Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen

Storlek: px
Starta visningen från sidan:

Download "Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen"

Transkript

1 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR I, FMS 12, HT-8 Laboration 3: Sannolikhetsteori och simulering Syftet med den här laborationen är att du skall bli mer förtrogen med några viktiga områden inom kursen nämligen Betingade fördelningar Beroende Stora talens lag Centrala gränsvärdessatsen Simulering av tvådimensionella normalfördelade stokastiska variabler Funktioner av stokastiska variabler 1 Förberedelseuppgifter Som förberedelse till laborationen bör du läsa igenom Kapitel 3.1, , 5.1 4, 5.7, 6.6 och laborationshandledningen. Till laborationens start har du med dig lösningar, som du kan redogöra för, till uppgifterna (a) (d): (a) Definiera följande begrepp: oberoende stokastiska variabler, väntevärde, varians, kovarians, korrelation och betingad täthetsfunktion. (b) Skriv upp den simultana täthetsfunktionen för X och Y om X N(m X, X ), Y N(m Y, Y ) och X och Y är oberoende av varandra. (c) Vilken fördelning har Y = X + m om X N(, 1), m och är tal där >? (d) Låt (X, Y ) ha en tvådimensionell normalfördelning med m X = 1,m Y = 2, X = 1, Y =.5 och Ö =.6. Ange fördelningen för X givet att Y = 1. 2 Betingade fördelningar Till den här delen av laborationen behöver du de två specialrutinernanormal2d ochcondnormal. Gå in på kursens hemsida och ladda ner dem till dinmatlab-katalog. Det här avsnittet syftar till att belysa begreppet betingad fördelning. Detta är viktigt eftersom betingade fördelningar och speciellt deras väntevärden och varianser är grundläggande för all prediktion och rekonstruktion i stokastiska system. Avsikten är också att du skall träna på korrelation som mått på beroende mellan två stokastiska variabler X och Y. Vi arbetar här med en tvådimensionell normalfördelning (X, Y ). Täthetsfunktionen för en tvådimensionell normalfördelning med väntevärden m X, m Y, standardavvikelser X, Y och korrelationskoefficient Ö = Ö(X, Y ) = C(X, Y ) är X Y { [ 1 f X,Y (x, y) = K exp 2(1 Ö 2 ( x m X ) 2 + ( y m Y ) 2 2Ö( x m X )( y m ]} Y ), ) X Y X Y där K = 1 2Ô X Y 1 Ö 2.

2 Vad gäller för beroendet mellan X och Y om Ö =? Genom att bestämma den betingade täthetsfunktionen f X Y (x y) = f X,Y (x, y) ser man att den betingade f Y (y) fördelningen för X givet att Y = y är en endimensionell normalfördelning med E(X Y = y) = m X + Ö X Y (y m Y ), V (X Y = y) = 2 X (1 Ö 2 ). Observera att det betingade väntevärdet är lika med m X plus en korrektionsterm som beror linjärt av y medan den betingade variansen bara beror på Ö. (Analoga formler gäller för n-dimensionella normalfördelningar.) Du ska nu studera grafiskt hur den betingade fördelningen, väntevärdet och variansen för X ändras då vi skruvar lite på de olika parametrarna i uttrycken ovan. Med andra ord, hur ändras vår information om X efter det att vi observerat att Y = y? Till din hjälp finns två specialskrivna m-filer, normal2d och condnormal, som ger dig bilder över de inblandade täthetsfunktionerna. Kommandot normal2d(m X,m Y, X, Y,Ö) ger en bild över den tvådimensionella täthetsfunktionen, dess nivåkurvor och de marginella täthetsfunktionerna för X och Y. Funktionencondnormal() ger bilder av de betingade täthetsfunktionerna. Kommandot condnormal(m X,m Y, X, Y,Ö, y,y) genererar t.ex. en bild över den betingade täthetsfunktionen för X givet att Y = y. Rita några olika fördelningar och undersök hur betingat väntevärde och varians påverkas för små resp. stora värden på Ö, X och Y. Vad händer om Ö = eller.99? Använd t.ex.condnormal samthold on och studera hur tätheten ändras med Ö och Y. Vad händer när du ändrar Ö och Y? 3 Stora talens lag Stora talens lag säger att om X n är medelvärdet av n likafördelade oberoende stokastiska variabler X 1,..., X n med ändlig varians, så gäller att P( X n m X > ) då n för varje >, vilket också kan uttryckas som att X n m X i sannolikhet. Enklare uttryckt så kommer medelvärdet av n variabler att avvika allt mindre från väntevärdet då n växer. Ett sätt att illustrera detta är att kasta en tärning många gånger och se att de successiva medelvärdena konvergerar mot väntevärdet. Simulera först 1 tärningskast: >> help unidrnd >> X=unidrnd(6,1,1) Ett sätt att räkna ut de successiva medelvärdena är följande: >> Xbar=cumsum(X)./(1:1) 2

3 Funktionen cumsum ger en vektor där element i är summan av de i första elementen i inparametern, i vårt fall X. Notationen./ betyder elementvis division och (1:1) är en kolonnvektor med talen 1 t.o.m. 1. Tänk ut attxbar innehåller de successiva medelvärdena. Plotta dem. >> plot(1:1,xbar) Gör om alltihop med fler kast, t.ex. 1 st. Ser allt ut som du väntat dig? 4 Centrala gränsvärdessatsen Börja med att hitta på en diskret sannolikhetsfunktion med några möjliga utfall, t.ex. den likformiga fördelningen över 1 t.o.m. 6, dvs ett tärningskast. Mata sedan in denna sannolikhetsfunktion i form av en vektor. >> p=[ ]/6 Nollan finns där för att det blir lättare att hålla reda på saker och ting om det första elementet i vektorn är sannolikheten för att utfallet är noll. Välj gärna någon annan sannolikhetsfunktion än ovanstående förslag. Rita upp sannolikhetsfunktionen med kommandotbar. >> bar(:length(p)-1,p) Funktionenlength ger längden av en vektor. Som du vet beräknas sannolikhetsfunktionen för en summa av två oberoende diskreta stokastiska variabler genom en diskret faltning, se formel (4.14) i boken. I MATLAB finns en funktion, conv, som utför just en sådan faltning (faltning heter convolution på engelska). >> p2=conv(p,p) >> p4=conv(p2,p2) >> p8=conv(p4,p4) Här blir p8 alltså sannolikhetsfunktionen för en summa av åtta stycken oberoende stokastiska variabler med sannolikhetsfunktionen p. Rita upp dessa nya sannolikhetsfunktioner. När börjar det likna en normalfördelning? Räkna nu ut väntevärde och standardavvikelse för en stokastisk variabel med sannolikhetsfunktionenp. >> m=sum((:6).*p) >> sigma=sqrt(sum(((:6)-m).^2.*p)) Funktionen sum ger summan av elementen i en vektor, notationen.^2 betyder elementvis kvadrering av en vektor och sqrt är kvadratroten. Vi kan nu jämföra sannolikhetsfunktionen p4 med den approximativa normalfördelning N(nm, n) (där n = 4) som vi får ur Centrala gränsvärdessatsen. >> bar(:length(p4)-1,p4) >> hold on >> xx=:.5:3; >> plot(xx,normpdf(xx,4*m,sqrt(4)*sigma)) >> hold off Kommandot hold on gör att det man ritat inte tas bort vid nästa plottning. Approximeras p4 väl av normalfördelningen? Pröva också vad som händer ompär en mycket sned fördelning, t.ex. 3

4 >> p=[ ]/15 Hur många komponenter behövs det nu i summan för att fördelningen väl ska kunna approximeras med en normalfördelning? 5 Simulering 5.1 Simulering av oberoende normalfördelade s.v. Metoden att transformera med inversen till en fördelningsfunktion fungerar bra så länge fördelningsfunktionen kan beräknas exakt. Detta är inte fallet för t.ex. normalfördelningen. Det finns dock ett flertal metoder för att simulera slumptal från denna fördelning. Den metod vi skall studera här använder det faktum att om U och V är två oberoende R(, 1)-fördelade variabler, så är och X = cos(2ôu ) 2 ln V Y = sin(2ôu ) 2 ln V N(, 1)-fördelade och oberoende. Detta kan visas på följande sätt. Bevis Utgå från den simultana täthetsfunktionen för två oberoende N(, 1)-variabler X och Y : f X,Y (x, y) = 1 Inför polära koordinater x = r cos(θ), y = r sin(θ). 2Ô e (x2 +y 2 )/2. Den simultana täthetsfunktionen för (R, Â) blir då där f R, (r,θ) = 1 /2 2Ô e r2 J J = x r x θ y r y θ = r och detta gäller för området θ 2Ô, r. Nästa steg är att beräkna de marginella täthetsfunktionerna för R, R 2 och Â: f R (r) = 2Ô r 2Ô e r2 /2 dθ = re r2 /2, r F R 2(r) = P(R 2 r) = [ ty R ] = P(R r) = F R ( r) f R 2(r) = d dr F R( r) = 1 2 r f R( r) = 1 2 e r/2, r Dvs. R 2 Exp(2). 4

5 Vidare har vi att f  (θ) = r 2Ô e r2 /2 dr = [ 1 ] /2 2Ô e r2 = 1 2Ô, θ 2Ô Dvs.  R(, 2Ô). Om nu U, och V R(, 1) så kan R och  erhållas som funktioner av V resp. U enligt R = 2 ln V och  = 2ÔU eller, uttryckt i X och Y och X = cos(2ôu ) 2 ln V Y = sin(2ôu ) 2 ln V Ur ovanstående framgår att (X, Y ) kan ses som en punkt i planet, framställd i polär form, där 2ÔU är vinkeln och 2 ln V är absolutbeloppet. Slut på bevis! Använd metoden ovan för att simulera 1 stycken N(, 1)-fördelade slumptal. Kom ihåg att.* ger elementvis multiplikation. Talet Ô finns inlagt i Matlab och heter pi. Studera histogrammet, hist, och användnormplot för att undersöka om metoden fungerar som den skall. Svar:... Pröva gärna att göra en tvådimensionell plot av ett antal par (X, Y ) enligt ovan. Ett sådant par sägs ha en tvådimensionell normalfördelning. Kommandot >> plot(x,y,. ) plottar vektorn x mot vektorn y genom att placera en punkt (.) i varje datapunkt. En plot enligt ovan visar att alla vinklar är lika vanligt förekommande, vilket är väntat eftersom vinkeln är 2ÔU, och U är rektangelfördelad. Absolutbeloppet är däremot inte likformigt fördelat, eftersom R 2 är exponentialfördelad med väntevärde 2 enligt ovan. Med andra ord har vi fått fram att om (X, Y ) är en tvådimensionellt normalfördelad stokastisk variabel där de enskilda komponenterna X och Y båda har väntevärdet, variansen 1 och är oberoende, så beror tätheten för (X, Y ) i en punkt (x, y) endast av avståndet från (x, y) till origo. Vi har också fått fram att kvadratsumman R 2 = X 2 + Y 2 Exp(2). Matlab har givetvis en egna funktioner randn och normrnd (Statistics Toolbox) som genererar oberoende normalfördelade slumptal. Med hjälp av kommandot randn(m,n) erhåller man en m n-matris med normalfördelade slumptal med väntevärde och varians 1. Använd kommandot för att generera 5 normalfördelade slumptal med väntevärde 1 och varians 5. Om du använder randn kan du ha nytta av förberedelseuppgift (c). Undersök om slumptalen ser normalfördelade ut. Svar: Simulering av beroende normalfördelade s.v. I föregående avsnitt simulerade vi oberoende normalfördelade stokastiska variabler. Om man vill simulera beroende normalfördelningar utnyttjar man ofta en teknik som baseras på vektorframställning av flerdimensionell normalfördelning. Eftersom detta ännu inte behandlats i kursen kan vi istället använda en 5

6 annan metod som baseras på att vi känner de betingade fördelningarna för X resp. Y. T.ex. har vi från avsnittet om betingade fördelningar i denna labhandledning att ( X Y = y N m X + Ö ) X (y m Y ), X 1 Ö 2 Y För att simulera en tvådimensionell normalfördelning med n par av slumptal och parametrar m X, m Y, X, Y och Ö kan vi först simulera Y med t.ex. >> n = 1; mx = ; my = ; sx = 1; sy = 1; rho = ; >> y = normrnd(my, sy, n, 1); och därefter använda den betingade fördelningen för X givet att Y = y för att simulera X. Gör det och plotta med plot(x, y,. ) för några olika värden på Ö och verifiera att resultatet blir som du förväntar dig. Svar:... 6 Funktioner av stokastiska variabler 6.1 Konstant prisutveckling över tiden En viss typ av elektroniska komponenter har, på grund av förfinad framställningsteknik, kunnat minska i pris med en viss procent per år. Om prisändringen är konstant kan priset, P(t), vid tiden t beskrivas med sambandet P(t) = P() r t där P() är utgångpriset och r är den årliga prisändringen. Antag nu att r =.8, dvs att priset minskar med 2% per år, och att P() = 1 kr. Plotta prisutvecklingen under de kommande 1 åren: >> r =.8; >> P = 1; >> t = linspace(,1); >> Pt = P*r.^t; >> plot(t,pt) Den tid, T.5, det tar innan priset halverats, dvs då P(T.5 ) = P(), fås som 2 ln.5 T.5 = ln r. Som synes beror halveringstiden inte på utgångpriset. I det här fallet är ln.5 T.5 = 3.1 år. ln.8 I verkligheten är prisfallet inte lika stort för alla tillverkare, t.ex. beroende på växelkurser, personalpolitik och råvarupriser. Det är inte orimligt att tänka sig att prisändringen, R, för en slumpmässigt vald tillverkare är lognormalfördelad så att ln R N(ln.8, ). Vi börjar med att titta på prisutvecklingen för 1 olika tillverkare när =.5: >> sigma =.5; >> r = lognrnd(log(.8),sigma,1,1); >> T5 = log(.5)./log(r) >> for k=1:1, plot(t,p*r(k).^t), hold on, end >> plot(t5,, * ) >> hold off 6

7 Ser det ut att vara stor spridning på P(t)? På T.5? Hur ser täthetsfunktionen för T.5 ut? Vad kommer det förväntade T.5 att bli? Hur stor spridning är det på T.5? Besvara dessa frågor genom att simulera T.5 1 gånger, rita histogram medhist och uppskatta E(T.5 ) och D(T.5 ) med funktionernamean ochstd. Gör om ovanstående simuleringar med mindre spridning på ln R, t.ex. =.1. Hur ändrar sig E(T.5 ) och D(T.5 )? 6.2 Geometrisk brownsk rörelse (frivillig uppgift) Till den här delen av laborationen behöver du specialrutinen gbr. Gå in på kursens hemsida och ladda ner den till dinmatlab-katalog. Innan antog vi att prisändringen var konstant över tiden. I själva verket är det ofta användbart att tänka sig att prisändringen r(t) är en slumpmässig funktion av tiden t. En ofta använd modell för räntefluktuationer och aktiekurser är en s.k. geometrisk brownsk rörelse, se appendix. I så fall kan ändringen i r(t) vid tiden t beskrivas av den stokastiska differentialekvationen r() = r, dr(t) = r(t) dt + r(t) dw (t), där W (t) är en s.k. Wienerprocess. Löst uttryckt innebär det att differentialerna dw (t) är oberoende och N(, )-fördelade och att W (t) är N(, t)-fördelad. Däremot är inte W (t):na vid olika tidpunkter oberoende. Uttryckt på ett annat sätt innebär det att ändringen i r(t) beror dels på storleken på r(t) (termen r(t) dt) dels på slumpen (dw (t)) och ju större r(t) desto större hopp (faktorn r(t) framför dw (t)). Om man löser ovanstående stokastiska differentialekvation får man att r(t) = r e ( 2 /2)t+W (t) Det är lätt att visa att r(t) vid tiden t är lognormalfördelad dvs ln R(t) N(ln.8 +.3t,.1 t) Den specialskrivna rutinengbr simulerar en geometrisk brownsk rörelse i diskret tid. Kommandot gbr(,,r,t,n) ger n olika s.k. realiseringar av en GBR med parametrar och. Varje enskild realisering har r som startvärde och simulaeras för vid tidpunkterna,1,...,t. >> help gbr >> [r,t]=gbr(.5,.1,1,1,1); >> plot(t,r) ritar 1 simuleringar av r(t) = r e (.5.12 /2)t+W (t) = e W (t) där t =,..., 1 och W (t) N(,.1 t). Experimentera lite med olika parametervärden och tänk speciellt på vad som bör hända (se appendix) då > 2 /2, < 2 /2 och = 2 /2. 7

8 Simulera också många men korta serier och kontrollera att fördelningen för r(t) stämmer med det teoretiska resultatet ovan. Sista raden ir-matrisen, dvs då t = T fås medr(end,:). Täthetsfunktionen för en lognormalfördelning fås med lognpdf. Se efter i Laboration 1 hur man fick histogram och täthetsfunktion i samma skala i samma diagram. Att beräkna fördelningen för halveringstiden nu är inte det lättaste och lämnas till någon kurs i extremvärdesteori. 7 Appendix (till frivillig uppgift) 7.1 Wienerprocesser En Wienerprocess W (t) är en följd av slumptal som har följande egenskaper: i) W () =, dvs den börjar i vid tiden t =, ii) ökningen i ett tidsintervall är oberoende av ökningen i alla andra, icke överlappande, tidsintervall, dvs W (t ) W (s ) och W (t 1 ) W (s 1 ) är oberoende då s < t < s 1 < t 1. iii) W (t) W (s) N(, t s), dvs ökningen i intervallet (s, t] är normalfördelad och variansen beror bara på intervallets längd, inte på, t.ex., var det ligger, iv) W (t) är kontinuerlig. Detta innebär bland annat att en Wienerprocess visserligen är kontinuerlig men att den är så skrynklig att den inte har någon kontinuerlig derivata någonstans; den ändrar värde hela tiden. Trots detta är den flitigt använd som modell i många praktiska situationer. 7.2 Geometrisk brownsk rörelse En finansiell tillämpning av Wienerprocessen är i modeller för räntefluktuationer och aktiekurser. Det visar sig nämligen att dessa ofta kan beskrivas med följande stokastiska differentialekvationssystem: X () = x, dx (t) = X (t) dt + X (t) dw (t) där dw (t) N(, ) är ändringen i Wienerprocessen vid tiden t och beskriver driften i processen. I aktiesammanhang brukar kallas volatilitet. Löser man denna stokastiska differentialekvation får man att X (t) = x e ( 2 /2)t+W (t). Man kan visa att om > 2 /2 så växer processen ohämmat: X (t) när t. Om däremot < 2 /2 så dör processen så småningom ut: X (t) när t. I fallet då = 2 /2 varierar processen mellan godtyckligt stora och godtyckligt små värden. 8

9 8 A 2 C B 7 D Figur 1: A C: Successiva förstoringar av en Wienerprocess med =.1. D: Motsvarande geometriska brownska rörelse: X (t) =.8 e.3t+w (t). REKLAM: Den som vill veta mer om Wienerprocesser och deras finansiella tillämpningar läser lämpligen kurserna i Stokastiska processer i årskurs 3 och Finansiell statistik i årskurs 4. En viss uppfattning om innehållet kan man få på kurshemsidorna FMS41: Stokastiska processer, 5p ( FMS51: Tidsserieanalys, 5p ( FMS155: Statistisk modellering av extremvärden, 5p ( FMS161: Finansiell statistik (under utveckling), 5p ( 9

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT13 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT17 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Demonstration av laboration 2, SF1901

Demonstration av laboration 2, SF1901 KTH 29 November 2017 Laboration 2 Målet med dagens föreläsning är att repetera några viktiga begrepp från kursen och illustrera dem med hjälp av MATLAB. Laboration 2 har följande delar Fördelningsfunktion

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 6 13 november 2017 1 / 29 Idag Förra gången Mer om väntevärden och varianser (Kap. 5.2 5.3) Beroendemått (Kap. 5.4) Summor, linjärkombinationer

Läs mer

Projekt 1: Om fördelningar och risker

Projekt 1: Om fördelningar och risker LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Projekt 1: Om fördelningar och risker 1 Syfte I den första delen av detta projekt skall vi försöka

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen

Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, HT-16 Datorövning 2 Betingad fördelning och Centrala gränsvärdessatsen Syftet med den här laborationen

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler.

SF1901: Sannolikhetslära och statistik. Flera stokastiska variabler. SF1901: Sannolikhetslära och statistik Föreläsning 5. Flera stokastiska variabler. Jan Grandell & Timo Koski 31.01.2012 Jan Grandell & Timo Koski () Matematisk statistik 31.01.2012 1 / 30 Flerdimensionella

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 4 7 november 2017 1 / 29 Idag Förra gången Viktiga kontinuerliga fördelningar (Kap. 3.6) Fördelningsfunktion (Kap. 3.7) Funktioner av stokastiska

Läs mer

Kap 2. Sannolikhetsteorins grunder

Kap 2. Sannolikhetsteorins grunder Kap 2. Sannolikhetsteorins grunder Olika händelser och deras mängbetäckningar Sats 2.7 Dragning utan återläggning av k element ur n (utan hänsyn till ordning) kan ske på ( n ) olika sätt k För två händelser

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR ED, FMS021, VT01 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Syftet med

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 7 15 november 2017 1 / 28 Lite om kontrollskrivning och laborationer Kontrollskrivningen omfattar Kap. 1 5 i boken, alltså Föreläsning

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Väntevärde och varians, funktioner av s.v:er, flera stokastiska variabler. Jan Grandell & Timo Koski 10.09.2008 Jan Grandell & Timo Koski () Matematisk

Läs mer

Föreläsning 5, FMSF45 Summor och väntevärden

Föreläsning 5, FMSF45 Summor och väntevärden Föreläsning 5, FMSF45 Summor och väntevärden Stas Volkov 2017-09-19 Stanislav Volkov s.volkov@maths.lth.se FMSFF45 F5: väntevärden 1/18 2D stokastisk variabel Tvådimensionella stokastisk variabel (X, Y)

Läs mer

Matematisk statistik 9 hp Föreläsning 4: Flerdim

Matematisk statistik 9 hp Föreläsning 4: Flerdim Matematisk statistik 9 hp Föreläsning 4: Flerdim Johan Lindström 3+4 september 26 Johan Lindström - johanl@maths.lth.se FMS2 F4: Flerdim /5 Transformer Inversmetoden Transformation av stokastiska variabler

Läs mer

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2

SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 Matematisk Statistik SF1900 Sannolikhetsteori och statistik, HT 2017 Laboration 1 för CINEK2 1 Introduktion Denna laboration är inte poänggivande utan är till för den som vill bekanta sig med MATLAB. Fokusera

Läs mer

Lärmål Sannolikhet, statistik och risk 2015

Lärmål Sannolikhet, statistik och risk 2015 Lärmål Sannolikhet, statistik och risk 2015 Johan Jonasson Februari 2016 Följande begrepp och metoder ska behärskas väl, kunna förklaras och tillämpas. Direkta bevis av satser från kursen kommer inte på

Läs mer

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden

Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Matematisk statistik 9hp Föreläsning 5: Summor och väntevärden Anna Lindgren 20+21 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F5: väntevärden 1/18 2D stokastisk variabel Tvådim. stokastisk

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter

1 Stora talens lag. Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT Teori. 1.2 Uppgifter Lunds universitet Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik allmän kurs, MASA01:A, HT-15 Syftet med denna laboration är att du skall bli förtrogen med två viktiga områden

Läs mer

TMS136. Föreläsning 4

TMS136. Föreläsning 4 TMS136 Föreläsning 4 Kontinuerliga stokastiska variabler Kontinuerliga stokastiska variabler är stokastiska variabler som tar värden i intervall av den reella axeln Det kan handla om längder, temperaturer,

Läs mer

Matematisk statistik 9hp Föreläsning 7: Normalfördelning

Matematisk statistik 9hp Föreläsning 7: Normalfördelning Matematisk statistik 9hp Föreläsning 7: Normalfördelning Anna Lindgren 29+3 september 216 Anna Lindgren anna@maths.lth.se FMS12/MASB3 F7: normalfördelning 1/18 Kovarians, C(X, Y) Repetition Normalfördelning

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Föreläsning 5, Matematisk statistik Π + E

Föreläsning 5, Matematisk statistik Π + E Repetition Summor max/min Väntevärde Varians Föreläsning 5, Matematisk statistik Π + E Sören Vang Andersen 25 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F5 1/16 Repetition Summor max/min

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 5. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, normalfördelning (del 1) Jan Grandell & Timo Koski 15.09.2008 Jan Grandell &

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Kontinuerliga fördelningar Uwe Menzel, 8 www.matstat.de Begrepp fördelning Hur beter sig en variabel slumpmässigt? En slumpvariabel (s.v.) har en viss fördelning, d.v.s.

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för CDIfysiker, FMS012/MASB03, HT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 4. Funktioner av s.v:er, Flera stokastiska variabler. Marginell sannolikhetsfunktion och -täthetsfunktion. Oberoende sv:er, Maximum och minimum av oberoende

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF45/MASB03: MATEMATISK STATISTIK, 9 HP, VT-18 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT11 Laboration 2: Sannolikhetsteori och simulering Syftet med den här

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12

Tentamen i matematisk statistik (9MA241/9MA341, STN2) kl 08-12 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA21/9MA31, STN2) 212-8-2 kl 8-12 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är värd 6 poäng.

Läs mer

SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI

SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI Matematisk Statistik Introduktion SF1910 Tillämpad statistik, HT 2016 Laboration 1 för CSAMHS, CLGYM-TEMI Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1.

0 om x < 0, F X (x) = x. 3 om 0 x 1, 1 om x > 1. Avd. Matematisk statistik TENTAMEN I SF9, SF95 SANNOLIKHETSTEORI OCH STATISTIK, MÅNDAGEN DEN 2:E JANUARI 25 KL 4. 9.. Kursledare: Gunnar Englund, 73 32 37 45 Tillåtna hjälpmedel: Formel- och tabellsamling

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology September 21, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik Chalmers University of Technology April 27, 2015 Tvådimensionella fördelningar Definition En två dimensionell slumpvariabel (X, Y ) tillordnar två numeriska

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik

FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I. Oktober Matematikcentrum Matematisk statistik FINGERÖVNINGAR I SANNOLIKHETSTEORI MATEMATISK STATISTIK AK FÖR I Oktober Matematikcentrum Matematisk statistik CENTRUM SCIENTIARUM MATHEMATICARUM LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK

Läs mer

Stokastiska vektorer och multivariat normalfördelning

Stokastiska vektorer och multivariat normalfördelning Stokastiska vektorer och multivariat normalfördelning Johan Thim johanthim@liuse 3 november 08 Repetition Definition Låt X och Y vara stokastiska variabler med EX µ X, V X σx, EY µ Y samt V Y σy Kovariansen

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3

SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 Matematisk Statistik SF1920/SF1921 Sannolikhetsteori och statistik, VT 2018 Laboration 1 för CELTE2/CMATD3 1 Introduktion Denna demonstration är inte poänggivande, men utgör en förberedelse för den andra

Läs mer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer

Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Matematisk statistik 9 hp Föreläsning 6: Linjärkombinationer Anna Lindgren 27+28 september 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F6: linjärkombinationer 1/21 sum/max/min V.v./var Summa av

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge

Två parametrar: µ (väntevärdet) och σ (standardavvikelsen) µ bestämmer normalfördelningens läge Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 28-9-3 Normalfördelningen, X N(µ, σ) f(x) = e (x µ)2 2σ 2, < x < 2π σ.4 N(2,).35.3.25.2.5..5

Läs mer

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor

Exempel. Kontinuerliga stokastiska variabler. Integraler i stället för summor. Integraler i stället för summor Kontinuerliga stokastiska variabler Exempel En stokastisk variabel är kontinuerlig om den kan anta vilka värden som helst i ett intervall, men sannolikheten för varje enskilt utfall är noll: P(X = x) =.

Läs mer

TENTAMEN I STATISTIKENS GRUNDER 1

TENTAMEN I STATISTIKENS GRUNDER 1 STOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson HT2012 TENTAMEN I STATISTIKENS GRUNDER 1 2012-10-03 Skrivtid: kl 9.00-14.00 Godkända hjälpmedel: Miniräknare, språklexikon Bifogade hjälpmedel:

Läs mer

Miniprojektuppgift i TSRT04: Femtal i Yatzy

Miniprojektuppgift i TSRT04: Femtal i Yatzy Miniprojektuppgift i TSRT04: Femtal i Yatzy 22 augusti 2016 1 Uppgift I tärningsspelet Yatzy används fem vanliga sexsidiga tärningar. Deltagarna slår tärningarna i tur och ordning och försöker få vissa

Läs mer

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT

Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Stat. teori gk, ht 2006, JW F7 STOKASTISKA VARIABLER (NCT 5.7) Ordlista till NCT Jointly distributed Joint probability function Marginal probability function Conditional probability function Independence

Läs mer

Föreläsning 7: Punktskattningar

Föreläsning 7: Punktskattningar Föreläsning 7: Punktskattningar Matematisk statistik David Bolin Chalmers University of Technology April 7, 2014 Projektuppgift Projektet går ut på att genomföra ett statistiskt försök och analysera resultaten.

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 6. Kovarians, korrelation, väntevärde och varians för summor av s.v.:er, De stora talens lag Jan Grandell & Timo Koski 04.02.2016 Jan Grandell & Timo

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli

Läs mer

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh

SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag. Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 6 Väntevärden Korrelation och kovarians Stora talens lag Jörgen Säve-Söderbergh Väntevärde för en funktion av en stokastisk variabel Om

Läs mer

Transformer i sannolikhetsteori

Transformer i sannolikhetsteori Transformer i sannolikhetsteori Joakim Lübeck 28-11-13 För dig som läst eller läser sannolikhetsteori (fram till och med normalfördelningen) och läst eller läser system och transformer (till och med fouriertransform)

Läs mer

Övning 1 Sannolikhetsteorins grunder

Övning 1 Sannolikhetsteorins grunder Övning 1 Sannolikhetsteorins grunder Två händelser A och B är disjunkta om {A B} =, det vill säga att snittet inte innehåller några element. Om vi har en mängd händelser A 1, A 2, A 3,..., A n, vilka är

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma

1 Förberedelser. 2 Att starta MATLAB, användning av befintliga m-filer. 3 Geometriskt fördelad avkomma LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2: FÖRGRENINGSPROCESSER MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Förberedelser Syftet med denna laboration är att du skall bli mer

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1

LINKÖPINGS UNIVERSITET EXAM TAMS 79 / TEN 1 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 79 / TEN 1 augusti 14, klockan 8.00-12.00 Examinator: Jörg-Uwe Löbus Tel: 28-1474) Tillåtna hjälpmedel är en räknare, formelsamling i matematisk

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 1 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

Laboration 3: Parameterskattning och Fördelningsanpassning

Laboration 3: Parameterskattning och Fördelningsanpassning LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 3: Parameterskattning och Fördelningsanpassning 1 Syfte Syftet

Läs mer

Väntevärde och varians

Väntevärde och varians TNG6 F5 19-4-216 Väntevärde och varians Exempel 5.1. En grupp teknologer vid ITN slår sig ihop för att starta ett företag som utvecklar datorspel. Man vet att det är 8% chans för ett felfritt spel som

Läs mer

SF1901 Sannolikhetsteori och statistik I

SF1901 Sannolikhetsteori och statistik I SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 3 4 november 2016 1 / 28 Idag Förra gången Stokastiska variabler (Kap. 3.2) Diskret stokastisk variabel (Kap. 3.3 3.4) Kontinuerlig stokastisk

Läs mer

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler

TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler TAMS79: Föreläsning 4 Flerdimensionella stokastiska variabler Johan Thim (johan.thim@liu.se) 1 november 18 Vi fokuserar på två-dimensionella variabler. Det är steget från en dimension till två som är det

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker max/min Matematisk statistik för D, I, Π och Fysiker Föreläsning 5 Johan Lindström 25 september 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F5 1/25 max/min Johan Lindström - johanl@maths.lth.se

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF9: Sannolikhetslära och statistik Föreläsning 3. Stokastiska variabler, diskreta och kontinuerliga Jan Grandell & Timo Koski 8.9.28 Jan Grandell & Timo Koski () Matematisk statistik 8.9.28 / 45 Stokastiska

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

Jörgen Säve-Söderbergh

Jörgen Säve-Söderbergh SF1920/SF1921 Sannolikhetsteori och statistik 6,0 hp Föreläsning 8 Binomial-, hypergeometrisk- och Poissonfördelning Exakta egenskaper Approximativa egenskaper Jörgen Säve-Söderbergh Binomialfördelningen

Läs mer

Föreläsning 12: Repetition

Föreläsning 12: Repetition Föreläsning 12: Repetition Marina Axelson-Fisk 25 maj, 2016 GRUNDLÄGGANDE SANNOLIKHETSTEORI Grundläggande sannolikhetsteori Utfall = resultatet av ett försök Utfallsrum S = mängden av alla utfall Händelse

Läs mer

SF1911: Statistik för bioteknik

SF1911: Statistik för bioteknik SF1911: Statistik för bioteknik Föreläsning 6. TK 14.11.2016 TK Matematisk statistik 14.11.2016 1 / 38 Lärandemål Stokastiska modeller för kontinuerliga datatyper Fördelningsfunktion (cdf) Sannolikhetstäthetsfunktion

Läs mer

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Kapitel 4 Sannolikhetsfördelningar Sid Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Kapitel 4 Sannolikhetsfördelningar Sid 79-14 Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Slumpvariabel En variabel för vilken slumpen bestämmer utfallet. Slantsingling, tärningskast,

Läs mer

Några extra övningsuppgifter i Statistisk teori

Några extra övningsuppgifter i Statistisk teori Statistiska institutionen Några extra övningsuppgifter i Statistisk teori 23 JANUARI 2009 2 Sannolikhetsteorins grunder 1. Tre vanliga symmetriska tärningar kastas. Om inte alla tre tärningarna visar sexa,

Läs mer

TAMS79: Föreläsning 6. Normalfördelning

TAMS79: Föreläsning 6. Normalfördelning TAMS79: Föreläsning 6 Normalfördelningen Johan Thim (johan.thim@liu.se 3 november 018 Normalfördelning Definition. Låt µ R och > 0. Om X är en stokastisk variabel med täthetsfunktion f X ( = 1 ( ep ( µ,

Läs mer

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära

TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära TAMS65 - Föreläsning 1 Introduktion till Statistisk Teori och Repetition av Sannolikhetslära Martin Singull Matematisk statistik Matematiska institutionen TAMS65 - Mål Kursens övergripande mål är att ge

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik ANVISNINGAR TILL INLÄMNINGSUPPGIFTER I MATEMATISK STATISTIK, HT 007 På inlämningsuppgiften ska alltid namn och elevnummer finnas med. Ett automatiskt web-baserat kontrollsystem för numeriska svar kommer

Läs mer

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2

LINKÖPINGS UNIVERSITET EXAM TAMS 27 / TEN 2 LINKÖPINGS UNIVERSITET Matematiska institutionen EXAM TAMS 7 / TEN 8 maj 18, klockan 8.-1. Examinator: Jörg-Uwe Löbus Tel: 79-687 Tillåtna hjälpmedel är en räknare, formelsamling i matematisk statistik

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering

Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Matematisk statistik 9 hp Föreläsning 3: Transformation och simulering Anna Lindgren 8+9 september 216 Anna Lindgren - anna@maths.lth.se FMS12/MASB3: transform 1/11 Stokastisk variabel Kvantil Stokastisk

Läs mer

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar

Föreläsning 3. Kapitel 4, sid Sannolikhetsfördelningar Föreläsning 3 Kapitel 4, sid 79-124 Sannolikhetsfördelningar 2 Agenda Slumpvariabel Sannolikhetsfördelning 3 Slumpvariabel (Stokastisk variabel) En variabel som beror av slumpen Ex: Tärningskast, längden

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F6: Betingade fördelningar Exempel: Tillförlitlighet Styrkan hos en lina (wire) kan modelleras enligt en stokastisk variabel Y. En tänkbar modell för styrkan är Weibullfördelning. Den last som linan utsätts

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli

Läs mer

4 Diskret stokastisk variabel

4 Diskret stokastisk variabel 4 Diskret stokastisk variabel En stokastisk variabel är en variabel vars värde bestäms av utfallet av ett slumpmässigt försök. En stokastisk variabel betecknas ofta med X, Y eller Z (i läroboken används

Läs mer