Solutions to exam in SF1811 Optimization, June 3, 2014

Relevanta dokument
Lösningar till tentan i SF1861/51 Optimeringslära, 3 juni, 2015

Lösningar till tentan i SF1861 Optimeringslära, 1 juni 2017

Lösningar till tentan i SF1861 Optimeringslära, 3 Juni, 2016

Lösningar till SF1852 Optimeringslära för E, 16/1 08

Lösningar till SF1861/SF1851 Optimeringslära, 24/5 2013

Lösningar till 5B1762 Optimeringslära för T, 24/5-07

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Onsdag 25 augusti 2010 kl

Tentamen i Matematik 2: M0030M.

12.6 Heat equation, Wave equation

Lösningar till SF1861 Optimeringslära, 28 maj 2012

Isometries of the plane

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Pre-Test 1: M0030M - Linear Algebra.

1 LP-problem på standardform och Simplexmetoden

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

Algoritmer och Komplexitet ht 08. Övning 6. NP-problem

Lösningsförslag till tentamen i SF1861 Optimeringslära för T. Torsdag 28 maj 2010 kl

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

NP-fullständighetsbevis

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

LP-dualitet: Exempel. Vårt första exempel. LP-dualitet: Relationer. LP-dualitet: Generellt

Vårt första exempel. LP-dualitet: Exempel. LP-dualitet: Generellt. LP-dualitet: Relationer

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

MVE500, TKSAM Avgör om följande serier är divergenta eller konvergenta. Om konvergent, beräkna summan. (6p) ( 1) n x 2n+1 (a)

Tentamen i Matematik 2: M0030M.

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Lösningar till Tentamen i Reglerteknik AK EL1000/EL1100/EL

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

1. Find an equation for the line λ which is orthogonal to the plane

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

1 Ickelinjär optimering under bivillkor

4. Nonlinear problems with What s Best!

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

Schenker Privpak AB Telefon VAT Nr. SE Schenker ABs ansvarsbestämmelser, identiska med Box 905 Faxnr Säte: Borås

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

a) Ange alla eventuella punkter där f är diskontinuerlig. b) Ange alla eventuella punkter där f är kontinuerlig men inte deriverbar.

Isolda Purchase - EDI

Module 1: Functions, Limits, Continuity

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

Tentamen i Matematik 3: M0031M.

Discovering!!!!! Swedish ÅÄÖ. EPISODE 6 Norrlänningar and numbers Misi.se

1 Minkostnadsflödesproblem i nätverk

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

Uttagning för D21E och H21E

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

1 Konvexa optimeringsproblem grundläggande egenskaper

1. Find for each real value of a, the dimension of and a basis for the subspace

Webbregistrering pa kurs och termin

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Styrteknik: Binära tal, talsystem och koder D3:1

Hjälpmedel: Inga, inte ens miniräknare Göteborgs Universitet Datum: 2018 kl Telefonvakt: Jonatan Kallus Telefon: ankn 5325

Lösenordsportalen Hosted by UNIT4 For instructions in English, see further down in this document

Support Manual HoistLocatel Electronic Locks

Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

Eternal Employment Financial Feasibility Study

Introduktion till att använda sig av GLPK

Webbreg öppen: 26/ /

Beräkningsmatematik. Stig Larsson

English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

FÖRBERED UNDERLAG FÖR BEDÖMNING SÅ HÄR

For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

FORTA M315. Installation. 218 mm.

Module 4 Applications of differentiation


Examples on Analog Transmission

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

Calculate check digits according to the modulus-11 method

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Linjärprogrammering (Kap 3,4 och 5)

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Preschool Kindergarten

Tentamen MMG610 Diskret Matematik, GU

Vässa kraven och förbättra samarbetet med hjälp av Behaviour Driven Development Anna Fallqvist Eriksson

English Version. Number of sold cakes Number of days

(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?

Module 6: Integrals and applications

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Chapter 2: Random Variables

Ett hållbart boende A sustainable living. Mikael Hassel. Handledare/ Supervisor. Examiner. Katarina Lundeberg/Fredric Benesch

Gradientbaserad Optimering,

Swedish adaptation of ISO TC 211 Quality principles. Erik Stenborg

IE1206 Embedded Electronics

Transkript:

Solutions to exam in SF1811 Optimization, June 3, 14 1.(a) The considered problem may be modelled as a minimum-cost network flow problem with six nodes F1, F, K1, K, K3, K4, here called 1,,3,4,5,6, and eight arcs (F1,K1), (F1,K), (F1,K3), (F1,K4), (F,K1), (F,K), (F,K3), (F,K4), here called (1,3), (1,4), (1,5), (1,6), (,3), (,4), (,5), (,6). The suggested solution corresponds to a spanning tree with the arcs (1,3), (1,4), (,4), (,5) och (,6), i.e. a basic solution. It is a feasible basic solution since all the balance equations (in all nodes) are satisfied and all variables are non-negative. The simplex variables y i are obtained from the equations y i y j = c ij for basic variables, and y 6 =. This gives y = (5, 3,, 1,, ). Then the reduced costs for the non-basic variables are obtained from r ij = c ij y i + y j. This gives: r 15 = 8 5 + ( ) = 1, r 16 = 6 5 + = 1, r 3 = 6 3 + ( ) = 1. Since all r ij, the suggested solution is optimal. 1

1.(b) The vector ˆx is a global optimal solution to the problem of minimizing the function f(x) = 1 xt Hx if and only if H is positive semi-definite and Hˆx =. To check if H is positive semi-definite, we try to LDL T -factorize H. 1 1 H = 1 1. 1 k Add +1 times row 1 to row. Then add +1 times column 1 to column. This gives E 1 = 1 1 and E 1 HE T 1 = 1 1. 1 1 k Add +1 times row to row 3. Then add +1 times column to column 3. This gives E = 1 and E E 1 HE T 1 E T = 1. 1 1 k 1 The LDL T -factorization is ready, and one gets H = LDL T = 1 1 1 1 1 k 1 1 1 1 1 1. From this, it follows that H is positive semi-definite if and only if k 1. The system Hx = always has at least the solution x = (the trivial solution), and it has an infinite number of solutions if and only if H is singular. From above, H is both positive semi-definite and singular if and only if k = 1. Then H = 1 1 1 1. 1 1 Some calculations give that the set of solutions to Hx = is x = (t, t, t) T for t IR, and this is then the set of global optimal solutions to the problem of minimizing 1 xt Hx.

.(a) (Sorry for the Swedish text) Inför slackvariabler x 4, x 5 och x 6 så att problemet blir på standardformen där A = 1 1 1 1 1 1 1 minimera c T x då Ax = b,, b = x, och c = (1, 1, 4,,, ) T. I startlösningen ska enligt uppgiftslydelsen x 1, x och x 3 vara basvariabler, dvs β = (1,, 3) och δ = (4, 5, 6). 1 1 Motsvarande basmatris ges av A β = 1 1. 1 1 Basvariablernas värden i baslösningen ges av x β = b, där vektorn b beräknas ur ekvationssystemet A β b = b, 1 1 b1 b1 1 dvs 1 1 b =, med lösningen b = b = 1. 1 1 b3 b3 1 Här använde vi den givna räknehjälpen. Vektorn y med simplexmultiplikatorerna värden erhålls ur systemet A T β y = c β, 1 1 y 1 1 y 1 1 dvs 1 1 y = 1, med lösningen y = y =. 1 1 y 3 4 y 3 Här använde vi igen den givna räknehjälpen. Reducerade kostnaderna för icke-basvariablerna ges av r T δ = c δ y T A δ = = (,, ) ( 1,, ) 1 = ( 1,, ). 1 Eftersom r δ1 = r 4 = 1 är minst, och <, ska vi låta x 4 bli ny basvariabel. Då behöver vi beräkna vektorn ā 4 ur systemet A β ā 4 = a 4, 1 1 ā 14 1 dvs 1 1 ā 4 =, med lösningen ā 4 = 1 1 ā 34 Här använde vi igen den givna räknehjälpen. Det största värde som den nya basvariabeln x 4 kan ökas till ges av { } bi t max = min ā i4 > = b 3 = i ā i4 ā 34.5. ā 14.5 ā 4 =.5. ā 34.5 Minimerande index är i = 3, varför x β3 = x 3 inte längre får vara kvar som basvariabel. 3

Nu är alltså β = (1,, 4) och δ = (3, 5, 6). 1 1 1 Motsvarande basmatris ges av A β =. 1 Basvariablernas värden i baslösningen ges av x β = b, där vektorn b beräknas ur ekvationssystemet A β b = b, 1 1 1 b1 b1 dvs b =, med lösningen b = b =. 1 b3 b3 Vektorn y med simplexmultiplikatorernas värden erhålls ur systemet A T β y = c β, 1 1 y 1 1 y 1 dvs 1 1 y = 1, med lösningen y = y = 1. y 3 y 3 1 Reducerade kostnaderna för icke-basvariablerna ges av r T δ = c δ y T A δ = = (4,, ) (, 1, 1) 1 1 = (, 1, 1). 1 1 Eftersom r δ så är den aktuella baslösningen optimal. Alltså är punkten x 1 =, x =, x 3 =, x 4 =, x 5 =, x 6 = optimal. Optimalvärdet är c T x = 4..(b) If the primal problem is on the standard form then the dual problem is on the form which for the current example becomes minimize c T x subject to Ax = b, x, maximize b T y subject to A T y c, maximize y 1 + y + y 3 subject to y 1 + y 1, y 1 + y 3 1, y + y 3 4, y 1, y, y 3. It is well known that an optimal solution to this dual problem is given by the vector y of simplex multipliers in the optimal basic solution from.(a), i.e. y = (, 1, 1) T. We note that this is a feasible solution to the dual problem with b T y = 4 = the optimal value of the primal problem. 4

3. The gradient of f is f(x) = The Hessian of f is F(x) = ( f, f, f ), where f = 4x 3 j + 3x j + x j + 1. x 1 x x 3 x j f x 1 f x f x 3, where f x j = 1x j + 6x j +. (b) f is convex on IR 3 if and only if F(x) is positive semi-definite for all x IR 3. A diagonal matrix is positive semi-definite if and only if all diagonal elements are. But f x j = 1(x j + 1 x j + 1 6 ) = 1((x j + 1 4 ) 1 16 + 1 6 ) >, so F(x) is positive definite for all x IR 3. Thus, f is (strictly) convex on IR 3. (a) The given starting point is x (1) = 1. 1 If F(x (1) ) is positive definite, which it is according to above, then the first Newton direction d (1) is obtained as the solution to the system F(x (1) )d = f(x (1) ) T, i.e. 1 1/ d = 1, with the unique solution d (1) = 1/. 8 1/4 1/ We try first with t 1 = 1, so that x () = x (1) + t 1 d (1) = x (1) + d (1) = 1/. 3/4 Then f(x () ) = 85/56 < 4 = f(x (1) ), so t 1 = 1 is accepted. Now we have made a complete iteration with Newtons method and obtained the next iteration 1/ point x () = 1/ with f(x () ) = 85/56. 3/4 (c) Here comes a possible lower bound on f(x). First, we note that x j + x j = (x j + 1 ) 1 4 1 4. From this, it follows that x 4 j + x3 j = x j (x j + x j) 1 4 x j, from which we get that x 4 j + x3 j + x j + x j 1 4 x j + x j + x j = 3 4 (x j + 4 3 x j) = 3 4 ((x j + 3 ) 4 9 ) = 3 4 ( 4 9 ) = 1 3. This holds for each j, so we obtain that 3 f(x) = (x 4 j + x 3 j + x j + x j ) 1 3 1 3 1 3 = 1. Thus, L = 1 is a lower bound on f(x), but possibly not the highest one. 5

4.(a) The perimeter problem can be written as the following minimization problem: minimize f(x) = 4x 1 4x subject to h(x) = x 1 a + x 1 a 1 =. We assume that x 1 and x are >, but don t formulate that explicitly in the optimality conditions, it will naturally be satisfied anyhow by the optimal solution. The Lagrange conditions for the problem become: 4 + λx 1 a 1 =, 4 + λx a =, x 1 a + x a 1 =. Since every feasible point is also a regular point (the gradient of the only constraint function is never the zero vector) the Lagrange conditions are necessary conditons for an optimal solution. Some calculation give that the only solution (with x 1 > and x > ) is x 1 = 4.(b) a 1, x a 1 + a = a, u = a 1 + a a 1 + a, with perimeter 4x 1 + 4x = 4 a 1 + a. The area problem can be written as the following minimization problem: minimize f(x) = 4x 1 x subject to h(x) = x 1 a + x 1 a 1 =. Again, we assume that x 1 and x are >, but don t formulate that explicitly in the optimality conditions. The Lagrange conditions for the problem become: 4x + λx 1 a 1 4x 1 + λx a =, =, x 1 a + x a 1 =. Since every feasible point is also a regular point (the gradient of the only constraint function is never the zero vector) the Lagrange conditions are necessary conditons for an optimal solution. Some calculation give that the only solution (with x 1 > and x > ) is x 1 = a 1, x = a, u = a 1 a, with area 4x 1 x = a 1 a. 6

5.(a) The Lagrange function for the problem is given by n c j n L(x, y) = f(x) + y g(x) = + y ( x j V ) = yv + x j n ( c j x j + yx j ). The Lagrange relaxed problem PR y is defined, for a given y, as the problem of minimizing L(x, y) with respect to x IR n. But this problem separates into one problem for each variable x j, namely We have that l j(x j ) = c j minimize l j (x j ) = c j x j + yx j subject to x j [.1, 1 ]. (.1) x j + y and l j (x j ) = c j that l j (x j ) is strictly convex on the interval [.1, 1 ]. x 3 j >, which implies If y = then l j (x j ) is strictly decreasing, and then x j = 1 is the unique optimal solution to the subproblem (.1). cj If y > the unique solution to l j (x j) = is x j = y to the interval [.1, 1 ] if and only if c j y 1c j. which belongs From this, we conclude that the unique optimal solution x j (y) to the subproblem (.1) is as follows: x j (y) = 1 if y c j, cj if c j y 1c j, y.1 if y 1c j, The dual objective function is then given by n c j ϕ(y) = L( x(y), y) = yv + ( x j (y) + y x j(y)). The dual problem consists of maximizing ϕ(y) with respect to y. 7

5.(b) Assume now that n =, V = 1.5, c 1 = 1 and c = 9. Then we get the following different expressions for ϕ(y), depending on which of five intervals y belongs to: 1.) y 1 x 1 (y) = 1, x (y) = 1, ϕ(y) = 1 +.5y, ϕ (y) =.5..) 1 y 9 x 1 (y) = 1 y, x (y) = 1, ϕ(y) = 9 + y.5y. ϕ (y) = 1 y.5. 3.) 9 y 1 x 1 (y) = 1 y, x (y) = 3 y, ϕ(y) = 8 y 1.5y. ϕ (y) = 4 y 1.5. 4.) 1 y 9 x 1 (y) =.1, x (y) = 3 y, ϕ(y) = 1 + 6 y 1.4y. ϕ (y) = 3 y 1.4. 5.) 9 y x 1 (y) =.1, x (y) =.1, ϕ(y) = 1 1.3y. ϕ (y) = 1.3. We note that ϕ and ϕ are continuous, and ϕ is decreasing. In particular, ϕ (1) =.5 > and ϕ (9) = 1/6 <. from which it follows that the optimal solution to the dual problem is to be found in the interval 1 y 9, where ϕ (y) = 1 y.5. The unique solution ŷ to ϕ (y) = is then given by ŷ = 4, with ϕ(ŷ) = 11. The corresponding primal solution is (ˆx 1, ˆx ) = ( x 1 (ŷ), x (ŷ)) = (.5, 1), which is a feasible solution to the primal problem with f(ˆx 1, ˆx ) = + 9 = 11 = ϕ(ŷ). Thus, (ˆx 1, ˆx ) = (.5, 1) is a global optimal solution to the primal problem. 8