Laboration 2: Sannolikhetsteori och simulering

Storlek: px
Starta visningen från sidan:

Download "Laboration 2: Sannolikhetsteori och simulering"

Transkript

1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT17 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen Beroende Betingade fördelningar Funktioner av stokastiska variabler Gauss approximationsformler Simulering av tvådimensionella normalfördelade stokastiska variabler Stokastisk simulering är ett mycket viktigt redskap inom teknisk modellering och som illustration av slumpmässig variation tittar vi på några enkla kretsar där komponenternas toleransområden modelleras i form av rektangelfördelningar. 1 Förberedelseuppgifter Som förberedelse till laborationen bör du läsa igenom Kapitel 3.10, 4.5, 4.8, 5 och 7, samt hela laborationshandledningen och stencilen om Gauss approximationsformler. Till laborationens start har du med dig lösningar till uppgifterna a) e): a) Definiera följande begrepp: oberoende stokastiska variabler, väntevärde, varians, kovarians, korrelation och betingad täthetsfunktion. (Behövs i avsnitt 2). b) Skriv upp den simultana täthetsfunktionen för X och Y om X N (μ X,σ X ) och Y N (μ Y,σ Y ) och X och Y är oberoende av varandra. c) Låt X 1 och X 2 vara oberoende och normalfördelade med väntevärde 0 och varians 1 och låt Y 1 = X 1, Y 2 = ax 1 + (1 a 2 ) X 2. Bestäm V (Y 1 ), V (Y 2 ) och C(Y 1, Y 2 ) och korrelationskoefficientenρ(y 1, Y 2 ). (Tips. Kovariansen är bilinjär!) (Behövs i avsnitt 3). d) Skriv upp Gauss approximationsformler för en funktion g(x, Y ) av två stokastiska variabler X och Y. (Behövs i avsnitt 3). e) Lös övningsuppgift SL66. (Behövs i avsnitt 3).

2 2 Laboration 2, Matstat AK för F och fysiker, VT17 2 Betingade fördelningar Den här avsnittet syftar till att belysa begreppet betingad fördelning. Detta är viktigt eftersom betingade fördelningar och speciellt deras väntevärden och varianser är grundläggande för all prediktion och rekonstruktion i stokastiska system. Avsikten är också att du skall träna på korrelation som mått på beroende mellan två stokastiska variabler X och Y. Vi arbetar här med en tvådimensionell normalfördelning (X, Y ). Täthetsfunktionen för en tvådimensionell normalfördelning med väntevärdenμ X,μ Y, standardavvikelserσ X,σ Y och korrelationskoefficientρ=ρ(x, Y ) = C(X,Y ) σ X σ Y är där f X,Y (x, y) = { 1 = K exp 2(1 ρ 2 ) [(x μ X σ X K = ) 2 + ( y μ Y σ Y Vad gäller för beroendet mellan X och Y om ρ = 0? ) 2 2ρ( x μ X σ X 1 2πσ X σ Y 1 ρ 2. )( y μ } Y )], σ Y Genom att bestämma den betingade täthetsfunktioneen f X Y (x y) = f X,Y (x,y) f Y (y) ser man att den betingade fördelningen för X givet att Y = y är en endimensionell normalfördelning med E(X Y = y) =μ X +ρ σ X σ Y (y μ Y ) V (X Y = y) =σ X 2 (1 ρ 2 ). Observera att det betingade väntevärdet är lika medμ X plus en korrektionsterm som beror linjärt av y medan den betingade variansen bara beror på ρ. (Analoga formler gäller för n-dimensionella normalfördelningar.) Du ska nu studera grafiskt hur den betingade fördelningen, väntevärdet och variansen för X ändras då vi skruvar lite på de olika parametrarna i uttrycken ovan. Med andra ord, hur ändras vår information om X efter det att vi observerat att Y = y? Till din hjälp finns två m-filer ÒÓÖÑ Ð¾ och ÓÒ ÒÓÖÑ Ð som ger dig bilder över de inblandade täthetsfunktionerna. ÒÓÖÑ Ð¾ μ X,μ Y,σ X,σ Y,ρµ ger en bild över den tvådimensionella täthetsfunktionen dess nivåkurvor och de marginella täthetsfunktionerna för X och Y. Funktionen ÓÒ ÒÓÖÑ Ð ger bilder av de betingade täthetsfunktionerna. ÓÒ ÒÓÖÑ Ð μ X,μ Y,σ X,σ Y,ρ, y,yµ genererar t ex en bild över den betingade täthetsfunktionen för X givet att Y = y. Undersök hur betingat väntevärde och varians påverkas för små resp stora värden påρ,σ X ochσ Y. Vad händer omρ = 0 eller 0.99? Använd t.ex. ÓÒ ÒÓÖÑ Ð samt ÓÐ ÓÒ och studera hur tätheten ändras medρochσ Y. Vad händer när du ändrarρochσ Y?

3 Laboration 2, Matstat AK för F och fysiker, VT17 3 Svar:... 3 Simulering 3.1 Simulering av oberoende normalfördelade s.v. Metoden att transformera med inversen till en fördelningsfunktion fungerar bra så länge som fördelningsfunktionen kan beräknas exakt. Detta är inte fallet för t ex normalfördelningen. Det finns dock ett flertal metoder för att simulera slumptal från denna fördelning. En av de enklaste är att summera ett antal R(0, 1)-fördelade slumptal och med stöd av centrala gränsvärdessatsen betrakta summan som normalfördelad. Den metod vi skall studera använder det faktum att om U och V är två oberoende R(0, 1)-fördelade variabler, så är och X = cos(2πu ) 2 ln V Y = sin(2πu ) 2 ln V N(0,1)-fördelade och oberoende. Detta kan visas på följande sätt. Utgå från den simultana täthetsfunktionen för två oberoende N (0, 1) variabler X, Y. f X,Y (x, y) = 1 2π exp( 1 2 (x2 + y 2 )) Inför polära koordinater x = r cos(θ) y = r sin(θ) Den simultana täthetsfunktionen för (R,Θ) blir då där f R,Θ (r,θ) = 1 2π exp( r2 2 ) J J = x r x θ y r y θ = r och detta gäller för området 0 θ 2π, r 0. Nästa steg är att beräkna de marginella täthetsfunktionerna för R, R 2 och θ. f R (r) = 2π r 0 2π e r 2 2 dθ = re r2 2, r 0 F R 2(r) = P(R 2 r) = [R 0] = P(R r) = F R ( r) f R 2(r) = d dr F R( r) = 1 2 r f R( r) = 1 2 e r 2, r 0

4 4 Laboration 2, Matstat AK för F och fysiker, VT17 Alltså: R 2 Exp(2) Dvs.Θ R(0, 2π) f Θ (θ) = r 0 2π e r 2 [ 2 dr = 1 ] 2π e r = 1 2π, 0 θ 2π Om nu U, V R(0, 1) så kan R och Θ erhållas som funktioner av V resp. U enligt R = 2 ln V och eller uttryckt i X och Y och Θ = 2πU X = cos(2πu ) 2 ln V Y = sin(2πu ) 2 ln V Ur ovanstående framgår att (X, Y ) kan ses som en punkt i planet, framställd i polär form, där 2πU är vinkeln och 2 ln V är absolutbeloppet. Slut på bevis! Använd metoden ovan för att simulera 2000 stycken N (0, 1)-fördelade slumptal. Kom ihåg att º ger elementvis multiplikation. Taletπfinns inlagt i Matlab och heter Ô. Studera histogrammet ( Ø) och använd ÒÓÖÑÔÐÓØ för att undersöka om metoden fungerar som den skall? Pröva gärna att göra en tvådimensionell plot av ett antal par (X, Y ) enligt ovan. Ett sådant par sägs ha en tvådimensionell normalfördelning. Kommandot ÔÐÓØ Ü Ý ³º³µ plottar vektorn Ü mot vektorn Ý genom att placera en punkt (º) i varje datapunkt. En plot enligt ovan visar att alla vinklar är lika vanligt förekommande, vilket är väntat eftersom vinkeln är 2πU, och U är rektangelfördelad. Absolutbeloppet är däremot inte likformigt fördelat, eftersom R 2 är exponentialfördelad med väntevärde 2 enligt ovan. Med andra ord har vi fått fram att om (X, Y ) är en tvådimensionellt normalfördelad stokastisk variabel där de enskilda komponenterna X och Y båda har väntevärdet 0, variansen 1 och är oberoende, så beror tätheten för (X, Y ) i en punkt (x, y) endast av avståndet från (x, y) till origo. Vi har också fått fram att kvadratsumman R 2 = X 2 + Y 2 Exp(2). Matlab har givetvis en egna funktioner Ö Ò Ò och ÒÓÖÑÖÒ (Statistics Toolbox) som genererar oberoende normalfördelade slumptal. Med hjälp av kommandot Ö Ò Ò Ñ Òµ erhåller man en m n-matris med normalfördelade slumptal med väntevärde 0 och varians Simulering av beroende N (0, 1)-fördelning Generera två vektorer ܽ och ܾ med vardera 2000 oberoende N (0, 1)-fördelningar enligt föregående avsnitt. Använd sedan förberedelseuppgift c) för att transformera dessa till två vektorer ݽ och ݾ med några lämpliga val av korrellationskoefficienter (dvs a i förberedelseuppgiften). kontrollera resultatet med ÔÐÓØ Ý½ ݾ ³º³µ.

5 Laboration 2, Matstat AK för F och fysiker, VT Simulering av spridning i passiva komponenter Simulering av lågpass RC-filter Ett lågpass RC-filter (Figur 1) har frekvensfunktionen H(f ) = 1 1+i2πRCf. Anta nu att R = 1kΩ och C = 0.1μF. Plotta amplitudfunktionen A(f ) = H(f ) i frekvensintervallet 10 Hz till 10 6 Hz. ÕÖØ ¹½µ Ê ½ ¼º½ ¹ ÐÔ ÐÓ Ô ÐÓ Ô ½ ¼¼µ À ½º» ½ ¾ Ô Ê µ ÐÔ ÐÓ ÐÓ ÐÓ ÐÓ Àµµ R + + Uin C Uut Figur 1: Ett första ordningens lågpass RC-filter. Frekvensen f b = 1 2πRC kallas brytfrekvensen och är den frekvens där H(f ) = 1 2 max( H(f ) ). I det här fallet är f b = 1 2πRC 1.6kHz. Så här långt verkar ju allt lugnt och deterministiskt. Men, låt oss nu anta att vi skall serietillverka en massa sådana lågpassfilter. Komponenterna vi använder kommer ju inte att vara exakt lika med de nominella värderna (i det här fallet 1kΩ och 0.1μF) utan det finns alltid en viss variation mellan olika exemplar. Antag att vi använder oss av resistorer märkta 1kΩ ±10% och kondensatorer märkta 0.1μF ± 20%. Då kan R och C tolkas som stokastiska variabler och H(f ), som ju är en funktion av R och C, kommer också vara en stokastisk variabel (för varje f). Vidare ser vi att brytfrekvensen f b också kommer att vara en stokastisk variabel. Antag att R och C är likformigt fördelade över intervallet och generera ett tiotal R och C och se hur A(f ) varierar. I Matlab finns speciella funktioner som genererar slumptal från given fördelning, i detta fall kommer vi använda funktionen ÙÒ ÖÒ. ÐÔ ÙÒ ÖÒ Ö ÙÒ ÖÒ ¼º Ê ½º½ Ê ½¼ ½µ

6 6 Laboration 2, Matstat AK för F och fysiker, VT17 ÙÒ ÖÒ ¼º ½º¾ ½¼ ½µ ÙÖ ¾µ ÓÐ Ó ÓÖ ½ ½¼ ÐÓ ÐÓ ½º» ½ ¾ Ô º Ö µ µµµµ ÓÐ ÓÒ Ò Ser det ut att vara stor spridning på A(f )? Hur ser täthetsfunktionen för f b ut? Vad kommer det förväntade f b att bli? Hur stor spridning är det på f b? Besvara dessa frågor genom att simulera f b 1000 gånger och uppskatta E(f b ) och V (f b ) med funktionerna Ñ Ò och Ú Ö. Jämför uppskattat väntevärde och varians med dina resultat från förberedelseuppgift d). För att titta på täthetsfunktionen använder du Ø-kommandot. Om du vill kan du även jämföra med de exakta värdena på brytfrekvensens väntevärde och varians. De är ganska besvärliga att räkna ut, men du kan använda funktionen Ø Ø Ê Ö µ som även ritar upp brytfrekvensens täthetsfunktion. Gör om ovanstående simuleringar med mindre spridning på R och C, t.ex. 2% på R och 5% på C. (Kom ihåg att noggrannare komponenter är dyrare, så dina serieproducerade RC-länkar kommer att kosta mer.) Stämmer Gaussapproximationen bättre nu och i så fall varför? Bortfiltrering av periodisk störning i fyrkantsvåg I den här uppgiften belyses ett av alla de problem som kan uppstå på grund av spridning i komponenter. En signalgenerator som genererar en fyrkantsvåg med frekvensen 10 khz skall tillverkas. Av någon anledning, kanske p.g.a. överhörning inom signalgeneratorn, uppstår tyvärr en stor störning i form av en ren sinussignal med frekvensen 20 khz. I funktionen ÕÙ Ö ÔÐÙ ØÙÖ Ò visas hur fyrkantsvågen, störningen och den sammansatta signalen ser ut. Titta på dem. ÕÙ Ö ÔÐÙ ØÙÖ Ò Uppgiften nu är att konstruera ett filter som filtrerar bort denna störning. Vi vet från kurser i komplex analys att fyrkantsvågen kan skrivas som en Fourierserie, s(t) = k=0 4 sin(2π(2k + 1)f 0 t) = 4 ( sin(2πf 0 t)+ sin(2π3f ) 0t) +..., π 2k+1 π 3

7 Laboration 2, Matstat AK för F och fysiker, VT17 7 dvs som en grundton plus udda övertoner. I detta fall är f 0 = 10 khz. Alltå borde ett smalbandigt s.k. bandspärrfilter som spärrar för just frekvenser kring 20 khz kunna användas. Ett enkelt sådant filter kan göras såsom i figur 2. Detta filter har frekvensfunktionen H(f ) = 4π 2 f LC 4π 2 f 2 + i2πf R L + 1 LC där L = 3.5 mh, C = 18 nf och R = 30Ω i vårt fall. Funktionen Ð ÛÓÖÐ visar hur H(f ), den störda insignalen till filtret och utsignalen från filtret ser ut om L, C och R är exakt som ovan. Titta på dem! ÐÔ Ð ÛÓÖÐ Ð ÛÓÖÐ Ser utsignalen bra ut? (Överkurs: Kan du förklara varför utsignalen inte blir en helt perfekt fyrkantsvåg?) Svar:... + R + U in L Uut C Figur 2: Ett andra ordningens passivt bandspärrfilter. Nu till verkligheten. Vi vill göra filtret så billigt som möjligt och använder oss därför av R som har en tolerans på ±10% och L och C som har en tolerans på ±20%. Vidare tror vi att fördelningarna är likformigt fördelade i respektive intervall. Hur kommer utsignalen då att se ut? Simulera och se hur serieproducerade exemplar av vår signalgenerator plus filter kommer att uppföra sig. Programmet Ö Ð ÛÓÖÐ gör denna simulering. ÐÔ Ö Ð ÛÓÖÐ Ê ¼ Ä º ¹ ½ ¹ ØÓÐ Ê ½¼ ØÓÐ Ä ¾¼ ØÓÐ ¾¼ Ö Ð ÛÓÖÐ Ê Ä ØÓÐ Ê ØÓÐ Ä ØÓÐ µ

8 8 Laboration 2, Matstat AK för F och fysiker, VT17 Hur ser det ut? Ö Ð ÛÓÖÐ gör 30 simuleringar. Du kan stoppa programmet tidigare med kommandot ctrl-c. Blir det bättre om vi köper dyrare komponenter och alltså minskar toleransen? Vad skall vi dra för slutsats av allt detta?

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen

Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR I, FMS 12, HT-8 Laboration 3: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Föreläsning 6, Matematisk statistik Π + E

Föreläsning 6, Matematisk statistik Π + E Repetition Kovarians Stora talens lag Gauss Föreläsning 6, Matematisk statistik Π + E Sören Vang Andersen 2 december 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F6 1/20 Repetition Kovarians Stora

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT17 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03

KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-18 MATEMATISK STATISTIK AK FÖR D, I OCH PI, FMSF45 & MASB03 Allmänt Kursen ger 9hp och omfattar 36 timmar föreläsning, 28 timmar

Läs mer

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016

SF1901: SANNOLIKHETSTEORI OCH KONTINUERLIGA STOKASTISKA VARIABLER STATISTIK. Tatjana Pavlenko. 7 september 2016 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 4 KONTINUERLIGA STOKASTISKA VARIABLER Tatjana Pavlenko 7 september 2016 PLAN FÖR DAGENS FÖRELÄSNING Repetition av diskreta stokastiska variabler. Väntevärde

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer

Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Föreläsning 5, Matematisk statistik 7.5hp för E Linjärkombinationer Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F5: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Föreläsning 7: Stokastiska vektorer

Föreläsning 7: Stokastiska vektorer Föreläsning 7: Stokastiska vektorer Johan Thim johanthim@liuse oktober 8 Repetition Definition Låt X och Y vara stokastiska variabler med EX = µ X, V X = σx, EY = µ Y samt V Y = σy Kovariansen CX, Y definieras

Läs mer

Kurssammanfattning MVE055

Kurssammanfattning MVE055 Obs: Detta är enbart tänkt som en översikt och innehåller långt ifrån allt som ingår i kursen (vilket anges exakt på hemsidan). Fullständiga antaganden i satser kan saknas och fel kan förekomma så kontrollera

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 14 18 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341, STN2) 213-1-11 kl 14 18 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd

Läs mer

Oberoende stokastiska variabler

Oberoende stokastiska variabler Kapitel 6 Oberoende stokastiska variabler Betrakta ett försök med ett ändligt (eller högst numrerbart) utfallsrum Ω samt två stokastiska variabler ξ och η med värdemängderna Ω ξ och Ω η. Vi bildar funktionen

Läs mer

2.1 Mikromodul: stokastiska processer

2.1 Mikromodul: stokastiska processer 2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

Föreläsning 6, FMSF45 Linjärkombinationer

Föreläsning 6, FMSF45 Linjärkombinationer Föreläsning 6, FMSF45 Linjärkombinationer Stas Volkov 2017-09-26 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F6: linjärkombinationer 1/20 sum/max/min V.v./var Summa av två oberoende, Z = X + Y p Z (k)

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

TMS136. Föreläsning 5

TMS136. Föreläsning 5 TMS136 Föreläsning 5 Två eller flera stokastiska variabler I många situationer är det av intresse att betrakta fler än en s.v. åt gången Speciellt gör man det i statistik där man nästan alltid jobbar med

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Datorövning 2 med Maple, vt

Datorövning 2 med Maple, vt Flerdimensionell analys, vt 1 2009 Datorövning 2 med Maple, vt 1 2009 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator, transformera

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012

KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK KURSPROGRAM HT-10 MATEMATISK STATISTIK AK FÖR CDI, FMS 012 Hemsida Kursens hemsida finns på http://www.maths.lth.se/matstat/kurser/fms012/

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

x + y + z = 0 ax y + z = 0 x ay z = 0

x + y + z = 0 ax y + z = 0 x ay z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 2011-12-13 kl 1419 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A

Tentamen i Beräkningsvetenskap II, 5.0 hp, Del A Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Tentamen i Beräkningsvetenskap II, 5.0 hp, 2016-03-16 Del A 1. (a) Beräkna lösningen Ù vid Ø = 03 till differentialekvationen

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Monte Carlo-metoder. Bild från Monte Carlo

Monte Carlo-metoder. Bild från Monte Carlo Monte Carlo-metoder 0 Målen för föreläsningen På datorn Bild från Monte Carlo http://en.wikipedia.org/wiki/file:real_monte_carlo_casino.jpg 1 Begrepp En stokastisk metod ger olika resultat vid upprepning

Läs mer

Stokastiska processer med diskret tid

Stokastiska processer med diskret tid Stokastiska processer med diskret tid Vi tänker oss en följd av stokastiska variabler X 1, X 2, X 3,.... Talen 1, 2, 3,... räknar upp tidpunkter som förflutit från startpunkten 1. De stokastiska variablerna

Läs mer

VÄXELSTRÖM SPÄNNINGSDELNING

VÄXELSTRÖM SPÄNNINGSDELNING UMEÅ UNIVERSITET Tillämpad fysik och elektronik Agneta Bränberg 1996-06-12 VÄXELSTRÖM SPÄNNINGSDELNING Laboration E10 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg.

1. En kortlek består av 52 kort, med fyra färger och 13 valörer i varje färg. Tentamenskrivning för TMS63, Matematisk Statistik. Onsdag fm den 1 juni, 16, Eklandagatan 86. Examinator: Marina Axelson-Fisk. Tel: 7-88113. Tillåtna hjälpmedel: typgodkänd miniräknare, tabell- och formelhäfte

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 27 / TEN 2 augusti 218, klockan 8.-12. Examinator: Jörg-Uwe Löbus (Tel: 79-62827) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Föreläsning 7. Statistikens grunder.

Föreläsning 7. Statistikens grunder. Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola.

Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tentamen i TMA321 Matematisk Statistik, Chalmers Tekniska Högskola. Tid: Måndagen den 2015-06-01, 8.30-12.30. Examinator och Jour: Olle Nerman, tel. 7723565, rum 3056, MV, Chalmers. Hjälpmedel: Valfri

Läs mer

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK.

SF1901: SANNOLIKHETSTEORI OCH MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. STATISTIK. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 6 MER ON VÄNTEVÄRDE OCH VARIANS. KOVARIANS OCH KORRELATION. STORA TALENS LAG. Tatjana Pavlenko 12 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition

Läs mer

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017

SF1901: SANNOLIKHETSTEORI OCH FLERDIMENSIONELLA STOKASTISKA STATISTIK VARIABLER. Tatjana Pavlenko. 8 september 2017 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 5 FLERDIMENSIONELLA STOKASTISKA VARIABLER Tatjana Pavlenko 8 september 2017 PLAN FÖR DAGENS FÖRELÄSNING Repetition av de viktiga begreppen diskret/kontinuerlig

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 3 Kontinuerliga sannolikhetsfördelningar (LLL Kap 7 & 9) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics

Läs mer