på detta blad betraktar

Läs mer

formler Centralt innehåll

formler Centralt innehåll Trigonometri och formler Centralt innehåll Trigonometriska uttrck. Bevis och användning av trigonometriska formler. Olika bevismetoder inom matematiken. Algebraiska metoder för att lösa trigonometriska

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret.

Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. NAN: KLASS: Del A: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt på provpappret. 1) a) estäm ekvationen för den räta linjen i figuren. b) ita i koordinatsystemet en rät linje

Läs mer

Algebra och talteori MMGL31

Algebra och talteori MMGL31 Algebra oh talteori MMGL3 Lärarprogrammet, Göteborgsuniversitet VT 008 Samuel Bengmar Lite om mig Dotorerat i Algebrais geometri Letor vid Matematisa vetensaper, Chalmers oh Göteborgs universitet Anställd

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Teori :: Diofantiska ekvationer v1.2

Teori :: Diofantiska ekvationer v1.2 Teori :: Diofantiska ekvationer v1. 1 Definitioner och inledande exempel Låt oss börja med att göra klart för vad vi menar med en diofantisk ekvation: S:def+ex Definition 1.1. Betrakta ekvationen D:diofantiskEkv

Läs mer

Den räta linjens ekvation

Den räta linjens ekvation Den räta linjens ekvation Här följer en dialog mellan studenten Tor-Björn (hädanefter kallad TB) och hans lärare i matematik Karl-Ture Hansson (nedan kallad KTH). När vi möter dem för första gången är

Läs mer

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA Röd kurs Mål: I den här kursen får du lära dig att: ~ multiplicera parenteser ~ använda kvadreringsregler ~ använda konjugatregeln ~ uttrycka formler på olika sätt Matteord första kvadreringsregeln andra

Läs mer

Introduktionskurs i matematik LÄSANVISNINGAR

Introduktionskurs i matematik LÄSANVISNINGAR UPPSALA UNIVERSITET Matematiska institutionen Höstterminen 006 Introduktionskurs i matematik för civilingenjörsprogrammet F Tentamen på Introduktionskursen i matematik äger rum lördagen den 6 september

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Tal och polynom. Johan Wild

Tal och polynom. Johan Wild Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

Anteckningar propp SMT2

Anteckningar propp SMT2 Anteckningar propp SMT2 Lars Åström 11 december 2015 Under proppen ska följande gås igenom: Induktion - dominoeffekten Falluppdelning Extremprincipen Invarians Andra knep som används Induktion Vi använder

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x.

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. f(x) = arctan x. TENTAMENSSKRIVNING Endimensionell analys, B1 010 04 06, kl. 8 1 INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga och tydliga motiveringar. 1. a) Lös ekvationen cos sin + 1 = 0. (0.) b) Lös

Läs mer

Några feta resultat av Gauss och ett mindre fett som har hans namn

Några feta resultat av Gauss och ett mindre fett som har hans namn Några feta resultat av Gauss och ett mindre fett som har hans namn Spyken, Lund 2 september 2012 Gausselimination 1 Gausselimination är en central teknik som används för att på ett systematiskt sätt lösa

Läs mer

Ansats till att bevisa Fermats stora sats,

Ansats till att bevisa Fermats stora sats, Ansats till att bevisa Fermats stora sats, x n + y n = z n Sina Mozayyan Esfahani N3D, Kungsholmens Gymnasium Gymnasiearbete 100 poäng Naturvetenskapligt program Läsåret: 2013-2014 Handledare: Helena Danielsson

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

1 Euklidisk geometri.

1 Euklidisk geometri. 1 Euklidisk geometri. Pythagoras (ca 570 497 f. kr.) grundade i Kroton i nuvarande södra Italien en skola vars motto var Allt är tal. Skolans medlemmar, pytagoreerna, försökte visa att allt i deras omvärld

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

Bedömningsanvisningar

Bedömningsanvisningar Bedömningsanvisningar Exempel på ett godtagbart svar anges inom parentes. Till en del uppgifter är bedömda elevlösningar bifogade för att ange nivån på bedömningen. Om bedömda elevlösningar finns i materialet

Läs mer

Geometri och Trigonometri

Geometri och Trigonometri Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner

Läs mer

Kvalificeringstävling den 29 september 2009

Kvalificeringstävling den 29 september 2009 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som

Läs mer

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning

Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som

Läs mer

TALSYSTEM, DELBARHET OCH PRIMTAL

TALSYSTEM, DELBARHET OCH PRIMTAL Explorativ övning 3 TALSYSTEM, DELBARHET OCH PRIMTAL Syftet med detta avsnitt är att titta närmare på positionssystemet och på heltalens multiplikativa struktur. De viktigaste begreppen är presentation

Läs mer