Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Relevanta dokument
cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

x sin(x 2 )dx I 1 = x arctan xdx I 2 = x (x + 1)(x 2 2x + 1) dx

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

7x 2 5x + 6 c.) lim x 15 8x + 3x Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter

4. Bestäm eventuella extrempunkter, inflexionspunkter samt horisontella och vertikala asymptoter till y = 1 x 1 + x, och rita funktionens graf.

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Matematik 5 Kap 3 Derivator och Integraler

SF1625 Envariabelanalys Lösningsförslag till tentamen

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Betygskriterier Matematik E MA p. Respektive programmål gäller över kurskriterierna

SF1625 Envariabelanalys

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

Matematik och modeller Övningsuppgifter

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

Studiehandledning till. MMA121 Matematisk grundkurs. Version

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Meningslöst nonsens. December 14, 2014

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren och

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x

Kursens Kortfrågor med Svar SF1602 Di. Int.

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

Chalmers tekniska högskola Datum: kl Telefonvakt: Jonny Lindström MVE475 Inledande Matematisk Analys

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI

SF1625 Envariabelanalys

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A. e 50k = k = ln 1 2. k = ln = ln 2

1. Beräkna och klassificera alla kritiska punkter till funktionen f(x, y) = 6xy 2 2x 3 3y 4 2. Antag att temperaturen T i en punkt (x, y, z) ges av

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

SF1620 (5B1134) Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under tiden

TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor

SF1625 Envariabelanalys

TATA42: Föreläsning 10 Serier ( generaliserade summor )

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Mer om generaliserad integral

Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

Tentamen i Envariabelanalys 2

LMA515 Matematik, del B Sammanställning av lärmål

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

Modul 4 Tillämpningar av derivata

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

Matematik 4 Kap 3 Derivator och integraler

SF1625 Envariabelanalys Tentamen Måndagen den 12 januari 2015

x 1 1/ maximum

Blandade A-uppgifter Matematisk analys

Tentamen : Lösningar. 1. (a) Antingen har täljare och nämnare samma tecken, eller så är täljaren lika med noll. Detta ger två fall:

i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys

Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.

vux GeoGebraexempel 3b/3c Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker

Meningslöst nonsens. November 19, 2014

KOKBOKEN 3. Håkan Strömberg KTH STH

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

Moment Viktiga exempel Övningsuppgifter. t 4 3t 2 +2 = 0. x 2 3x+2 = 0

Matematik E (MA1205)

Geometri och Trigonometri

1 Föreläsning 12, Taylors formel, och att approximera en funktion med ett polynom

SF1625 Envariabelanalys

Attila Szabo Niclas Larson Gunilla Viklund Mikael Marklund Daniel Dufåker. GeoGebraexempel

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Checklista för funktionsundersökning

MA2001 Envariabelanalys 6 hp Mikael Hindgren Tisdagen den 9 januari Skrivtid:

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

Tentamen i Matematisk analys MVE045, Lösningsförslag

MATEMATIK 5 veckotimmar

G VG MVG Programspecifika mål och kriterier

SF1625 Envariabelanalys Tentamen Onsdagen den 5 juni, 2013

2. (a) Skissa grafen till funktionen f(x) = e x 2 x. Ange eventuella extremvärden, inflektionspunkter

MATEMATIK Datum: Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2016 Skrivtid 9:00-13:00

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

6 Derivata och grafer

Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standard LMA515 Matematik KI, del B.

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.

Tentamen i matematik. f(x) = ln(ln(x)),

Chalmers tekniska högskola Datum: kl Telefonvakt: Carl Lundholm MVE475 Inledande Matematisk Analys

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n

Lösningsförslag till Tentamen i SF1602 för CFATE 1 den 20 december 2008 kl 8-13

5B1134 Matematik och modeller Lösningsförslag till tentamen den 12 januari 2005

För teknologer inskrivna H06 eller tidigare. Skriv GAMMAL på omslaget till din anomyna tentamen så att jag kan sortera ut de gamla teknologerna.

Prov i matematik Distans, Matematik A Analys UPPSALA UNIVERSITET Matematiska institutionen

Namn Klass Personnummer (ej fyra sista)

9-1 Koordinatsystem och funktioner. Namn:

NpMaD ht Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

Transkript:

ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på varje inlämnat blad. Frågorna till 6 ska svaras med sant eller falskt och ger vardera poäng.. Låt f vara en minst två gånger kontinuerligt deriverbar med kritisk punkt i x =. Då gäller att om andra derivatan är noll i den kritiska punkten så måste funktionen ha terrasspunkt i x =.. Om en funktion är kontinuerlig i en punkt x = a så gäller lim f(x) = f(a) x a 3. När man ska beräkna ett gränsvärde f(x) lim x a g(x) så säger l hôpitals regler att L = lim x a f (x) g (x) 4. Masscentrum och tyngdpunkt är alltid samma sak. 5. När man approximerar en funktion f(x) med ett Taylorpolynom av grad, med centrum i x = a, så ges felet av f (s) (x a) 3, 3! där s är ett godtyckligt tal mellan x och a. 6. Centroiden för en kropp är en egenskap som beror av kroppens densitetsfunktion.

Frågorna 7-9 ger 3 poäng vardera 7. Beräkna följande gränsvärde x + x lim x x 4 8. Derivera funktionen f(x) = arctan [ sin(5x 3 ) ] 9. Beräkna integralen x 3 ln xdx Uppgifterna -4 kräver fullständiga och väl motiverade lösningar. Uppgifterna ger 5 poäng vardera. Beräkna integralen x + (x + 5)(x + 4) dx. Rita grafen till f(x) = x 5x + 6 x Beräkna och klassificera alla kritiska punkter, inflexionspunkter och asymptoter.. Låt f(x) = x + 6x 6 (a) Beräkna arean A som ligger under grafen till f(x) och ovanför linjen y =. ( p) (b) Beräkna volymen som uppstår då vi roterar arean A runt y-axeln. (3 p) 3. Att e är ett tal mellan och 3 är ett faktum som många känner till. Beräkna fjärde ordningens MacLaurinpolynom till funktionen f(x) = e x och använd detta för att ge ett närmevärde till e. Ange feltermen och uppskatta felet. 4. x-axeln, y-axeln och linjesegmentet mellan punkterna (, a) och (b, ) (a >, b > ) bildar en triangel i första kvadranten. Densiteten för denna triangel är konstant lika med ett. (a) Rita en bild över situationen (b) Beräkna area och momenten map vardera axel (c) Bestäm masscentrum för denna triangel. (p) (3p) (p)

Svar till tentamen i,.. Falskt. Sant 3. falskt 4. Falskt 5. Falskt 6. Falskt 7. 8. 9.. ( 3 ln ( x + 4 ) ( x )) + 5 ln(x + 5) 5 arctan 58 K K5 5 x K. K Figure : Graf till uppgift

. (a) A = 3/3 (b) Volymen blir 64π 3. e = 65/4 ± /4 =.783333 ±.5 4. (a) Se lösningen (b) A = ab/, M x= = ab /6 och M y= = a b/6 (c) x = b/3 ȳ = a/3 4

Lösningar till tentamen i,.. Då andra derivatan är noll i en kritisk punkt har vi situationen mr Poker och man kan då inte dra någon slutsats om den kritiska punkten. Det kan vara ett minimum (som exempelvis x 4 ) eller ett maximum (som i fallet x 4 ) eller en terasspunkt (som i exemplet x 3 ).. Det här är exakt definitionen av att en funktion är kontinuerlig i punkten x = a 3. När man ska beräkna ett gränsvärde som är av typen [ ] eller av typen [ ] så gäller att gränsvärdet är lika med gränsvärdet av kvoten av derivatorna. Formuleringen i uppgiften öppnar upp för alla andra situationer där detta inte gäller. Därför är falskt det enda rätta svaret här. 4. Man skulle kunna säga att de aldrig är samma sak eftersom de är definierade på olika sätt. Om gravitationsfältet inte varierar över den aktuella kroppen så är masscentrum lika med tyngdpunkten. Detta är approximativt sant endast för små kroppar nära jordytan. För en skyskrapa kan de två punkterna ligga någon millemeter från varandra. Så det är inte någon stor skillnad. 5. Talet s är inte godtyckligt utan väldigt speciellt. Taylors sats säger att det existerar ett sådant tal men talar inte om för oss hur man hittar det. Hade det varit godtyckligt hade vi kunna låta s vara vilket tal som helst mellan x och a. 6. Centroiden för en kropp är en geometrisk egenskap som bara beror på kroppens form och inte på hur densiteten dvs hur materialets täthet varierar.

7. Både täljare och nämnare går mot noll. Eftersom dessa är polynom så förstår vi att vi kan faktorisera: x + x (x + )(x ) lim x x = lim 4 x (x + )(x ) = lim (x ) x (x ) = 3 4 = 3 4 Formen [ ] möjliggör också att man använder l Hôpitals regler: 8. Kedjeregeln ger f (x) = x + x x + lim x x = lim = 3 4 x x 4 + [sin(5x 3 )] [cos(5x3 )] (5x ) = 5x cos(5x 3 ) + [sin(5x 3 )] 9. Partiell integration ger x 3 ln xdx = x4 4 ln x x 4 4 x dx = x4 ln x 4 6 x4 + K 6

. Vi börjar med att notera att nämnaren inte kan faktoriseras ytterligare i reella faktorer och då får vi följande ansats för partialbråksuppdelning: x + (x + 5)(x + 4) = A x + 5 + Bx + C x + 4 Handpåläggning ger att A = 6 9. Om vi låter x = respektive x = så får vi två ekvationer som vi kan använda för att beräkna B och C: Vår integral blir nu x = :: x = :: x + 6 (x + 5)(x dx = + 4) 9 = 6 5 9 + C C = 5 4 9 5 = 6 6 9 + B + C B = 3 5 9 dx x + 5 } {{ } =I + 3 9 x 5 x + 4 dx } {{ } =I Vi beräknar delintegralerna för sig: dx I = = ln x + 5 x + 5 x 5 I = x + 4 dx = [ ] x x dx = x + 4 x + 4 dx x + 4 dx = = ln(x + 4) 5 4( + ( ) x ) dx = = [Subst:: u = x/, du = dx/] = = ln(x + 4) 5 + u du = ln(x + 4) 5 arctan u = = ln(x + 4) 5 arctan x Vår integral blir slutligen x + 6 (x + 5)(x dx = + 4) 9 I + 3 9 I = [ ( x ) ] 5 ln x + 5 + 3 ln(x + 4) 5 arctan + K 58. Vi börjar med att beräkna vår rationella funktions nollställen som är täljarpolynomets nollställen: Termen 6 är produkten av polynomets nollställen, vilket ger att om vi antar att nollställena är heltal så måste vi leta nollställena bland faktorerna till 6 som är ±, ±, ±3, ±6. Sätter vi in dessa tal i polynomet så ser vi att, 3 är våra nollställen! (alternativt löser vi enkelt x 5x + 6 = ). Genom att utföra divisionen så får vi f(x) = x 5 + 6 x Detta ger oss att y = x 5 är en sned asymptot Vi ser även att y-axeln är en lodrät asymptot (vilket följer av att funktionen inte är definierad i origo.) Vi deriverar: Förstaderivatan: f (x) = 6 x = x 6 x 7

Andraderivatan f (x) = x 3 Kritiska punkter: Derivatan blir noll då x = ± 6.45, vilket således är våra kritiska punkter. Vi klassificerar de kritiska punkterna med andraderivatatestet: I den negativa kritiska punkten x = 6 så är andraderivan negativ (sur mun max) och i den positiva kritiska punkten x = 6 så är andraderivatan positiv (glad mun min) Nollställen till andraderivatan: inga nollställen: växande/avtagande: Funktionen växer/avtar om derivatan är positiv/negativ: derivatan är mindre än noll för de x som gör att x < 6 vilket betyder att 6 < x < 6. För dessa x är vår funktion alltså avtagande. För övriga x så är vår funktion växande. Sammanställer man allt detta så kan man rita upp en graf liknande den i figur.. (a) Arean som vi söker ligger ovanför y = och nedanför f(x) = x + 6x 6. Vi behöver veta var dessa två kurvor skär varandra och löser därför ekvationenen f(x) = som ger oss andragradsekvationen x + 6x 5 = och vi får att skärningspunkterna är x = och x = 5 Arean blir nu A = 5 f(x) ( )dx = 5 ( x + 6x 5)dx = [ x 3 /3 + 3x 5x] 3 = = 3/3 (b) För rotationen runt y-axeln så använder vi oss av cylindriska skal: Cylindriskt skal:: dv = } omkretsen {{ } πx höjden } {{ } f(x) ( ) tjockleken } {{ } dx Alla cylindriska skal mellan och 5 skall summeras och vi får att rotationsvolymen blir: V = π 5 3. Fjärde ordningens MacLaurinpolynom blir x( x + 6x 5)dx = π[ x 4 /4 + x 3 5x /] 5 = = 64π p 4 (x) = + x + x / + x 3 /3! + x 4 /4! Eftersom e = f() så får vi ett närmevärde genom Feltermen är p 4 () = + + / + /6 + /4 = 65/4.783333 E 4 (x) = f (v) (s) x 5 = x5 e s, s ligger mellan och x. 5! Då x = har vi att s och vi får E () = es < e < 3 = 4 =.5, där vi i första olikheten använt att e s är en växande funktion och s, vilket ger att = e < e = e. I den andra olikheten använder vi faktumet att e < 3 som uppgiften inleddes med. Dilket ger att e = 65/4 ± /4 =.783333 ±.5 8

Figure : Triangeln i uppgiften är begränsad av linjen y = a b x + a. 4. (a) Vi börjar med att rita en bild på situationen För att beräkna linjen som definierar triangelns övre begränsningslinje så sätter vi in de två punkterna i linjens ekvation y = kx + m så får vi två ekvationer och löser man dessa så får vi k = a/b och m = a. Därför får vi att linjens ekvation blir y = a b x + a Denna funktion kommer vi att använda för att beräkna momenten (b) Momentet M x= :: Vi har att momentet kring y-axeln x = blir M x= = = b xf(x)dx = [ ax3 3b + ax = ab 6 b ] b x( a b b x + a)dx = ( a b x + ax)dx = = ab3 3b + ab = ab Momentet M y= :: Momentet kring x-axeln y = blir M y= = = b f(x) dx = b [ a x 3 3b a x + a x b [ a ] b x + a dx = ] b = [ 3 + b [ a b 3 3b a b + a b b ] [ = ab 6 + 3 ] 6 [ ] a b x a b x + a dx = ] = a b 6 Triangelns massa :: När man har konstant densitet (vår densitet är ) så bir massan lika med arean. Triangelns area blir basen gånger höjden delat med två, dvs A = ab/ 9

(c) Det är nu enkelt att få fram masscentrums koordinater: x = M x= A = b 3 ȳ = M y= A = a 3