2.8. Sannolikhetstäthetens vinkelberoende

Relevanta dokument
2.7. Egenfunktionernas tolkning - fortsättning

3.5. Schrödingerekvationen för atomer med en elektron

2.4. Bohrs modell för väteatomen

2.4. Bohrs modell för väteatomen

Andra föreläsningen kapitel 7. Patrik Lundström

2.14. Spinn-bankopplingen

VIII. Spinn- och magnetisk växelverkan

4-1 Hur lyder Schrödingerekvationen för en partikel som rör sig i det tredimensionella

Väteatomen. Matti Hotokka

F3: Schrödingers ekvationer

Utveckling mot vågbeskrivning av elektroner. En orientering

Instuderingsfrågor, Griffiths kapitel 4 7

2.11. Sterns och Gerlachs experiment; elektronspinn

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik

Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013

TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007

Rep. Kap. 27 som behandlade kraften på en laddningar från ett B-fält.

KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från

2.16. Den enkla harmoniska oscillatorn

Kapitel 4. Materievågor

c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning

19.4 Bohrs modell för väteatomen.

Kapitel 7. Atomstruktur och periodicitet

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

Rydbergs formel. Bohrs teori för väteliknande system

Kvantmekanik. Kapitel Natalie Segercrantz

7. Atomfysik väteatomen

Oscillerande dipol i ett inhomogent magnetfält

Nmr-spektrometri. Matti Hotokka Fysikalisk kemi

Preliminärt lösningsförslag till Tentamen i Modern Fysik,

1-1 Hur lyder den tidsberoende Schrödingerekvationen för en partikel som rör sig längs x-axeln? Definiera ingående storheter!

Kvantmekanik - Gillis Carlsson

Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?

Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0

Tentamen, Kvantfysikens principer FK2003, 7,5 hp

Atom- och kärnfysik med tillämpningar -

Kapitel 7. Atomstruktur och periodicitet. Kvantmekanik Aufbau Periodiska systemet

1.13. Den tidsoberoende Schrödinger ekvationen

Atomer, ledare och halvledare. Kapitel 40-41

Atom- och kärnfysik med tillämpningar -

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

1.7. Tolkning av våg partikeldualiteten

Fysik TFYA86. Föreläsning 11/11

Kvantfysik SI1151 för F3 Tisdag kl

Kapitel: 32 Elektromagnetiska vågor Maxwells ekvationer Hur accelererande laddningar kan ge EM-vågor

Dugga i FUF040 Kvantfysik för F3/Kf3

Kapitel 27: Magnetfält och magnetiska krafter Beskriva permanentmagneters beteende Samband magnetism-laddning i rörelse Ta fram uttryck för magnetisk

FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00

Tentamen i Modern fysik, TFYA11/TENA

Tentamen i El- och vågrörelselära,

LABORATION ENELEKTRONSPEKTRA

2.15. Teorin för flerelektronatomer

Föreläsning 6. Amplituder Kvanttillstånd Fermioner och bosoner Mer om spinn Frågor Tentan. Fk3002 Kvantfysikens grunder 1

Fysiska institutionen april 1983 Hans Linusson, Carl-Axel Sjöblom, Örjan Skeppstedt januari 1993 FY 2400 april 1998 Distanskurs LEKTION 25.

Vågrörelselära & Kvantfysik, FK januari 2012

VI. Rörelsemängdsmomentets kvantisering

Laboration 2: Konstruktion av asynkronmotor

Kvantmekanik II - Föreläsning 10

3.14. Periodiska systemet (forts.)

Milstolpar i tidig kvantmekanik

Vågfysik. Ljus: våg- och partikelbeteende

Övningar. Nanovetenskapliga tankeverktyg.

The nature and propagation of light

Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik

Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37

Repetition kapitel 21

Skriftlig tentamen i Elektromagnetisk fältteori för π3 (ETEF01) och F3 (ETE055)

EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER

Dipoler och dipol-dipolbindningar Del 2. Niklas Dahrén

Kvantmekanik II (FK5012), 7,5 hp

Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).

14. Potentialer och fält

Lösningsförslag Inlämningsuppgift 1 elstatikens grunder

1 Den Speciella Relativitetsteorin

Litiumatomens spektrum

Tentamen i : Vågor,plasmor och antenner. Totala antalet uppgifter: 6 Datum:

Kvantmekanik och kemisk bindning I 1KB501

Bra tabell i ert formelblad

FYTA11: Molekylvibrationer

Andra EP-laborationen

Lösningsförslag till tentamen Torsdag augusti 16, 2018 DEL A

9. Materiens magnetiska egenskaper. 9.0 Grunder: upprepning av elektromagnetism

9. Materiens magnetiska egenskaper

Materialfysik2010 Kai Nordlund

1.5 Våg partikeldualism

Sensorer, effektorer och fysik. Grundläggande fysikaliska begrepp som är viktiga inom mättekniken

1. Elektromagnetisk strålning

Tenta svar. E(r) = E(r)ˆr. Vi tillämpar Gauss sats på de tre områdena och väljer integrationsytan S till en sfär med radie r:

Kap 1. Tidig Atomfysik

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!

Medicinsk Neutron Vetenskap. yi1 liao2 zhong1 zi3 ke1 xue2

TILLÄMPAD ATOMFYSIK Övningstenta 1

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

16. Spridning av elektromagnetisk strålning

1.13. Den rektangulära potentialbrunnen

Transkript:

2.8. Sannolikhetstäthetens vinkelberoende [Understanding Physics: 19.7 (s. 590)-19.11] Härnäst skall vi studera vinkelberoendet av egenfunktionerna för n = 1 och n = 2. Den allmänna lösningen till den φ beroende ekvationen är Φ ml (φ) = e im l φ. Detta innebär att sannolikheten Φ m l (φ)φ ml (φ) = e im l φ e im l φ = 1 för alla egenfunktioner för en elektron, vilket betyder att inga sådana sannolikhetstäthetsfunktioner kommer att att bero av φ. De förändras därför inte då φ varierar mellan 0 och 2π, dvs de är symmetriska i avseende på rotation kring z axeln. Den moderna fysikens grunder, Tom Sundius 2010 1

Beroendet av vinkeln θ kan åskådliggöras med hjälp av polära diagram för en funktion, som är proportionell mot Θ l,m l (θ)θ l,ml (θ) (se fig. 19.18, samt fig. ovan). Funktionerna ψ 1,0,0 (1s) och ψ 2,0,0 (2s) är oberoende av θ, så att Θ 0,0 (θ)θ 0,0(θ) = 1 och de polära diagrammen är följaktligen cirklar. För egenfunktionen ψ 2,1,0 (2p) är Θ 1,0 (θ)θ 1,0(θ) proportionell mot cos 2 θ, så att maxima ligger nära z axeln, där θ 0. För egenfunktionerna ψ 2,1,±1 (2p) är Θ 1,±1 (θ)θ 1,±1(θ) proportionell mot sin 2 θ, så att diagrammen uppvisar maximer i x, y planet, där θ π/2. För egenfunktionen ψ 3,2,±1 (3d) får man ett polärt diagram som liknar en fyrväppling. För högre l värden får man alltså ytterligare maxima i prefererade riktningar. Den moderna fysikens grunder, Tom Sundius 2010 2

I allmänhet är alla dessa distributioner symmetriska i avseende på rotation kring z axeln, så att det fullständiga tredimensionella vinkelberoendet erhålls genom att rotera de polära diagrammen kring z axeln. Distributionen för l = 0, m l = 0 blir således ett klot, för l = 1, m l = 0 får vi två ägg, och för l = 1, m l = ±1 en munkring. Atomens laddningsfördelning ρ n,l,ml (r, θ, φ) kan uttryckas med elektronens sannolikhetstäthet genom ekvationen ρ n,l,ml (r, θ, φ) = ep n,l,ml (r, θ, φ) = eψ n,l,m l (r, θ, φ)ψ n,l,ml (r, θ, φ), där e är elektronladdningen. Elektronens sannolikhetstäthet kan därför också uppfattas som en tredimensionell laddningsfördelning. Den moderna fysikens grunder, Tom Sundius 2010 3

2.9. Tolkningen. Bohrs modell och Schrödingers modell I kapitel 19 i boken beskrivs först Bohrs enkla planetmodell för atomen och därpå en mer komplicerad kvantmekanisk modell. Bohrs modell konstruerades ursprungligen för att förklara uppkomsten av atomspektra, och lyckades därmed riktigt bra, speciellt när det gällde väteliknande atomer. För atomer med flera elektroner misslyckades den, vilket observerades redan för helium. Den största skillnaden mellan Bohrs modell och den kvantmekaniska modellen är, att i Bohrs modell antas elektronerna röra sig i cirkulära banor (Sommerfeld införde senare elliptiska banor, som hade vissa fördelar), medan elektronerna i den kvantmekaniska modellen inte alls rör sig i bestämda banor, utan istället karaktäriseras av en sannolikhetstäthet, som har olika värden på olika ställen. Elektronernas rörelse är också beroende av Heisenbergs osäkerhetsrelation, som leder till att vi inte exakt vet var en elektron befinner sig, även om vi skulle känna dess hastighet noggrannt. Enligt kausalitetslagen kan vi beräkna en kropps rörelse i framtiden om vi vet exakt var den nu befinner sig. Heisenberg ansåg, att denna lag inte gäller i kvantmekaniken, eftersom vi inte alltid känner kroppens ursprungliga position fullt noggrannt. I Bohrs modell kan man beräkna var en elektron befinner i ett visst ögonblick, och med vilken hastighet den rör sig. Den är med andra ord helt deterministisk. Man kan använda den för att beräkna atomens energinivåer och spektrallinjernas lägen, men det är ingen garanti för att den är korrekt. Den moderna fysikens grunder, Tom Sundius 2010 4

Vi kan försöka förklara skillnaden mellan dessa två modeller med hjälp av en dialog mellan två hypotetiska personer, Simplicio och Salviati (idén lånad ur Galileis verk: Dialog rörande världens två huvudsystem, 1632): Simp. Är det något fel med att tänka sig elektroner som rör sig i cirkulära banor? Salv. En fysiker vid namn Louis de Broglie visade att elektronerna egentligen är vågor... Simp. Hej stopp! Vad menar du, är elektronerna vågor! Jag trodde de var partiklar! Salv. Här blir kvantfysiken rätt konstig. Om du gör ett experiment för att ta reda på var en partikel finns, då hittar du något som liknar en partikel. Men annars är den en våg som medför information om var elektronen sannolikt är. Diffraktionsexperimentet är ett annat sätt att upptäcka elektronernas vågpartikelnatur. Simp. Vad menar du, när du säger att elektronen sannolikt är någonstans. Är inte elektronen alltid på något bestämt ställe? Salv. Njaa... Innan du kontrollerar var den är, så är den egentligen bara en våg. Inte nog med det, Schrödinger har visat att elektronerna inte ens rör sig, vågorna är stationära. Varje gång du kollar var elektronen är kommer du att finna att den är på ett annat ställe, men det betyder inte att den har rört sig. Om man checkar positionen tillräckligt ofta, kommer man att kunna få ett banliknande mönster för vissa energinivåer, men vi skall inte inbilla oss att elektronerna verkligen rör sig i små cirklar. Den moderna fysikens grunder, Tom Sundius 2010 5

Simp. Var är då elektronen när jag inte tittar efter? Måste den inte vara nånstans? Salv. Det är just det som är det lustiga: elektronen är inte på något bestämt ställe när du inte tittar efter. Till all tur, för mestadels har det inte så stor betydelse var den i själva verket är, vi är bara intresserade av hur mycket energi den har. Simp. Aha! Det är därför banorna är till nytta! De kanske ger fel information om var elektronen är, men de säger hur mycket energi den har. Salv. Vi kallar detta för elektronens energinivå. Eftersom föreställningen om elektronbanor är missvisande, så har man börjat beskriva atomernas energinivåer med ett nivåschema. Simp. Och detta kallar vi för Schrödingers modell förstås. Den moderna fysikens grunder, Tom Sundius 2010 6

2.10. Spektrallinjernas intensitet; urvalsregler Vi har tidigare konstaterat, att Bohrs teori inte kan förklara spektrallinjernas intensitet. Den kvantmekaniska teorin har inte denna brist. Sannolikheten för att en övergång skall äga rum, kan beräknas om man känner vågfunktionerna för begynnelsetillståndet och sluttillståndet. Intensiteten kan därpå beräknas ur övergångssannolikheten. Atomen, där övergången sker, kan anses ha en laddningsfördelning, som oscillerar mellan distributionerna i grundtillståndet och sluttillståndet. Det oscillerande laddningsmolnet är inte sfäriskt symmetriskt, utan den positiva och negativa laddningen är åtskiljda, och separationen varierar då molnet oscillerar. Oscillationen innebär, att laddningen accelererar, och som vi vet, så alstrar en accelererande laddning elektromagnetisk strålning. Den största övergångssannolikheten, och därmed också den starkaste emissionen av elektromagnetisk strålning åstadkoms av ett oscillerande elektriskt dipolmoment (jfr s. 441). Atomens elektriska dipolmoment är p = er, där r är separationen mellan den positiva och negativa laddningen. Den moderna fysikens grunder, Tom Sundius 2010 7

Hastigheten, varmed den elektromagnetiska strålningen därvid emitteras, är proportionell mot p 2, som visar sig vara proportionell mot kvadraten på integralen hela rymden Ψ f (r, θ, φ, t)( er)ψ i(r, θ, φ, t)dv, där funktionerna Ψ i (r, θ, φ, t) = ψ i (r, θ, φ)e ie i t/ och Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)e ie f t/ beskriver begynnelsetillståndet, resp. sluttillståndet, och E i och E f är de motsvarande energierna. Eftersom Ψ f (r, θ, φ, t) = ψ f (r, θ, φ)eie f t/, så kan integralen skrivas i formen hela rymden ψ f (r, θ, φ)eie f t/ ( er)ψ i (r, θ, φ)e ie i t/ dv = e i(e f E i )t/ hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv Faktorn e i(e f E i )t/ är en periodisk funktion, vars vinkelfrekvens är ω = 2πf = (E f E i )/. Den utsända strålningens frekvens är alltså f = (E f E i )/h. Den moderna fysikens grunder, Tom Sundius 2010 8

Den elektriska dipolintegralen hela rymden ψ f (r, θ, φ)( er)ψ i(r, θ, φ)dv bestämmer strålningens emissionshastighet. Integralen är i hög grad beroende av egenfunktionernas symmetriegenskaper. Man kan visa, att symmetrin för en egenfunktion är beroende av kvanttalet l. Om l f och l i är bankvanttalen för slut, resp. begynnelsetillståndet, så kan man visa att integralen försvinner, om inte l = l f l i = ±1. Elektrisk dipolstrålning kommer därför att produceras endast om l = ±1, vilket kallas för en urvalsregel för denna övergång. Vi ska tillämpa den på Lyman serien, vilken som vi sett motsvarar övergångar mellan de exciterade nivåerna med n i = 2, 3, 4,... till grundtillståndet n f = 1. Grundtillståndet har l = 0, varför övergångar endast är möjliga från exciterade tillstånd med l = 1, dvs 2p, 3p, 4p,... tillstånden. Om vi tillämpar samma urvalsregel på Balmer serien, så ser vi, att varje spektrallinje egentligen består av tre övergångar. T.ex. den röda linjen (n i = 3 n f = 2) byggs upp av övergångarna 3p 2s, 3s 2p och 3d 2p. På grund av degenerationen observeras inte spjälkning av linjerna. Den moderna fysikens grunder, Tom Sundius 2010 9

2.11. Kvantisering av impulsmomentet Som vi har sett, så innebär den kvantmekaniska behandlingen av atomen inte bara att energin kvantiseras, utan också att sannolikhetstäthetens vinkeldistribution har kvantiserade riktningar. Då l 0, så är sannolikheten för att man skall finna elektronen lika med noll i vissa riktningar med avseende på z axeln. Detta fenomen, som kallas för rymdkvantisering, påminner om noderna som uppträder i de endimensionella stående vågor, som är egenfunktioner för partiklar i bundna system. I det tredimensionella fallet uppträder de snarare som nodriktningar, än som nodpunkter. Atomens egenfunktioner är därför tredimensionella stående vågor med nodriktningar, som bestäms av elektronsystemets gränsvillkor. Kvanttalen l och m l anger sannolikhetsdistributionernas riktningar, och ger alltså upphov till rymdkvantiseringen. En fullständig kvantmekanisk analys visar, att bankvanttalet l är relaterat till storleken av det totala banimpulsmomentet L genom ekvationen L 2 = l(l + 1) 2. Den moderna fysikens grunder, Tom Sundius 2010 10

Detta stämmer överens med Bohrs första postulat vad gäller kvantiseringen av impulsmomentet, men endast för stora värden av l, dvs då l(l + 1) l L, ger ekvationen samma resultat som Bohrs postulat. Dessutom tillåter denna ekvation också att impulsmomentet blir noll (för l = 0), vilket inte är tillåtet enligt Bohrs teori. Då l 0, begränsar kvantiseringen av impulsmomentet L vektorn till vissa riktningar med avseende på z axeln. L vektorns z komponent L z (egentligen egenvärdet, se nedan) bestämmer de tillåtna riktningarna: L z = m l, och de tillåtna vinklarna mellan L och z axeln kan därför uttryckas med riktningscosinerna cos θ = L z L = L riktningen bestäms därför av kvanttalet m l. m l l(l + 1) 2 = m l l(l + 1). Att m l faktiskt är ett egenvärde av ˆL z kan visas som följer. Klassiskt gäller L = r p = (xi + yj + zk) (p x i + p y j + p z k) = (yp z zp y )i + (zp x xp z )j + (xp y yp x )k Den moderna fysikens grunder, Tom Sundius 2010 11

Om vi i ekvationen substituerar de kvantmekaniska rörelsemängdsoperatorerna p x = i x,... finner vi ˆL x = i (y z z y ) ˆL y = i (z x x z ) ˆL z = i (x y y x ) Dessa impulsmomentoperatorer kan lätt transformeras till sfäriska koordinater genom att uttrycka x,y och z med r, θ och φ (se föreläsning 5) och använda kedjeregeln. För φ får vi då uttrycket φ = x φ x + y φ y + z φ z = r sin θ sin φ x + r sin θ cos φ y = y x + x y, Den moderna fysikens grunder, Tom Sundius 2010 12

varav följer att ˆL z = i φ. Vi finner härav ˆL z Φ(φ) = i φ eim l φ = m l e im l φ = m l Φ(φ), och m l satisfierar alltså egenvärdesekvationen för ˆL z. Fig. 19.21 i boken (samt figuren nedan) visar inverkan av detta kvantiseringsvillkor i fallet l = 2. Som vi tidigare sett, kan m l i detta fall endast anta värdena 2, 1, 0, +1, +2, varför L z endast kan anta värdena 2,, 0, +, +2. Märk väl, att storleken av vektorn L är densamma för varje värde av L z, dvs L = 2(2 + 1) = 6. Den moderna fysikens grunder, Tom Sundius 2010 13

Energikvantiseringen kan studeras experimentellt, t.ex. genom att studera väteatomens energinivåer, men rymdkvantiseringen kan inte studeras experimentellt på motsvarande sätt. För att göra det skulle man nämligen behöva en referensriktning, såsom z riktningen. Problemet är det, att z riktningen inte är en bestämd riktning i en (sfäriskt symmetrisk) atom, den är bara ett matematiskt hjälpmedel. Om vi studerar atomer, som befinner sig t.ex. i energitillståndet E 2 (n = 2), så har vi att göra med slumpmässigt orienterade z axlar och kan därför bara mäta medelelektrondistributionen för de fyra tillstånden med n = 2, dvs ψ 2,0,0, ψ 2,1, 1, ψ 2,1,0 och ψ 2,1,1. Denna fördelning kan uttryckas 1 4 [ψ 2,0,0ψ 2,0,0 + ψ 2,1, 1ψ 2,1, 1 + ψ 2,1,0ψ 2,1,0 + ψ 2,1,1ψ 2,1,1 ]. Genom att substituera uttrycken för egenfunktionerna i detta uttryck finner vi att medelsannolikheten för θ beroendet är [ 1 2 sin2 θ + cos 2 θ + 1 2 sin2 θ] = 1. Medelsannolikhetsdistributionen i (n = 2) tillståndet är därför oberoende av vinkeln, den är alltså sfäriskt symmetrisk. Vi har tidigare konstaterat, att ψ 2,0,0 är sfäriskt symmetrisk, därför måste också P 2,0 (r) och P 2,1 (r) i medeltal var för sig vara sfäriskt symmetriska funktioner. Detta visar sig vara ett helt allmänt resultat. Medelvärdet av sannolikhetstätheten för en samling atomer med samma värden av n, l har sfärisk symmetri, varför rymdkvantiseringen inte kan upptäckas i fria atomer med en elektron. Rymdkvantisering kan dock upptäckas om det finns en bestämd riktning definierad i atomen, t.ex. genom ett pålagt yttre magnetfält, som vi skall se i nästa avsnitt. Den moderna fysikens grunder, Tom Sundius 2010 14

2.12. Magnetiska fenomen i atomer: Zeeman effekten Enligt Bohrs teori rör sig elektronen i en bana kring kärnan. Eftersom den är laddad, bildar den en strömslinga med det magnetiska dipolmomentet m (jfr avsn. 16.13 i boken). Enligt ekvation (16.31) kan det magnetiska dipolmomentet uttryckas med banimpulsmomentet: m = e L 2m e Minustecknet beror på, att elektronen är negativt laddad, m är därför antiparallell med L. Förhållandet e som relaterar det magnetiska momentet till banimpulsmomentet kallas för det orbitala gyromagnetiska 2me förhållandet. Om vi nu placerar atomen i ett yttre magnetfält, så kommer elektronens magnetiska dipolmoment att påverkas av ett vridmoment T = m B (jfr ekvation (16.26)). Detta vridmoment strävar att vrida m i B:s riktning. Potentialenergin som är associerad med denna vridning är U = m B = m B cos θ, Den moderna fysikens grunder, Tom Sundius 2010 15

där θ är vinkeln mellan m och B (=z axeln). Denna energi är minimal (alltså mest negativ), då m är parallell med B, dvs då θ = 0. Vi skall nu tillämpa detta på en atom i ett likformigt yttre magnetfält B, som definierar z axelns riktning. I atomen kvantiseras riktningen av L, och således också av m, medels ekvationen L z = m l. Med hjälp av sambandet mellan det magnetiska dipolmomentet och banimpulsmomentet finner vi då, att dipolens potentiella energi i det yttre fältet B kan skrivas U = m B = e 2m e L B = e 2m e L B cos θ = e 2m e B L z = e 2m e B m l Storheten e 2me, vars värde är 0.927 10 23 Am 2 kallas för Bohrs magneton, och betecknas µ B. Den potentiella energin kan därför uttryckas U = m l µ B B. Energin för atomens magnetiska dipol i det yttre magnetfältet är sålunda kvantiserad, och dess värde bestäms av kvanttalet m l. I ett yttre magnetfält kommer atomens energinivåer därför att spjälkas upp på ett antal komponenter, som var och en svarar mot ett bestämt värde av m l. Degenerationen i avseende på m l försvinner alltså på grund av det yttre magnetfältets inverkan. Emedan m l antar 2l + 1 värden för ett givet värde av l, kommer varje nivå således att spjälkas upp på 2l + 1 komponenter. Den moderna fysikens grunder, Tom Sundius 2010 16

Eftersom spektrallinjernas frekvenser svarar mot skillnaden i energi mellan sluttillståndet och begynnelsetillståndet, så kommer också spektrallinjerna att spjälkas upp i komponenter av ett yttre magnetfält. Detta fenomen, som kallas Zeeman effekten, upptäcktes av holländaren Pieter Zeeman år 1896. Alla tänkbara övergångar är dock inte tillåtna. Vi har tidigare visat, att för bankvanttalet l gäller urvalsregeln l = ±1. För det magnetiska kvanttalet m l gäller en motsvarande regel: m l = 0, ±1. Övergångar som inte uppfyller urvalsreglerna är förbjudna. Nedanstående figur visar ett exempel på en normal Zeemaneffekt: uppspjälkning av spektrallinjen vid övergången 3d 2p. De heldragna linjerna anger tillåtna övergångar, de streckade anger förbjudna övergångar, och E = µ B B. Som vi kan se, kommer linjen att uppspjälkas i tre komponenter. Den moderna fysikens grunder, Tom Sundius 2010 17

2.13. Sterns och Gerlachs experiment; elektronspinn Betrakta en strömslinga i ett magnetfält. Om fältet är likformigt och vinkelrätt mot slingans plan, kommer krafterna på slingan F = I l B (jfr ekvation (16.23)) att ta ut varandra i motsatta punkter av slingan, så att det inte finns någon nettokraft som verkar på slingan. Om fältet inte är homogent, och växer i en riktning vinkelrätt mot slingans plan (dvs z axelns riktning, se figuren nedan), så kommer kraftkomponenterna i slingans plan fortfarande att ta ut varandra, men det uppstår en nettokraft F z i riktningen av magnetflödets gradient B/ z, dvs z axelns riktning. Otto Stern och Walter Gerlach experimenterade år 1921 med denna effekt för att skilja åt m l komponenterna i atomstrålespektra. Den moderna fysikens grunder, Tom Sundius 2010 18

Stern och Gerlach använde silveratomer i sina försök, men vi skall (för enkelhetens skull) tillämpa deras metod på väteatomer i grundtillståndet (n = 1, l = 0, m l = 0). Försöksuppställningen visas i bilden nedan. Vi antar att en stråle av väteatomer passerar genom ett icke-likformigt magnetfält, där de påverkas av en kraft F z i z axelns riktning. Genom att derivera uttrycket för energin (U = m B) kan kraften beräknas: F z = U z = e B L z 2m e z Således är F z L z, och storleken av atomernas avlänkning är alltså beroende av L z. Stern och Gerlach åstadkom det inhomogena magnetfältet genom att utforma magnetens ena polsko som en symmetrisk kil och den andra som en skena med rektangulär utskärning. Den moderna fysikens grunder, Tom Sundius 2010 19

Klassiskt kan L z ha vilket värde som helst mellan L och + L, vilket skulle leda till att avlänkningarna skulle vara kontinuerligt fördelade mellan dessa två gränser. Enligt kvantmekaniken är L z däremot kvantiserad: L z = m l, och vi väntar oss därför kvantiserade avlänkningsriktningar, som svarar mot 2l + 1 värden av m l. I väteatomens grundtillstånd är l = m l = 0, varför atomstrålen borde passera utan att avlänkas. Experimentellt visar det sig emellertid, att Sterns och Gerlachs experiment ger upphov till två kvantiserade avlänkningsriktningar (se bilden ovan). Som vi ser, inträffade rymdkvantisering, men antalet komponenter var dubbelt större än vad man väntade sig. Det var också märkligt, att antalet komponenter var jämnt, eftersom 2l + 1 alltid är ett udda tal. Således har elektronen förutom sitt orbitala moment också ett annat magnetiskt moment med två kvantiserade riktningar. Den moderna fysikens grunder, Tom Sundius 2010 20

Detta dipolmoment kallas för elektronens inre magnetiska dipolmoment m S, som associeras med ett inre impulsmoment S på ett liknande sätt som det orbitala magnetiska momentet associeras med banimpulsmomentet. Observera dock, att det gyromagnetiska förhållande, som relaterar elektronens inre magnetiska dipolmoment till dess inre impulsmoment är nästan exakt dubbelt större än det orbitala gyromagnetiska förhållandet, dvs m S = e S. Här har vi bortsett från en liten korrektion, som leder till att elektronens me g-faktor är litet större än 2 (redan 1948 fann Schwinger den vara ca 2.00232 med relativistisk QED). De två observerade avlänkningsriktningarna i Sterns och Gerlachs experiment förklaras genom att låta kvanttalet s som associeras med elektronens inre impulsmoment anta värdet 1 2. Antalet komponenter 2s + 1 blir därigenom 2. De två komponenterna längs z axeln associeras med kvanttalet m s, som kan anta värdet 1 2 eller +1 2. För elektronens inre impulsmoment S, och dess z komponent S z kan vi uppställa liknande ekvationer som för banimpulsmomentet: S 2 = s(s + 1) 2, S z = m s. Av historiska skäl kallas elektronens inre impulsmoment för elektronens spinn, och det motsvarande kvanttalet s kallas för spinnkvanttalet. Det ligger nära till hands att tolka elektronspinnet klassiskt som rotation kring en axel, men denna analogi fungerar inte. Man kan försöka beräkna elektronens magnetiska dipolmoment genom att tänka sig laddningen fördelad jämnt över elektronens sfäriska yta. Den moderna fysikens grunder, Tom Sundius 2010 21

Då visar det sig, att elektronen i så fall borde vara minst lika stor som atomen, eller också borde dess yta rotera snabbare än ljuset. Elektronspinnet uppträder i själva verket på ett helt naturligt sätt i den relativistiska kvantteori som utvecklades av Paul Dirac på 1930 talet, men det kan också inkluderas i den klassiska kvantteorin som en ad hoc hypotes. Om man tillägger elektronspinnet, så behövs det fyra kvanttal, n, l, m l och m s för att ange fullständigt tillståndet för en atom med en elektron. Väteatomens grundtillstånd kan nu beskrivas med två olika uppsättningar kvanttal, nämligen (n = 1, l = 0, m l = 0, m s = + 1 2 ) och (n = 1, l = 0, m l = 0, m s = 1 2 ). I en fullständig beskrivning av Zeeman effekten borde också det inre magnetiska dipolmomentet medtas. Det sätt varpå vi tidigare beskrivit fenomenet, kan användas endast i det fall att det totala elektronspinnet är noll, vilket endast inträffar för atomer med många elektroner där elektronernas spinnkomponenter tar ut varandra. Det kan också tillämpas på pioniskt väte, en mesisk atom där väteatomens elektron ersatts av en pion, en partikel vars spinn är noll. I sådana fall då elektronspinnet är noll talar man om den normala Zeeman effekten. I det allmänna fallet, som också kallas för den anomala Zeeman effekten, är både det totala orbitala impulsmomentet och spinnet för en atom olika noll, och uppspjälkningen av energinivåerna mera komplicerad. Upptäckten av den anomala Zeeman effekten och Sterns och Gerlachs försök ledde Uhlenbeck och Goudsmit till att introducera spinnbegreppet år 1925 (Naturwiss. 13, 953 (1925)). Den moderna fysikens grunder, Tom Sundius 2010 22